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Comparison Sort



Comparison Sort

Sort the input by successive comparison of pairs of input elements.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

e.g. 3 < 11?

Comparison Sort algorithms are very general: they make no assumptions
about the values of the input elements.
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Sort in place, Stable sort

Sort in place: require only O(1) additional memory.

e.g. sort by swapping elements within the input array

A sorting algorithm is said to be stable if the ordering of identical keys in
the input is preserved in the output.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

1 2 2 3 3 4 5 6 7 11

The stable sort property is important, for example, when entries with
identical keys are already ordered by another criterion.
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Selection Sort

Selection Sort operates by
• first finding the smallest element in the input list, and moving it to the
output list;

• then finding the next smallest value and does the same;
• continuing in this way until all the input elements have been selected
and placed in the output list in the correct order.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

1 2 2 3 3 4 5 6 7 11
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Selection Sort

1 for i = 0 to n−1
2 // A [ 0 , . . . , i − 1 ] : i smal lest keys in sorted order .
3 // A [ i , . . . , n − 1 ] : s the remaining keys
4 jmin = i
5 for j = i +1 to n−1
6 i f A [ j ] < A [ jmin ]
7 jmin = j
8 swap A [ i ] with A [ jmin ]

Total running time:

T(n) =
n−1∑
i=0

(n− i− 1) =
n−1∑
i=0

i = O(n2)
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Comparison Sort
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Bubble Sort

Bubble Sort operates:
• Successively comparing adjacent elements, swap them if they are out
of order;

• After the 1st pass, the largest element is in the correct position;
• continuing in this way until sort the entire array.

0 1 2 3 4
4 3 7 11 2
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Bubble Sort

1 for i = n−1 downto 1
2 // A [ i + 1 , . . . , n − 1 ] :
3 // n− i −1 l a r ge s t keys in sorted order .
4 // A [ 0 , . . . , i ] : the remaining keys
5 for j = 0 to i −1
6 i f A [ j ] > A [ j + 1 ]
7 swap A [ j ] and A [ j + 1 ]

Total running time:

T(n) =
n−1∑
i=0

i = O(n2)
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Insertion Sort

Like Selection Sort, Insertion Sort maintains two sublists:
• A left sublist containing sorted keys
• A right sublist containing the remaining unsorted keys

Unlike Selection Sort, the keys in the left sublist are
• not the smallest keys in the input list,
• but the first sorted keys in the input list.

0 1 2 3 4
4 3 7 11 5
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Insertion Sort

1 for i = 1 to n−1
2 // A [ 0 , . . . , i − 1 ] :
3 // f i r s t i keys of the input in sorted order .
4 // A [ i , . . . , n − 1 ] : the remaining keys
5 key = A [ i ]
6 j = i
7 while j > 0 & A [ j − 1 ] > key
8 A [ j ] = A [ j − 1 ]
9 j = j −1
10 A [ j ] = key

Total running time:

T(n) =
n−1∑
i=0

i = O(n2)
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Selection sort vs Bubble sort vs Insertion sort

Selection Sort, Bubble Sort, Insertion Sort have O(n2) running time.

However, all can also easily be designed to
• Sort in place
• Stable sort

9/32
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Recursive Sorts

Divide-and-conquer is a general algorithm design paradigm:
• Divide: divide the input data S in two disjoint subsets S1 and S2
• Recur: solve the subproblems associated with S1 and S2
• Conquer: combine the solutions for S1 and S2 to solve S

The base case for the recursion is a subproblem of size 0 or 1

Recursive Sorts: Given list of objects to be sorted
• Split the list into two sublists.
• Recursively have two friends sort the two sublists.
• Combine the two sorted sublists into one entirely sorted list.

Examples: Merge Sort, Quick Sort, ...
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Merge Sort

Merge-sort is a sorting algorithm based on the divide-and-conquer
paradigm

Merge Sort was invented by John von Neumann, one of the pioneers of
computing, in 1945.

