
1

ENGR 1100

Week 11- Numerical Analysis II
(Class lecture)



Learning Objectives

Upon completion this module, students will be able to:

1. Explain the definition and applications of Ordinary Differential 

Equations (ODE)

2. Solve first-order ODEs in MATLAB

3. Apply numerical analysis techniques to solve engineering 

problems
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Ordinary Differential Equations
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MATLAB: Solve Differential Equation

What are Differential Equations?

Go over the following resources to learn about Ordinary 
Differential Equations (ODE) and numerical numerical methods 
to solve ODE.

https://www.mathworks.com/help/symbolic/solve-a-single-differential-equation.html
https://www.whitman.edu/mathematics/calculus_online/chapter17.html


Ordinary Differential Equations(ODE)
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Derivatives
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Differential Equations
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Ordinary Differential Equations
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Ordinary Differential Equations (ODE) involve one or more
ordinary derivatives of unknown functions with respect to one
independent variable

y(x): unknown function

x: independent variable



Applications of ODE

• Population Growth
The population of a given species is decreased at a constant rate of n per 
year. The population due to birth and death is increased at a constant rate 
of 𝜆% of the existing population. If the initial population is N, then the 
population x after t year is given by, !"

!#
= $

%&&
𝑥 − 𝑛

• Law of cooling
The rate of change of temperature of a body is proportional to the 
difference between the temperature of the body and the temperature 𝜃
of the surrounding. Suppose T is the temperature of the body at time t, 
then, !'

!#
= 𝑘 𝑇 − 𝜃 where k<0
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Order of a differential equation

9

12

)cos(25

:

4
3

2

2

2

2

=+-÷÷
ø

ö
çç
è

æ

=+-

=-

y
dx
dy

dx
yd

xy
dx
dy

dx
yd

ey
dx
dy
Examples

x

The order of an ordinary differential equations is the order of 
the highest order derivative

Second order ODE

First order ODE

Second order ODE



Solution of a differential equation
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A solution to a differential equation is a function that 
satisfies the equation.
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Linear  ODE
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An ODE is linear if the unknown function and its derivatives appear 
to power one. No product of the unknown function and/or its 
derivatives

Linear ODE

Linear ODE

Non-linear ODE



Boundary-Value and Initial value Problems
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Boundary-Value Problems

• The auxiliary conditions are not at 
one point of the independent 
variable

• More difficult to solve than initial 
value problem
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Initial-Value Problems

• The auxiliary conditions are 
at one point of the 
independent variable
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Classification of ODE

ODE can be classified in different ways
• Order

– First order ODE
– Second order ODE
– Nth order ODE

• Linearity
– Linear ODE
– Nonlinear ODE

• Auxiliary conditions
– Initial value problems
– Boundary value problems
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Solutions

• Analytical Solutions to ODE are available for linear 
ODE and special classes of nonlinear differential 
equations.

• Numerical method are used to obtain a graph or a 
table of the unknown function

• We focus on solving first order linear ODE  
– A first order differential equation is said to be linear if it 

can be written

14
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Solving First-order ODE in MATLAB
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Solve first-order ODE analytically in MATLAB

• Some ODE can be solve analytically with or 
without initial conditions.

• MATLAB uses dsolve()function to achieve 
this. 

• Details can be found @MathWorks,
https://www.mathworks.com/help/symbolic/solve-a-single-differential-
equation.html

• This module focuses on solving first-order ODE 
numerically.
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https://www.mathworks.com/help/symbolic/solve-a-single-differential-equation.html


Steps for solving a single first-order ODE numerically
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Step 1: Write the problem in a standard form

Write equation as
𝑑𝑦
𝑑𝑡

= 𝑓 𝑡, 𝑦 for t* ≤ 𝑡 ≤ 𝑡+ , with 𝑦 = 𝑦* at 𝑡*

Three necessary pieces of information
1. Equation involving first derivative of the function
2. Interval of independent variable
3. Initial value of function

Solution is value of y as a function of t, for t0≤ t ≤tf



Example
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Example of an initial-value problem is
!"
!#
= #!$%"

#
for  1 ≤ t ≤ 3  

with  y = 4.2 at  t = 1



Step 2: Create a user-defined function
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Either in a function file or an anonymous function
Write a function for the right side of

"#
"$
= 𝑓 𝑡, 𝑦

e.g., dydt = f( t, y )

Function must have inputs in order shown
• t – scalar with value of independent variable
• y – scalar with value of y at t, i.e., y(t)
• dydt – first derivative of y at time t



Example
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Example:
𝑑𝑦
𝑑𝑡

=
𝑡! − 2𝑦

𝑡
Example script file
function dydt = ODEexp1(t,y)

dydt = ( t^3 – 2*y ) / t;

