
CSCI 3230 Data Structures
Priority Queue and Heap

Weitian Tong, Ph.D.

Department of Computer Science
Georgia Southern University
Website: www.weitiantong.com
Email:wtong@georgiasouthern.edu

www.weitiantong.com

Table of contents

1. Priority Queue

2. Sequence-based Priority Queue

3. Heap

Array-based Heap Implementation

Priority Queue

Priority Queue

A priority queue stores a collection of entries

Each entry is a pair (key, value)

Allow for efficient insertion and removal based on keys

1 c lass MinPrior i tyQueue {
2 a co l l e c t i on of en t r i e s
3 −−−−−−
4 s i z e () ;
5 isEmpty () ;
6 i n se r t (K key , V value) ;
7 min () ;
8 removeMin () ;
9 }

1 c lass Entry {
2 key
3 value
4 −−−−−−
5 getKey ()
6 getValue ()
7 }

1/14

Total Order Relations, Comparator ADT

Keys can be arbitrary objects on which an order is defined

When the priority queue needs a comparator to compare two keys
Mathematical concept of total order relation ≤

• Comparability property: either x ≤ y or y ≤ x
• Antisymmetric property: x ≤ y and y ≤ x⇒ x = y
• Transitive property: x ≤ y and y ≤ z⇒ x ≤ z

A comparator encapsulates the action of comparing two objects according
to a given total order relation

2/14

Example Comparator

1 /** Class represent ing a point in the plane
2 with in teger coordinates */
3 publ ic c lass Point2D {
4 protected in t xc , yc ; // coordinates
5 publ ic Point2D (i n t x , i n t y) {
6 xc = x ;
7 yc = y ;
8 }
9 publ ic i n t getX () {
10 return xc ;
11 }
12 publ ic i n t getY () {
13 return yc ;
14 }
15 }

3/14

Example Comparator

1 /** Comparator fo r 2D points under
2 the standard lex i cog raph i c order . */
3 publ ic c lass Lex icographic implements Comparator {
4 i n t xa , ya , xb , yb ;
5 publ ic i n t compare (Object a , Object b) {
6 xa = ((Point2D) a) . getX () ;
7 ya = ((Point2D) a) . getY () ;
8 xb = ((Point2D) b) . getX () ;
9 yb = ((Point2D) b) . getY () ;
10 i f (xa ! = xb)
11 return (xb > xa) ;
12 else
13 return (yb >= ya) ;
14 }
15 }

3/14

Sequence-based Priority Queue

Sequence-based Priority Queue

Implement with an unsorted list

4 5 2 3 1

Performance:
• insert takes O(1) time
since we can insert the item at
the beginning or end of the
sequence

• removeMin and min take O(n)
time
since we have to traverse the
entire sequence to find the
smallest key

Implement with a sorted list

1 2 3 4 5

Performance:
• insert takes O(n) time
since we have to find the place
where to insert the item

• removeMin and min take O(1)
time
since the smallest key is at the
beginning

4/14

Application: Priority Queue Sorting

Use a priority queue to sort a list of comparable elements

insert and removeMin
1 Algori thm PQ− Sort (S , C)
2 Input : l i s t S , comparator C for the elements of S
3 Output : l i s t S sorted in inc reas ing order according to C
4

5 P ← p r i o r i t y queue with comparator C
6 while ! S . isEmpty ()
7 e ← S . remove (S . f i r s t ())
8 P . i n se r t (e , ∅)
9 while ! P . isEmpty ()
10 e ← P . removeMin () . getKey ()
11 S . addLast (e)

The running time of this sorting method depends on the priority queue
implementation

5/14

Heap

Motivation for Heaps

Goal:
• O(log n) insertion
• O(log n) removal

Remember that O(log n) is almost as good as O(1)!
e.g., n = 1, 000, 000, 000→ log n ≈ 30

There are min heaps and max heaps.

We will assume min heaps.

