CSCI 3230 Data Structures

Search Trees

Weitian Tong, Ph.D.

Department of Computer Science
Georgia Southern University
Website: www.weitiantong.com
Emailwtong@georgiasouthern.edu


www.weitiantong.com

Table of contents

1. Binary Search Tree
2. AVL Tree

3. Red-Black Tree



Binary Search Tree



Binary search tree

Binary search tree

A binary search tree is a storing keys (or key-value entries) at
its internal nodes and satisfying the following property:

- Let u, v, and w be three nodes such that u is in the left subtree of v
and w is in the right subtree of v. We have

- External nodes do not store items

O/ \O O/ \O O/ \O

An visits the keys in 1/26



v /] TreeSearch(k, v):
» if T.isExternal (v)

3 return v // not find

« if k < key(v)

5 return TreeSearch(k, left(v))
s else if k = key(v)

7 return v

s else // k > key(v)
5 return TreeSearch(k, right(v))

2/26



v /] TreeSearch(k, v):
» if T.isExternal (v)

3 return v // not find

« if k < key(v)

5 return TreeSearch(k, left(v))
s else if k = key(v)

7 return v

s else // k > key(v)
5 return TreeSearch(k, right(v))

Search for 4

2/26



v /] TreeSearch(k, v):
» if T.isExternal (v)

3 return v // not find

« if k < key(v)

5 return TreeSearch(k, left(v))
s else if k = key(v)

7 return v

s else // k > key(v)
5 return TreeSearch(k, right(v))

Search for 4

2/26



v /] TreeSearch(k, v):
» if T.isExternal (v)

3 return v // not find

« if k < key(v)

5 return TreeSearch(k, left(v))
s else if k = key(v)

7 return v

s else // k > key(v)
5 return TreeSearch(k, right(v))

Search for 4

2/26



v /] TreeSearch(k, v):
» if T.isExternal (v)

3 return v // not find

« if k < key(v)

5 return TreeSearch(k, left(v))
s else if k = key(v)

7 return v

s else // k > key(v)
5 return TreeSearch(k, right(v))

Search for 4

2/26



B
e v e
d 90 0T ©



g
/\/ \/\ /\/ \O
g 90 0F B



o
/\/ \/\ /\/ \O
g WO WU U



g 6
/\/ \/\ /\/ \O
@ 00 WO ©



Insertion: insert 5

o
1 4 (8]
/\ /\> /.\ -

O WU @U



o
/\ /\ /\ o

o OOO o
~q~



o
/\ /\ /\ 8

o OOO o
“x-



S
/\ /\ /\ U

J OOO o
~-



o
AN 7N\
/\ /\ /\ .

J OOO o
~-



Deletion: delete 4

./°\.

/\ /\

J OOO O
~-



Deletion: delete 4

/\.

\

O/\OO/&
0O



B
o ve
d 90 0T ©



Deletion: (cont.) delete 3

5/26



Deletion: (cont.) delete 3

5/26



Deletion: (cont.) delete 3

5/26



Deletion: (cont.) delete 3




Performance

Consider a size-n binary search tree of height h
- the space used is O(n)
- search, insertion, deletion take O(h) time
- The height h is

- O(n) in the worst case and
O(logn) in the best case (balanced)

/\@

c/ N,
VA ASAAY

6/26



AVL Tree




AVL Tree

AVL Tree

An AVL Tree is a balanced binary search tree such that for every internal
node v of T, the heights of the children of v can differ by at most 1.

N N

0 m & &
N\

d & wd @
d0d0

7/26



AVL Tree

AVL Tree

An AVL Tree is a balanced binary search tree such that for every internal
node v of T, the heights of the children of v can differ by at most 1.

7/26



AVL Tree

AVL Tree

An AVL Tree is a balanced binary search tree such that for every internal
node v of T, the heights of the children of v can differ by at most 1.

/8
SN s

R R
O U @0 U
WOUO

7/26



AVL Tree

AVL Tree

An AVL Tree is a balanced binary search tree such that for every internal
node v of T, the heights of the children of v can differ by at most 1.

/8
SN s

R R
O U @0 U
WOUO

7/26



AVL Tree

AVL Tree

An AVL Tree is a balanced binary search tree such that for every internal
node v of T, the heights of the children of v can differ by at most 1.

/8
SN s

R R
O U @0 U
WOUO

7/26



Height of an AVL Tree (Optional)

The height of an AVL tree storing n keys is O(log n).

Proof (by induction): Let us bound n(h): the minimum number of internal
nodes of an AVL tree of height h.

- n(1)=1and n(2) =2
- Forn > 2, an AVL tree of height h contains the root node, one AVL
subtree of height n — 1 and another of height n — 2.

- Thatis, n(h) =1+ n(h =1)+ n(h —2)

- Knowing n(h — 1) > n(h — 2), we get n(h) > 2n(h — 2).

- n(h) > 2n(h —2) > 4n(h — 4) > 8n(n — 6) > ... > 2'n(h — 2i)
- Solving the base case we get: n(h) > 21/~

- Taking logarithms: h < 2logn(h) + 2

- Thus the height of an AVL tree is O(log n)

8/26



Insertion

- Insertion is as in a binary search tree

3

1 1 0 g 0
0/6 )\O ¢ @
¢ 0@ ©

9/26



Insertion

- Insertion is as in a binary search tree insert 2

3

1 1 0 g 0
0/6 )\O ¢ @
¢ 0@ ©

9/26



Insertion

- Insertion is as in a binary search tree insert 2
4

3 1
2/ \1 O/\O
1/ \O 0/.\0 D D

&)
.R. bu @
==

9/26



Insertion

- Insertion is as in a binary search tree insert 2

2//"\<4 --------- 0 ----- \\O
1/ \O 0/ \O

O%OOO

9/26



Insertion

- Insertion is as in a binary search tree insert 2

Search: Starting at the inserted node, traverse toward the root until an
imbalance is discovered.

