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Graph

A graph G is a pair (V, E), where
• V is a set of nodes, called vertices
• E is a collection of pairs of vertices, called edges

Note that vertices and edges are positions and store elements

• Directed edge: ordered pair of vertices (u, v)
• Undirected edge: unordered pair of vertices (u, v)
• Directed graph (Digraph): all the edges are directed
• Undirected graph: all the edges are undirected
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Basic Concepts

Endpoints of an edge: a and a are the endpoints of e1
Edges incident on a vertex: e1 and e3 are incident on a
Adjacent vertices: a and b are adjacent
Degree of a vertex: d has degree 4
Parallel edges: e2 and e13 are parallel edges
Self-loop: e12 is a self-loop
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More Basic Concepts: Paths and Cycles

Path: a sequence of alternating vertices and edges, begins with a vertex,
ends with a vertex.

Simple path: path such that all its vertices and edges are distinct

Cycle: circular sequence of alternating vertices and edges

Simple cycle: cycle such that all its vertices and edges are distinct
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More Basic Concepts: Subgraphs and Trees

Subgraph S = (VS, ES): VS ⊂ V, and ES ⊂ E

Spanning subgraph S = (VS, ES): VS = V, and ES ⊂ E

Connected component: a maximal connected subgraph of G

Tree: a connected, acyclic, undirected graph

Forest: a set of trees (not necessarily connected)

Spanning Tree: a spanning subgraph that is a tree
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Properties

Property 1∑
v deg(v) = 2|E|

Proof: each edge is counted twice

Property 2
In an undirected graph with no self-loops and no multiple edges
|E| ≤ |V|(|V| − 1)/2

Proof: each vertex has degree at most (|V| − 1)

What is the bound for a digraph? |E| ≤ |V|(|V| − 1)
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Graph Interface: Graph.java

1 publ ic in te r face Graph<V , E> {
2 numVertices ( ) ;
3 numEdges ( ) ;
4

5 outDegree ( Vertex <V> v ) ;
6 inDegree ( Vertex <V> v ) ;
7

8 getEdge ( Vertex <V> u , Vertex <V> v ) ;
9 endVert ices ( Edge<E> e ) ;
10

11 i n se r t Ve r t e x ( V element ) ;
12 inser tEdge ( Vertex <V> u , Vertex <V> v , E element ) ;
13

14 removeVertex ( Vertex <V> v ) ;
15 removeEdge ( Edge<E> e ) ;
16 }

6/24

Code/Graph.java
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Represent and Implement Graphs



Representing Graphs

Three basic methods
• Edge List
• Adjacency List
• Adjacency Matrix
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Representing Graphs

Three basic methods
• Edge List
• Adjacency List
• Adjacency Matrix
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Performance

• n vertices, m edges
• no parallel edges
• no self-loops Edge

Edge List Adjacency List Adjacency Matrix

Space n+m n+m n2

areAdjacent(v, w) m min(deg(v), deg(w)) 1

insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1

removeVertex(v) m n + m n2

removeEdge(e) 1 deg(v) + deg(w) 1
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Depth First Search

Main Idea:
• Continue searching “deeper” into the graph, until we get “stuck”.
• If we get stuck, “backtrack” to the first “available” vertex.

Used to help solve many graph problems, including
• Nodes that are reachable from a specific node v
• Detection of cycles
• Extraction of strongly connected components
• Topological sorts

9/24



Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).
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Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB ED E

C

B

A

10/24



Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

1 DFS (G )
2 // i n i t i a l i z e ver tex
3 for each ver tex u in V
4 u . co lor = GRAY
5 for each ver tex u in V
6 i f u . co lor = GRAY
7 DFS− V i s i t ( u )

1 DFS− V i s i t ( u )
2

3 u . co lor = RED
4 for each v in u . Adj
5 i f v . co lor = GRAY
6 DFS− V i s i t ( v )
7 u . co lor = BLACK
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Running time: O(n+m) (assuming adjacency list)
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Depth First Search

Keep track of progress by colouring vertices:
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DFS-Visit(u) visits all the vertices and edges in the connected component
of us

10/24



Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

1 DFS (G )
2 // i n i t i a l i z e ver tex
3 for each ver tex u in V
4 u . co lor = GRAY
5 for each ver tex u in V
6 i f u . co lor = GRAY
7 DFS− V i s i t ( u )

1 DFS− V i s i t ( u )
2

3 u . co lor = RED
4 for each v in u . Adj
5 i f v . co lor = GRAY
6 DFS− V i s i t ( v )
7 u . co lor = BLACK

The discovery edges labeled by DFS-Visit(u) form a spanning tree of the
connected component of u
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DFS Application 1: Path Finding

The DFS pattern can be used to find a path between two given vertices u
and z, if one exists

1 DFS−Path (u , z , s tack )
2

3 u . co lor = RED
4 push u onto stack
5 i f u = z
6 return true
7 for each v in u . Adj // explore edge (u , v )
8 i f v . co lor = GRAY
9 i f DFS−Path ( v , z , s tack )
10 return true
11 u . co lor = BLACK
12 pop u from stack
13 return fa l se
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DFS Application 2: Cycle Finding

The DFS pattern can be used to determine whether a graph is acyclic.