6/14

Min Heaps

A min heap is a binary tree storing keys at its nodes and satisfying the
following properties:
• Heap-order: for every internal node v other than the root

key(v) ≥ key(parent(v))

• (Almost) complete binary tree: let h be the height of the heap
• for i = 0, . . . ,h− 1, there are 2i nodes of depth i
• at depth h− 1,

• the internal nodes are to the left of the external nodes
• Only the rightmost internal node may have a single child

2
5

9 7
6

The last node of a heapis the rightmost node of depth h

7/14

Height of a Heap (Optional)

Theorem
A heap storing n keys has height O(log n)

Let h be the height of a heap storing n keys

Since there are 2i keys at depth i = 0, . . . ,h− 1 and at least one key at
depth h, we have

n ≥ 1+ 2+ 4+ . . .+ 2h−1 + 1

Thus, n ≥ 2h , i.e., h ≤ log n

8/14

Insert into a Heap

The insertion algorithm consists of three steps
• Find the insertion node z (the new last node)
• Store k at z
• Restore the heap-order property (Upheap)

Upheap runs in O(log n) time

2
5

9 7
6

new node z
9/14

Insert into a Heap

The insertion algorithm consists of three steps
• Find the insertion node z (the new last node)
• Store k at z
• Restore the heap-order property (Upheap)

Upheap runs in O(log n) time

2
5

9 7
6

1

last node z
9/14

Insert into a Heap

The insertion algorithm consists of three steps
• Find the insertion node z (the new last node)
• Store k at z
• Restore the heap-order property (Upheap)

Upheap runs in O(log n) time

2
5

9 7
1

6

last node z
9/14

Insert into a Heap

The insertion algorithm consists of three steps
• Find the insertion node z (the new last node)
• Store k at z
• Restore the heap-order property (Upheap)

Upheap runs in O(log n) time

1
5

9 7
2

6

last node z
9/14

Insert into a Heap

The insertion algorithm consists of three steps
• Find the insertion node z (the new last node)
• Store k at z
• Restore the heap-order property (Upheap)
Upheap runs in O(log n) time

1
5

9 7
2

6

last node z
9/14

Updating the Last Node

The insertion node can be found by traversing a path of O(log n) nodes
• Go up until a left child or the root is reached
• If a left child is reached, go to the right child
• Go down left until a leaf is reached

Similar algorithm for updating the last node after a removal

10/14

Removal from a Heap

The removeMin algorithm consists of three steps
• Replace the root key with the key of the last node w
• Remove w
• Restore the heap-order property (DownHeap)

DownHeap runs in O(log n) time

2
5

9 7
6

last node w
11/14

Removal from a Heap

The removeMin algorithm consists of three steps
• Replace the root key with the key of the last node w
• Remove w
• Restore the heap-order property (DownHeap)

DownHeap runs in O(log n) time

7
5

9
6

last node w
11/14

Removal from a Heap

The removeMin algorithm consists of three steps
• Replace the root key with the key of the last node w
• Remove w
• Restore the heap-order property (DownHeap)

DownHeap runs in O(log n) time

5
7

9
6

last node w
11/14

Removal from a Heap

The removeMin algorithm consists of three steps
• Replace the root key with the key of the last node w
• Remove w
• Restore the heap-order property (DownHeap)
DownHeap runs in O(log n) time

5
7

9
6

last node w
11/14

Heap

Array-based Heap Implementation

Recall: Array-Based Representation of Binary Trees

0 1 2 3 4 5 6 7 8 9 10 11
A B C D E H I F G

A

B

D E

F G

C

H I

0

1 2

3 4 5 6

9 10

12/14

Array-based Heap Implementation

Heap
A heap is an (Almost) complete binary tree storing keys at its nodes and
satisfying Heap-order.

Implement heap with array or arraylist.

A

B

D

F G

E

C

H I

0

1 2

3 4 5 6

7 8

the last node is the rightmost node in the array
13/14

Heap Construction

A trivial way is to keep inserting (key, element) pairs. Time: O(n log n)

Can we make it faster?

Divide and Conquer? Hint: O(n)

3

8 5

2

4 6

Time: O(n)

14/14

Heap Construction

A trivial way is to keep inserting (key, element) pairs. Time: O(n log n)

Can we make it faster?

Divide and Conquer? Hint: O(n)

3

8 5

2

4 6

7

3

8 5

2

4 6

Time: O(n)

14/14

Heap Construction

A trivial way is to keep inserting (key, element) pairs. Time: O(n log n)

Can we make it faster?

Divide and Conquer? Hint: O(n)

3

8 5

2

4 6

2

3

8 5

4

7 6

Time: O(n)

14/14

Heap Construction

A trivial way is to keep inserting (key, element) pairs. Time: O(n log n)

Can we make it faster?

Divide and Conquer? Hint: O(n)

3

8 5

2

4 6

2

3

8 5

4

7 6

Time: O(n)

14/14

Thank you!

Questions?

14/14

	Priority Queue
	Sequence-based Priority Queue
	Heap
	Array-based Heap Implementation