Example anonymous function
>> ode1 = @(t,y)(t^3 – 2*y)/t



General idea of numerical methods
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• Assume that y(t) changes slowly enough so that within a small distance Δt 
from t, y(t) is approximately the same as tangent line at y(t)

• Slope m of tangent going through y(t) is just first derivative of y(t) and can 
compute that from !"!# # ()(#,,)

• Equation of tangent line is  y=m·t+b and since tangent passes through point 
y(t) at t, can determine b

• Approximate value of y a small time Δt in the future by  y(t+Δt) = m·(t+Δt)+b
• Repeat process at t+2Δt to get y(t+3Δt)
• Keep repeating process until t > tf

End up with    
y(t0), y(t0+Δt) , y(t0+2Δt),..., y(t0+mΔt)



MATLAB ODE solvers
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MATLAB's ODE solvers can be used, 
• stiff problem – an ODE whose solution has parts that change 

slowly in time and parts that change rapidly
• one-step solver – a solver that uses only information from 

current step to get to next step
• multistep solver – a solver that uses information from current 

and previous steps to get to next step

General advice – try ode45() first. If it takes too 
long, try ode15s()
https://mathworks.com/help/matlab/math/choose-an-ode-solver.html

http://mathworks.com/help/matlab/math/choose-an-ode-solver.html


Step 3: Solve the ODE
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Call solvers by
[t y] = solver_name(ODEfun,tspan,y0)

• solver_name - MATLAB built-in solvers,  e.g., ode45, ode23t
• ODEfun – a function as described in Step 2
• tspan – a two-element vector of the first and last time values, e.g., 

[t0 tf]
– tspan can have more than two elements. See Help for more 

information
• y0 – the initial value of y
• [t y] - two column vectors of the same size

– t is vector of time points, with t(1)=t0 and t(end)=tf
– y is value of function at corresponding times in t



MATLAB Example
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for  1 ≤ t ≤ 3  with  y = 4.2 at  t = 1



Higher-order ODE

A typical approach to solving higher-order ordinary 
differential equations is to convert them to systems of 
first-order differential equations, and then solve those 
systems.

𝑦122 − 𝜇 1 − 𝑦10 𝑦12 + 𝑦1 = 0
Let 𝑦0 = 𝑦12 , then the above equation becomes a 
system of first-order ODE,

𝑦12 = 𝑦0
𝑦02 = 𝜇 1 − 𝑦10 𝑦0 − 𝑦1

• More details on how to solve @ MathWorks
https://www.mathworks.com/help/matlab/ref/ode45.html
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https://www.mathworks.com/help/matlab/ref/ode45.html


Summary - Solve the ODE in MATLAB
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Call solvers by
[t y] = solver_name(ODEfun,tspan,y0)

• solver_name - MATLAB built-in solvers,  e.g., ode45, ode23t
• ODEfun – a function as described in Step 2
• tspan – a two-element vector of the first and last time values, e.g., 

[t0 tf]
– tspan can have more than two elements. See Help for more 

information
• y0 – the initial value of y
• [t y] - two column vectors of the same size

– t is vector of time points, with t(1)=t0 and t(end)=tf
– y is value of function at corresponding times in t



MATLAB Example
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Solve the ODE !"!# = 2𝑡 use a time interval of [0,5] and the initial 
condition y(0)=0. Use MATLAB function “ode45()”

tspan = [0 5];
y0=0;
% Method 1: directly define the ODE in ode45() 
[t,y]=ode45(@(t,y)2*t,tspan, y0) 

% Method 2: define the ODE using anonymous function 
myODE = @(t,y)2*t;
[t,y]=ode45(myODE,tspan, y0) 

% Method 3: define the ODE function script 
[t,y]=ode45(@myODE,tspan, y0) 

Function dydt=myODE(t)
dydt=2*t;

end



Example 1- Safety Bumper
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Solution
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Example 2- Population Growth
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SOLVING FIRST-ORDER ODE MANUALLY
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First Order Linear Differential Equations
• How to solve first-order linear ODE ?

Solution:

)1()()( xgyxpy =+¢
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Multiplying both sides by            , called an integrating factor, gives   )(xµ
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First Order Linear Differential Equations

By product rule, (4) becomes
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First Order Linear Differential Equations
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Summary  of the Solution Process

1. Put the differential equation in the form (1)
2. Find the integrating factor,           using (8) 
3. Multiply both sides of (1) by           and write 

the left side of (1) as
4. Integrate both sides
5. Solve for the solution  
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Example 1

Solution:
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Example 1

Solution:
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Example 2

Solution:
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