1 Algori thm mergeSort ( S )
2 // Input : sequence S with n elements
3 // Output : sequence S sorted
4 i f S . s i z e ( ) > 1
5 ( S1 , S2 ) = pa r t i t i on ( S , n/2) // Div ide
6 mergeSort ( S1 ) // Recur
7 mergeSort ( S2 ) // Recur
8 S = merge ( S1 , S2 ) // Conquer
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Merging Two Sorted Sequences

1 Algori thm merge ( A , B )
2 // Input sequences A and B with n/2 elements each
3 // Output sorted sequence of A B
4 S = empty sequence
5 while ! A . isEmpty ( ) and ! B . isEmpty ( )
6 i f A . f i r s t ( ) . element ( ) < B . f i r s t ( ) . element ( )
7 S . addLast ( A . remove ( A . f i r s t ( ) ) )
8 else
9 S . addLast (B . remove (B . f i r s t ( ) ) )
10

11 while ! A . isEmpty ( )
12 S . addLast ( A . remove ( A . f i r s t ( ) ) )
13 while ! B . isEmpty ( )
14 S . addLast (B . remove (B . f i r s t ( ) ) )
15 return S
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Merging Sort Tree

Merge-Sort Tree:
• each node represents a recursive call of merge-sort and stores
unsorted sequence before the execution and its partition sorted
sequence at the end of the execution

• the root is the initial call
• the leaves are calls on subsequences of size 0 or 1

7 2 9 4 | 3 8 6 1→ 1 2 3 4 6 7 8 9

7 2 | 9 4→ 2 4 7 9

7 | 2→ 2 7

7→ 7 2→ 2

9 | 4→ 4 9

9→ 9 4→ 4

3 8 | 6 1→ 1 3 6 8

3 | 8→ 3 8

3→ 3 8→ 8

6 | 1→ 1 6

6→ 6 1→ 1
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Analysis of Merge-Sort

. . . . . . . . .

i 2i n/2i

1 2 n/2

0 1 n

depth ♯seq size

14/32



Analysis of Merge-Sort

. . . . . . . . .

i 2i n/2i

1 2 n/2

0 1 n

depth ♯seq size

The height h of the merge-sort tree is O(log n)
• at each recursive call we divide the sequence in half. 14/32



Analysis of Merge-Sort

. . . . . . . . .

i 2i n/2i

1 2 n/2

0 1 n

depth ♯seq size

The overall amount or work done at the nodes of depth i is O(n)
• we partition and merge 2i sequences of size n/2i 14/32



Analysis of Merge-Sort

. . . . . . . . .

i 2i n/2i

1 2 n/2

0 1 n

depth ♯seq size

Thus, the total running time of merge-sort is O(n log n)!

14/32



More Discussion on Merge Sort

Sort in place?

YES
Normally, merging is not in-place: new memory must be allocated to hold
S. It is possible to do in-place merging using linked lists.
• Code is more complicated
• Only changes memory usage by a constant factor

Stable?

YES
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Heap Sort

Invented by Williams & Floyd in 1964
Heap Sort:
• Build an array-based (max) heap
• Iteratively call removeMax() to extract the keys in descending order

Running time?:

O(n log n) worst case

Sorts in place?:

YES
Stable?:

NO as heap operations may disorder ties
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Heapsort is Not Stable

3

1 2

3

1

2

2

3

2

1

2
2nd 1st

insert 2 upheap

3

2

3

2 2
2nd1st

insert 2

When we call the method removeMax(), which side should we go?

17/32



Comparison Sort

Quick Sort



Quick Sort

Invented by C.A.R. Hoare in 1960

Quick-sort is a divide-and-conquer algorithm

1 Algori thm QuickSort ( S )
2 // L : l ess ; E : equal ; G : g reater
3 // p : p i vo t or pos i t ion
4 i f S . s i z e ( ) > 1
5 ( L , E , G ) = Pa r t i t i o n ( S , p ) // Div ide
6 QuickSort ( L ) //Recur : Small elements are sorted
7 QuickSort (G ) //Recur : Large elements are sorted
8 S = ( L , E , G ) //Conquer : Thus input i s sorted
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6 QuickSort ( L ) //Recur : Small elements are sorted
7 QuickSort (G ) //Recur : Large elements are sorted
8 S = ( L , E , G ) //Conquer : Thus input i s sorted

Key step
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Partition

1 Algori thm pa r t i t i o n ( S , p )
2 // Input : sequence S , pos i t ion p of p ivo t
3 // Output : subsequences L , E , G of the elements of S

less than , equal to , or greater than the pivot ,
resp .

