
Peter L Dordal, An Introduction to Computer Networks

IT/CYBR 4323, Chapter 17:

TCP

• Slides written by Mr. Donald Privitera with Mr. Gennadiy Kemelmakher to
accompany An Introduction to Computer Networks written by Peter L
Dordal, http://intronetworks.cs.luc.edu/

• Kennesaw State University

• Marietta Campus

• College of Computing and Software Engineering

• IT Department

• dprivit2@kennesaw.edu, gkemelma@kennesaw.edu

http://intronetworks.cs.luc.edu/

Peter L Dordal, An Introduction to Computer Networks

5-Layer TCP/IPv4 Network Stack

IP

Links

Media Meets Hardware Here

DNS FTP SSH SMTP HTTPS NFS IMAP SNMP

RPC

TCP UDP

ICMP DHCP ARP RARP

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Application

Presentation

Session

Transport

Network

Data Link

Physical Wires, coax, fiber, RF

6-byte Ethernet MAC
address (hex)

mm:mm:mm:nn:nn:nn

4-byte LAN IP address
(decimal)

nnn.nnn.nnn.nnn

2-byte port address
(decimal) nnnnn

Hardware
Drivers

Peter L Dordal, An Introduction to Computer Networks

Topics

• TCP Basics

• Header

• Handshake

• Hardware Assistance

• Coding in Python

Peter L Dordal, An Introduction to Computer Networks

TCP Basics

TCP is…

• Stream-oriented.

• Connection-oriented.

• Reliable.

• Based on sliding windows.

• Suitable for request/reply protocols (factoring in overhead).

• Has a concept of socketpair which creates exclusivity for that stream.

• Heavily influenced by the End-to-End design principle.

• Segments are the data portions of TCP packets.

Peter L Dordal, An Introduction to Computer Networks

TCP IP Header

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Offsets
Oct
et

0 1 2 3

Octet Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 Source port Destination port

4 32 Sequence number

8 64 Acknowledgment number (if ACK set)

12 96 Data offset
Reserved

NS CWR ECE URG ACK PSH RST SYN FIN Window Size
0 0 0

16 128 Checksum Urgent pointer (if URG set)

20 160

Options (if data offset > 5. Padded at the end with "0" bits if necessary.)⋮ ⋮

60 480

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit

Peter L Dordal, An Introduction to Computer Networks

TCP IP Header

• Sequence and Acknowledgement numbers are for numbering

data. Typically, 1024-byte blocks of data are sent and these
numbers are incremented by that amount. These are relative to the

Initial Sequence Number (ISN), a random 32-bit number.

• Acknowledgements are cumulative acking all bytes < N.

• Data Offset (4 bits) = size of TCP header in 32-bit words

• Flags (9 bits)

• Window Size (16 bits) = size of receive window in (size units)

• Urgent Pointer (16 bits)

• Options (0-10 32-bit words) = max seg size, win scale, SACK, etc.

Peter L Dordal, An Introduction to Computer Networks

TCP IP Header Flags

• SYN: for SYNchronize; marks packets that are part of the new-connection handshake.

• ACK: indicates that the header Acknowledgment field is valid; that is, all but the first packet.

• FIN: for FINish; marks packets involved in the connection closing.

• PSH: for PuSH; marks “non-full” packets that should be delivered promptly at the far end.

• RST: for ReSeT; indicates “reset the connection” for various error conditions.

• URG: for URGent; part of a now-seldom-used mechanism for high-priority data.

• CWR and ECE: part of the Explicit Congestion Notification (ECN) mechanism.

• NS: ECN-nonce for concealment protection

Peter L Dordal, An Introduction to Computer Networks

TCP 3-Way

Handshake

TCP connections are established via an
exchange known as the three-way
handshake. If A is the client and B is the
listening server, then the handshake
proceeds as follows:

• A sends B a packet with the SYN bit set
(a SYN packet);

• B responds with a SYN packet of its own;
the ACK bit is now also set;

• A responds to B’s SYN with its own ACK;

• Normally, the three-way handshake is
triggered by an application’s request to
connect; data can be sent only after the
handshake completes. This means a
one-RTT delay before any data can be
sent.

Peter L Dordal, An Introduction To Computer
Networks

Peter L Dordal, An Introduction to Computer Networks

TCP 3-way Handshake Exploits

• Syn Flooding = consumes resources on server

• Syn scan (aka port scanning)

• 3 states can be assessed by results

1. Ack is sent back indicating the port is open.

2. RST is sent back indicating the port is closed.

3. Nothing is sent back indicating the port is filtered (firewalled)

Peter L Dordal, An Introduction to Computer Networks

Closing a connection

• 4-Way handshake

• FIN-ACK (A to B) & FIN-ACK (B to A)

Peter L Dordal, An Introduction to Computer Networks

TCP & Hardware

Assistance

• TCP Checksum Offloading (TCO) involves
using the NIC to handle checksum
calculations which frees the processor from
having to do those calculations within the
network stack software. This improves
efficiency and improves parallelism. It also
works for UDP.

• TCP Segmentation Offloading (TSO) moves
large chunks of data to the NIC in a buffer
which then handles breaking the data up into
smaller chunks. This approach can be used
for improving performance of both sending
and receiving.

Peter L Dordal, An Introduction to Computer Networks

TCP coding examples (server)
1. import socket

2. print("Launching TCP server")

3. TCP_IP = "127.0.0.1"

4. TCP_PORT = 5006

5. BUFFER_SIZE = 1024

6. s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

7. s.bind((TCP_IP, TCP_PORT))

8. s.listen(1)

9. conn, addr = s.accept()

10. print ("Connection address:", addr)

11. a=""

12. while a !="~":

13. data = conn.recv(BUFFER_SIZE)

14. a = str(data)

15. a = a[2:-1]

16. print ("received data from client:", a)

17. conn.send(bytearray("got " + a,encoding="ascii")) # tell client what we got

18. conn.close()

19. print("Server stopped")

Peter L Dordal, An Introduction to Computer Networks

TCP coding examples (client)
1. import socket

2. print("Launching TCP client")

3. TCP_IP = "127.0.0.1"

4. TCP_PORT = 5006

5. BUFFER_SIZE = 1024

6. MESSAGE = ""

7. try:

8. s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Internet, TCP

9. s.connect((TCP_IP, TCP_PORT))

10. while MESSAGE != "~":

11. MESSAGE = input("Message? ")

12. s.send(bytearray((MESSAGE),encoding="ascii"))

13. data = s.recv(BUFFER_SIZE)

14. a = str(data)

15. a = a[2:-1]

16. print ("received data from server:", a)

17. s.close()

18. except:

19. print("socket error - make sure server is running")

20. print("Client stopped")

