
Peter L Dordal, An Introduction to Computer Networks

IT/CYBR 4323, Chapter 28:

Security

• Slides written by Mr. Donald Privitera to accompany An 
Introduction to Computer Networks written by Peter L Dordal, 
http://intronetworks.cs.luc.edu/

• Kennesaw State University

• Marietta Campus

• College of Computing and Software Engineering

• IT Department

• dprivit2@kennesaw.edu

http://intronetworks.cs.luc.edu/


Peter L Dordal, An Introduction to Computer Networks

Overview Categories

• Attacks that execute the intruder’s code on the target computer

• Attacks that extract data from the target, without code injection

• Eavesdropping on or interfering with computer-to-computer 

communications



Peter L Dordal, An Introduction to Computer Networks

Attacks that execute the intruder’s 

code on the target computer

• The first category is arguably the most serious; this usually amounts to 

a complete takeover, though occasionally the attacker’s code is 
limited by operating-system privileges. A computer taken over this 

way is sometimes said to have been “owned”.

• Discussed in Dordal book chapter 28.1   Code-Execution Intrusion.

• Perhaps the simplest form of such an attack is through stolen or 

guessed passwords to a system that offers remote login to 

command-shell accounts.

• More technical forms of attack may involve a virus, a buffer 
overflow (28.2   Stack Buffer Overflow and 28.3   Heap Buffer 

Overflow), a protocol flaw (28.1.2   Christmas Day Attack), or some 

other software flaw (28.1.1   The Morris Worm).



Peter L Dordal, An Introduction to Computer Networks

Code-Execution Intrusion

• The most serious intrusions are usually those in which a vulnerability allows the attacker to run 
executable code on the target system.

• The classic computer virus is broadly of this form, though usually without a network vulnerability.

• For networked targets, once an attacker is able to run some small initial executable then that 
program can download additional malware. The target can also be further controlled via the 
network.

• An executable-code intrusion may be limited by privileges on the target OS, but damage can still 
be done such as ransomware, and OS vulnerabilities may allow privilege escalation.

• On servers, it is standard practice to run network services with the minimum privileges practical, 
though see 28.2.3   Defenses Against Buffer Overflows.

• “Executable code” is hard to define. Scripting languages usually qualify. In 2000, the script virus, 
ILOVEYOU virus began spreading on Windows systems. The .vbs extension, not displayed by 
default, meant that when the file was opened it was automatically run. The year before, the 
Melissa virus spread as an emailed Microsoft Word attachment; the executable component was 
a Word macro.

• Under Windows, a number of configuration-file formats are effectively executable; among these 
are the program-information-file format .PIF and the screen-saver format .SCR.



Peter L Dordal, An Introduction to Computer Networks

Stack Buffer Overflow

In most memory layouts, the stack grows downwards; that is, a function 
call creates a new stack frame with a numerically lower address. Array 
indexing, however, grows upwards: buf[i+1] is at a higher address than 
buf[i]. As a consequence, overwriting the buffer allows rewriting the most 
recent return address on the stack. A common goal for the attacker is to 
supply an overflowing buffer that does two things:

1. it includes a shellcode - a small snippet of machine code that, when 
executed, does something bad (traditionally but not necessarily by 
starting a shell with which the attacker can invoke arbitrary 
commands).

2. it overwrites the stack return address so that, when the current function 
exits, control is returned not to the caller but to the supplied shellcode.



Peter L Dordal, An Introduction to Computer Networks

Stack Buffer Overflow Diagram



Peter L Dordal, An Introduction to Computer Networks

Defenses Against Buffer Overflows

• Array bounds checking

• Stack canary

• Address Space Layout Randomization (ASLR)

• Memory protection – no execute



Peter L Dordal, An Introduction to Computer Networks

Heap Buffer Overflow

• The “heap” is a program’s memory buffer (not related to the stack)

• Dynamically compiled programs load code pages into the heap

• If a dynamic code page is overwritten, it can be used to run 

malware or jump to a malware routine

• No execute does not work here

• Example is JPEG heap vulnerability

• Cross Site Scripting (XSS)

• SQL Injection



Peter L Dordal, An Introduction to Computer Networks

Network Intrusion Detection (NIDS)

• The idea behind network intrusion detection is to monitor one’s 

network for signs of attack. Many newer network intrusion-detection 
systems (NIDS) also attempt to halt the attack, but the importance 

of simple monitoring and reporting should not be underestimated. 

Many attacks (such as password guessing, or buffer overflows in the 

presence of ASLR) take multiple (thousands or millions) of tries to 

succeed, and a NIDS can give fair warning.

• Most NIDS detect intrusions based either on traffic anomalies or on 

pattern-based signatures.

• Stealthy packet manipulation can evade NIDS.

• SNORT, Suricata, & AlienVault are examples of NIDS



Peter L Dordal, An Introduction to Computer Networks

Cryptographic Goals

Confidentiality, Integrity, Authentication (CIA)

1. Message confidentiality: eavesdroppers should not be able to read 

the contents. Confidentiality is addressed through encryption.

2. Message integrity: the recipient should be able to verify that the 

message was received correctly, even in the face of a determined 

adversary along the way. Integrity is addressed through secure 

hashes.

3. Sender authentication: the recipient should be able to verify the 

identity of the sender.  Authentication is addressed through secure 
hashes and public-key signatures.



Peter L Dordal, An Introduction to Computer Networks

Encryption

• Symmetric = Same key used both for encryption and decryption.  

Lower computational requirements. Extensively used.

• Asymmetric = Two unique keys are required, one for encryption only 

and one for decryption only.  Very computationally intensive.  Used 

sparingly to establish secure communications (along with digital 

certificates) and then transitioning to symmetric key cryptography.



Peter L Dordal, An Introduction to Computer Networks

Secure Hashes

• A hash is a computational function run on data to identify a unique 

value based on the data.

• Two types of hashes: cryptographically secure and insecure

• Insecure hashes have lower computational requirements making 

them faster.  These functions can sometimes compute the same 

hash value on 2 different data (collision) making them unsuited for 

secure purposes.  Examples are CRC, MD4, MD5, & SHA1.

• Secure hash functions have no known flaws but advances in 

computational analysis reveal flaws over time.  This creates the 
ongoing need to make sure insecure hash functions are identified 

and deprecated.  Example is SHA256 and larger bits family.



Peter L Dordal, An Introduction to Computer Networks

Public Key Encrypytion

• Also known as asymmetric encryption

• 2 unique and different keys are required: one for encryption and 

one for decryption.

• Unencrypted message Mu encoded with Key1 K1 yields encrypted 

message Me.  Me can only be unencrypted with Key2 K2.

• Mu x K1 = Me; Me x K2 = Mu

• Mu x K2 = Me; Me x K1 = Mu

• The key used to encrypt and be made public and long as the other 
key is kept secret.