4 L , E , G <− empty sequences
5 while ! S . isEmpty ( )
6 y <− S . remove ( S . f i r s t ( ) )
7 i f y < p
8 L . addLast ( y )
9 else i f y = p
10 E . addLast ( y )
11 else // y > p
12 G . addLast ( y )
13 return L , E , G
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6 y <− S . remove ( S . f i r s t ( ) )
7 i f y < p
8 L . addLast ( y )
9 else i f y = p
10 E . addLast ( y )
11 else // y > p
12 G . addLast ( y )
13 return L , E , G

Take O(n) time
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Merging Sort Tree

Quick-Sort Tree:
• each node represents a recursive call of quick-sort and stores

• unsorted sequence before the execution and its partition
• sorted sequence at the end of the execution

• the root is the initial call
• the leaves are calls on subsequences of size 0 or 1

7 2 9 4 3 7 6 1→ 1 2 3 4 6 7 7 9

2 4 3 1→ 1 2 3 4

1→ 1 4 3→ 3 4

4→ 4

7 9 7→ 7 7 9

9→ 9
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Running Time of Quick Sort

The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

One of L and G has size n− 1 and the other has size 0

The running time is proportional to the sum

n+ (n− 1) + . . .+ 2+ 1

Thus, the worst-case running time of Quick Sort is O(n2)

If the pivot is selected randomly, the average-case running time for Quick
Sort is O(n log n).
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More Discussion on Quick Sort

Sort in place?

YES
Stable?

YES
But can not be both!!!
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More Discussion on Quick Sort

Sort in place?

YES
Stable?

YES
But can not be both!!!

The algorithm just described is stable. However it does not sort in place:
O(n) new memory is allocated for L, E and G
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More Discussion on Quick Sort

Sort in place?

YES
Stable?

YES
But can not be both!!!

Is there an in-place quick-sort?
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In-Place Quick Sort

3 subsets are maintained
• One containing values less than or equal to the pivot
• One containing values greater than the pivot
• One containing values yet to be processed

0 1 2 3 4 5 6 7 8 9

x

p i j r

≤ x ≥ x unrestricted
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In-Place Quick Sort

1 Algori thm QuickSort ( A , p , r )
2 i f p < r
3 q = Pa r t i t i o n ( A , p , r )
4 QuickSort ( A , p , q − 1 )
5 //Small elements are sorted
6 QuickSort ( A , q + 1 , r )
7 //Large elements are sorted
8 //Thus input i s sorted
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In-Place Quick Sort

1 i nP l a cePa r t i t i on ( A , p , r )
2 x = A [ r ]
3 i = p − 1
4 for j = p to r − 1
5 i f A [ j ] <= x
6 i = i + 1
7 swap A [ j ] and A [ i ]
8 swap A [ i + 1 ] and A [ r ]

x

x

≤ x ≥ x unrestricted

if ≤ x
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Summary of Comparison Sorts

Algorithm Best Worst Average In Place Stable Comments
Selection n2 n2 Yes Yes
Bubble n n2 Yes Yes Must count swaps for

linear best case run-
ning time.

Insertion n n2 Yes Yes Good if often almost
sorted

Merge n log n n log n Yes Yes Good for very large
datasets that require
swapping to disk

Heap n log n n log n Yes No Best if guaranteed
n log n required

Quick n log n n2 n log n Yes Yes Usually fastest in prac-
tice
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Bubble n n2 Yes Yes Must count swaps for

linear best case run-
ning time.

Insertion n n2 Yes Yes Good if often almost
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Merge n log n n log n Yes Yes Good for very large
datasets that require
swapping to disk

Heap n log n n log n Yes No Best if guaranteed
n log n required

Quick n log n n2 n log n Yes Yes Usually fastest in prac-
tice

But not both
25/32



Comparison Sort

Lower Bound on Comparison Sorting
(Optional)



Comparison Sort: Decision Trees

• For a 3-element array, there are 6 external nodes.
• For an n-element array, there are n! external nodes.

1:2

2:3

<1,2,3> 1:3

<1,3,2> <3,2,1>

1:3

<2,1,3> 2:3

<2,3,1> <3,2,1>

Compare A[1] and A[2]left = “≤”, right = “>”
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Comparison Sort: Decision Trees

• For a 3-element array, there are 6 external nodes.
• For an n-element array, there are n! external nodes.

To store n! external nodes, a decision tree must have a height of at least
⌈log(n!)⌉

Worst-case time is equal to the height of the binary decision tree.

T(n) ∈ Ω(log n!) = Ω(n log n)

Thus Merge Sort and Heap Sort are asymptotically optimal.
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Linear Sorting



Linear Sorting

Counting Sort



Counting Sort

Invented by Harold Seward in 1954.