1 DFS− Cyc le ( u )
2

3 u . co lor = RED
4 for each v in u . Adj // explore edge (u , v )
5 i f v . co lor = RED // detect a back edge
6 return true
7 else i f v . co lor = GRAY
8 i f DFS− Cyc le ( v )
9 return true
10 u . co lor = BLACK
11 return fa l se
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Breadth First Search

Main Idea:
• Search the graph “as wide as possible”

Used to help solve many graph problems, including
• A BFS traversal of a graph G
• Visits all the vertices and edges of G
• Determines whether G is connected
• Computes the connected components of G
• Computes a spanning forest of G
• Cycle detection
• Find and report a path with the minimum number of edges between
two given vertices
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Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished
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Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

1 BFS (G , s )
2 for each u in V
3 u . co lor = GRAY // i n i t i a l i z e ver tex
4 s . co lor = RED
5 Q . enqueue ( s )
6 while Q i s not empty
7 u = Q . dequeue ( )
8 for each v in u . Adj
9 i f v . co lor = GRAY
10 v . co lor = red
11 Q . enqueue ( v )
12 u . co lor = BLACK
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Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished
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Running time: O(n+m) (assuming adjacency list)
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BFS(G,s) visits all the vertices and edges in the connected component of s
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Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E F

Level 1

Level 2

Level 3

The discovery edges labeled by BFS(G,s) form a spanning tree of the
connected component of s
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Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished
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Level 2

Level 3

For each vertex v in Level i, shortest distance between s and v is i
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Application: Shortest Paths on an Unweighted Graph

1 BFS (G , s )
2

3 for each u in V // i n i t i a l i z e ver tex
4 u . d = ∞
5 // record the shor tes t distance between s and u
6

7 u . p = nul l
8 // record the parent of u on the shor tes t path from

s to u
9

10 u . co lor = GRAY
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Application: Shortest Paths on an Unweighted Graph

1 s . co lor = RED
2 s . d = 0
3 Q . enqueue ( s )
4 while Q i s not empty
5 u = Q . dequeue ( )
6 for each v in u . Adj
7 i f v . co lor = GRAY
8 v . co lor = red
9 v . d = u . d + 1
10 v . p = u
11 Q . enqueue ( v )
12 u . co lor = BLACK

Proof of correctness?

A key property: Any subpath of a shortest path is a shortest path
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Shortest Path on Weighted Graphs

For unweighted graph, BFS finds the shortest paths from a source node s to
every vertex v in the graph.

Here, the length of a path is simply the number of edges on the path.

But what if edges have different “costs”?
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Shortest Path on Weighted Graphs

For unweighted graph, BFS finds the shortest paths from a source node s to
every vertex v in the graph.

Here, the length of a path is simply the number of edges on the path.

But what if edges have different “costs”?

A B

CD

Shortest path from A to C:
A-B-C or A-D-C

A B

CD

2

4 1

10

Shortest path from A to C:
only A-B-C
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Shortest Path Properties

Optimal Substructure
A subpath of a shortest path is itself a shortest path

Shortest Path Tree
There is a tree of shortest paths from a start vertex to all the other vertices

Note that shortest path trees are not necessarily unique.

Consider negative cycle?

Let’s assume there is no negative edges.
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Shortest Path

Dijkstra’s Algorithm



Dijkstra’s algorithm

Invented by E. Dijkstra in 1959.

• Applies to general, weighted, directed or undirected graph (may
contain cycles).

• But weights must be non-negative. (But they can be 0!)
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Dijkstra’s algorithm

Invented by E. Dijkstra in 1959.

• Applies to general, weighted, directed or undirected graph (may
contain cycles).

• But weights must be non-negative. (But they can be 0!)
Recall BFS:

1 s . co lor = RED
2 s . d = 0
3 Q . enqueue ( s )

• Search as wide as possible
• Use a Queue – FIFO

1 while Q i s not empty
2 u = Q . dequeue ( )
3 for each v in u . Adj
4 i f v . co lor = GRAY
5 v . co lor = red
6 v . d = u . d + 1
7 v . p = u
8 Q . enqueue ( v )
9 u . co lor = BLACK
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Dijkstra’s algorithm: Example
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Dijkstra’s algorithm

1 i n i t i a l i z e (G , s )
2

3 for each v in V
4 v . d = ∞
5 d . p = nul l
6 s . d = 0

1 re lax (u , v , w)
2

3 i f v . d > u . d + w(u , v )
4 v . d = u . d + w(u , v )
5 v . p = u

1 i n i t i a l i z e (G , s )
2 S = ∅
3 Q = V
4 while Q i s not empty
5 u = Ex t rac t −Min (Q)
6 S = S ∪ u
7 for each v in u . Adj
8 re lax (u , v , w)

Use a Priority Queue

Running time: O(m log n). Why?

Proof of correctness?
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Minimum Spanning Tree
A Minimum Spanning Tree (MST) is a subgraph of an undirected graph such
that the subgraph spans (includes) all nodes, is connected, is acyclic, and
has minimum total edge weight.

Greedy idea?

Prim’s algorithm and Kruskal’s algorithm

Both work with weighted and unweighted graphs even when edges have
negative weight.

Note that: we do not fix the root of the spanning tree.
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Minimum Spanning Tree

Prim’s algorithm



Prim’s algorithm
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Similar to Dijkstra’s Algorithm except that v.d records edge weights, not
path lengths. Therefore, Prim’s algorithm also has running time O(m log n)
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Prim’s Algorithm vs Dijkstra’s Algorithm

a b

c

5

9
5

• Shortest path tree rooted at a:

a-b, a-c

• Minimum spanning tree:

a-b-c
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Minimum Spanning Tree

Kruskal’s algorithm



Kruskal’s algorithm

• Select edges as light as possible
• If meeting an edge that may induce a cycle, ignore it
• Repeat the above steps
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Kruskal’s algorithm

• Select edges as light as possible
• If meeting an edge that may induce a cycle, ignore it
• Repeat the above steps
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Running time: O(m logm)
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Thank you!

Questions?
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