
Peter L Dordal, An Introduction to Computer Networks

IT/CYBR 4323, Chapter 16:

UDP Transport

• Mr. Donald Privitera, Mr. Gennadiy Kemelmakher

• Kennesaw State University

• Marietta Campus

• College of Computing and Software Engineering

• IT Department

• dprivit2@kennesaw.edu, gkemelma@kennesaw.edu

Peter L Dordal, An Introduction to Computer Networks

5-Layer TCP/IPv4 Network Stack

IP

Links

Media Meets Hardware Here

DNS FTP SSH SMTP HTTPS NFS IMAP SNMP

RPC

TCP UDP

ICMP DHCP ARP RARP

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Application

Presentation

Session

Transport

Network

Data Link

Physical Wires, coax, fiber, RF

6-byte Ethernet MAC
address (hex)

mm:mm:mm:nn:nn:nn

4-byte LAN IP address
(decimal)

nnn.nnn.nnn.nnn

2-byte port address
(decimal) nnnnn

Hardware
Drivers

Peter L Dordal, An Introduction to Computer Networks

Port Numbers Video

https://youtu.be/RDotMcs0Erg

Peter L Dordal, An Introduction to Computer Networks

User Datagram Protocol (UDP)

• UDP is an unreliable transport protocol. Why does it even exist?
What is the difference between plain-old IP and UDP?

• IP = 151.101.1.67

• UDP = 151.101.1.67:80

• :80 is the port address or port number. When you enter a URL into a
browser, the browser automatically adds :80 if you do not specify a
port number. In UDP/IP, a port number is ALWAYS required.

• If port numbers did not exist, a server could not practically
communicate since there would be only 1 communication
channel.

• Port numbers are 16-bits which allow up to a theoretical 65535
communication channels to exist.

Peter L Dordal, An Introduction to Computer Networks

So, why UDP?

• No persistent connection

• No packet counting and re-transmission

• = very little overhead making it FAST!

• Great for time critical packets like video and

audio

• Used as the underpinning for “streaming”

• Lightweight

Peter L Dordal, An Introduction to Computer Networks

The UDP header – a model of simplicity

Peter L Dordal, An Introduction to Computer Networks

UDP

• <host,port> pair is called a socket

• UDP is unreliable

• UDP is unconnected or stateless

• UDP works well for video and voice which is loss tolerant

where a few packet losses are insignificant and delay-

intolerant where late packets are useless

• UDP forms the underpinning for more sophisticated protocols

like, Real-Time Transport Protocol (RTP)

Peter L Dordal, An Introduction to Computer Networks

Problems

• UDP allows flooding attacks

• UDP allows traffic amplification

Peter L Dordal, An Introduction to Computer Networks

UPD metalayers

• UDP works by itself in the scope of a local LAN.

• Beyond local LAN scope, many other transport protocols

are built on top of UDP.

• Therefore, UDP can be thought of as a sub-layer for

some protocols.

• The following are some protocols built upon UDP:

• DNS, RTP, SNMP, RIP, DHCP, QUIC, UDT, DCCP, RPC, TFTP, …

Peter L Dordal, An Introduction to Computer Networks

How many protocols are there?

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_por

t_numbers

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

Peter L Dordal, An Introduction to Computer Networks

Python example of UDP in action
import socket

print ("Launching UDP server")

get the IP address of the server so we can open a port to UDP data

UDP_IP = input("Enter server address: ")

UDP_PORT = 5005

BUFFER_SIZE = 10

sock = socket.socket(socket.AF_INET, # Internet

socket.SOCK_DGRAM) # UDP

sock.bind((UDP_IP, UDP_PORT))

print("Listening on",UDP_IP,":",UDP_PORT)

a = ""

keep doing this until the client sends a ~ character

while a != "~":

try:

data, addr = sock.recvfrom(BUFFER_SIZE)

convert bytearray into a string

a = str(data)

remove the first 2 characters and last character

a = a[2:-1]

print the character immediately and don't do a newline

print(a,end="",flush=True)

print a newline and client communication data on if a . is received

if (a == "."):

print(" < from",addr,">")

except:

print("socket receive error")

import socket

print("Launching UDP client")

this opens a port on the specified server

UDP_IP = input("Enter server IP address: ")

UDP_PORT = 5005

MESSAGE = ""

print("UDP target IP: %s" % UDP_IP)

print("UDP target port: %s" % UDP_PORT)

try:

sock = socket.socket(socket.AF_INET, # Internet

socket.SOCK_DGRAM) # UDP

keep doing this until the user enters a ~ character

while MESSAGE != "~":

get a string to send from the user

MESSAGE = input("Message? ")

msglen = len(MESSAGE)

if (msglen > 0): # send the string one character at a time to test UDP reliability

for x in range(msglen):

sock.sendto(bytearray(MESSAGE[x],encoding="ascii"),

(UDP_IP, UDP_PORT))

make a note of what we sent and where

print("Message <",MESSAGE,"> sent to ",UDP_IP,":",UDP_PORT)

except:

print("socket error")

Peter L Dordal, An Introduction to Computer Networks

UDP Compared to TCP

User Datagram Protocol (UDP) Transmission Control Protocol (TCP)

Connectionless Connection Oriented

Unreliable Reliable

Not ordered Ordered

Lightweight Heavy

Smaller headers & packets Larger headers & packets

Datagrams Streaming

No congestion control Congestion control (rate & errors)

Unicast, multicast, broadcast Unicast

Peter L Dordal, An Introduction to Computer Networks

UDP vs TCP Video

https://youtu.be/Vdc8TCESIg8