Consider the following case: the elements to be sorted come from a finite
(and preferably small) set [1, . . . , k]

1 0 2 0 1 1 0 2

0 1 2
3 3 2

elements

0 0 0 1 1 1 2 2
0 1 2 3 4 5 6 7 index

Running time: O(n+ k)
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Linear Sorting

Radix Sort



Radix Sort

Suppose input satisfies:
• An array of n numbers
• Each number contains d digits
• Each digit between [0, . . . , k− 1]

344 125 333 134 224 334 143 225 325 243

Main idea:
• Select one digit
• Separate numbers into k piles based on selected digit
• Apply some stable sort algorithm only based on selected digit
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Radix Sort

344
125
333
134
224
334
143
225
325
243

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3
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Radix Sort: left first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 4 4
3 3 3
3 3 4
3 2 5

1 2 5
2 2 4
2 2 5
3 2 5
1 3 4
3 3 3
3 3 4
1 4 3
2 4 3
3 4 4

Wrong!
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Radix Sort: right first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

3 3 3
1 4 3
2 4 3
3 4 4
1 3 4
2 2 4
3 3 4
1 2 5
2 2 5
3 2 5

2 2 4
1 2 5
2 2 5
3 2 5
3 3 3
1 3 4
3 3 4
1 4 3
2 4 3
3 4 4

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 2 5
3 3 3
3 3 4
3 4 4

1 RadixSort ( A , d )
2 for i = 1 to d
3 apply a stab le sor t to A on d i g i t i

Running time: O(d(n+ k))

31/32



Radix Sort: right first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

3 3 3
1 4 3
2 4 3
3 4 4
1 3 4
2 2 4
3 3 4
1 2 5
2 2 5
3 2 5

2 2 4
1 2 5
2 2 5
3 2 5
3 3 3
1 3 4
3 3 4
1 4 3
2 4 3
3 4 4

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 2 5
3 3 3
3 3 4
3 4 4

1 RadixSort ( A , d )
2 for i = 1 to d
3 apply a stab le sor t to A on d i g i t i

Running time: O(d(n+ k))

31/32



Radix Sort: right first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

3 3 3
1 4 3
2 4 3
3 4 4
1 3 4
2 2 4
3 3 4
1 2 5
2 2 5
3 2 5

2 2 4
1 2 5
2 2 5
3 2 5
3 3 3
1 3 4
3 3 4
1 4 3
2 4 3
3 4 4

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 2 5
3 3 3
3 3 4
3 4 4

1 RadixSort ( A , d )
2 for i = 1 to d
3 apply a stab le sor t to A on d i g i t i

Running time: O(d(n+ k))

31/32



Radix Sort: right first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

3 3 3
1 4 3
2 4 3
3 4 4
1 3 4
2 2 4
3 3 4
1 2 5
2 2 5
3 2 5

2 2 4
1 2 5
2 2 5
3 2 5
3 3 3
1 3 4
3 3 4
1 4 3
2 4 3
3 4 4

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 2 5
3 3 3
3 3 4
3 4 4

1 RadixSort ( A , d )
2 for i = 1 to d
3 apply a stab le sor t to A on d i g i t i

Running time: O(d(n+ k))

31/32



Radix Sort: right first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

3 3 3
1 4 3
2 4 3
3 4 4
1 3 4
2 2 4
3 3 4
1 2 5
2 2 5
3 2 5

2 2 4
1 2 5
2 2 5
3 2 5
3 3 3
1 3 4
3 3 4
1 4 3
2 4 3
3 4 4

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 2 5
3 3 3
3 3 4
3 4 4

1 RadixSort ( A , d )
2 for i = 1 to d
3 apply a stab le sor t to A on d i g i t i

Running time: O(d(n+ k))

31/32



Radix Sort: right first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

3 3 3
1 4 3
2 4 3
3 4 4
1 3 4
2 2 4
3 3 4
1 2 5
2 2 5
3 2 5

2 2 4
1 2 5
2 2 5
3 2 5
3 3 3
1 3 4
3 3 4
1 4 3
2 4 3
3 4 4

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 2 5
3 3 3
3 3 4
3 4 4

1 RadixSort ( A , d )
2 for i = 1 to d
3 apply a stab le sor t to A on d i g i t i

Running time: O(d(n+ k))
31/32



Linear Sorting

Bucket Sort



Bucket Sort

Suppose input is constrained to finite interval, e.g., real numbers in the
range [0, 1).

1 BucketSort ( A , d )
2 for i = 1 to n
3 i n se r t A [ i ] to l i s t B [ ⌊n · A[i]⌋ ]
4 for i = 0 to n − 1
5 sor t l i s t B [ i ] with I n se r t Sort
6 // average running time i s O ( 1 )
7 Concatenate l i s t s B [ 0 ] , B [ 1 ] , . . . , B [ n − 1 ]
8 return concatenated l i s t

If input is random and uniformly distributed, expected running time is O(n).
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Thank you!

Questions?
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