9/26



Insertion

- Insertion is as in a binary search tree insert 2

Ly SN
=, , 8, @ 0

O%OOO

Repair (trinode restructuring): 3 nodes x, y and z are distinguished:
- z = the parent of the high sibling
- y = the high sibling

- x = the high child of the high sibling
9/26



Insertion: Trinode Restructuring-Case 1: x <y <7z

h-1

A\
A
AA

oneis h-3 & oneis h-4

h-3

10/26



Insertion: Trinode Restructuring-Case 1: x <y <7z

h-1

A\
A
AA

oneis h-3 & oneis h-4

h-3

To Ty T, T3
h-3 h-3

one is h-3 &
one is h-4

10/26



Insertion: Trinode Restructuring - Case 2: z <y < x

h

o
N

oneis h-3 & one is h-4
11/26



Insertion: Trinode Restructuring - Case 2: z <y < x

h h-1
h-2
K
h-3 h-3 ]
one is h-3 &

oneis h-3 & one is h—4 one is he4

11/26



Insertion: Trinode Restructuring - Case 3: y < x <z

oneis h-3 & oneis h-4 12/26



Insertion: Trinode Restructuring - Case 3: y < x <z

/\ To T [F: T3
h-3 h-3

. . oneis h-3 & one is h-4
oneis h-3 & oneis h-4 12/26




Insertion: Trinode Restructuring - Case 4: z< x <y

h

1 )

AA

oneis h-3 & oneis h-4 13/26




Insertion: Trinode Restructuring - Case 4: z< x <y

h
h-1

\h -1
h-2 h-2
h

To T4 T T3

T1 Tz h-3 h-3

. . one is h-3 & one is h-4
one is h-3 & one is h-4 13/26




Insertion: Trinode Restructuring - the Whole tree

Do we have to repeat this process further up the tree?

14/26



Insertion: Trinode Restructuring - the Whole tree

Do we have to repeat this process further up the tree?

No!

- The tree was balanced before the insertion.
- Insertion raised the height of the subtree by 1.

- Rebalancing lowered the height of the subtree by 1.
- Thus the whole tree is still balanced.

14/26



3

1 1 0 g 0
O /\/O b\ @ e
g 0d ©

15/26



3

2 1

1/\1 0 9 0
o Ao o o Y >

O VWO @

15/26



3

1 1
 ahv
¢ 0d ©

15/26



15/26



\
(OD/B\CO) (OD/\CO)

/

Search:

- Let w be the node actually removed (i.e., the node matching the key if it
has a leaf child, otherwise the node following in an in-order traversal.)

- Starting at v, traverse toward the root until an imbalance is discovered.

15/26



AN
03000
O/\OO/\O

x/

Repair (trinode restructuring): 3 nodes x, y and z are distinguished:
- z = the parent of the high sibling
- y = the high sibling
- x = the high child of the high sibling

15/26



Deletion: Trinode Restructuring

h-3 To T T T3
h-3 h-3
one is h-3 & one is h-4 oneis h-3 & one is h-4

Do we have to repeat this process further up the tree?

16/26



Deletion: Trinode Restructuring

a A h-3 To T T, T3
h-3 h-3

one is h-3 & one is h-4 oneis h-3 & one is h-4

Do we have to repeat this process further up the tree? YES!

- Unfortunately, trinode restructuring may reduce the height of the

subtree, causing another imbalance further up the tree. 6126



AVL Tree Performance

Suppose an AVL tree storing n items
- The data structure uses O(n) space
- A single restructuring takes O(1) time
- using a linked-structure binary tree
- Searching takes O(log n) time
- height of tree is O(log n), no restructures needed
- Insertion takes O(logn) time
- initial find is O(log n)
- restructuring up the tree, maintaining heights is O(1)
- Removal takes O(log n) time
- initial find is O(log n)
- restructuring up the tree, maintaining heights is O(log n)

17/26



Red-Black Tree




—: Right-rotation; <—: Left-rotation

/EZ A/ \/\

T Tz

- Right-Rotate: the old-root becomes the right child of the new root.
- Left-Rotate: the old-root becomes the left child of the new root.

18/26



Left-rotation (Right-Rotate pseudo-code is symmetric)

/] leftRotate (Node x):
y = x.right

/] build

x.right = y.left

if y.left is not null
y.left.parent = x

links between x and T1

/] build links between y and x.
parent

9.
/N
'Yy

y.parent = x.parent

if x is root
root =y

else if x is the left child
Xx.parent. left =y

else

Xx.parent.right = vy

y.left = x
X.parent =y

19/26



Red-Black Tree

Every node has a color: either red or black.
Root and dummy leaves are colored black.

No red node is a parent of another red node.

= & N =

Each root—leaf path in the tree has the same number of black nodes.
(Black heights matter!)

\ / \

O&O OO O

20/26



Height (Optional)

Claim: A RB-tree with n nodes height at most 2 log,(n + 1).

Proof: Fix any RB-tree, let h denote its height and n its size.
- On the root—leaf path of length h, there are h +1 > h nodes.

- Clearly, the path has no two consecutive red nodes (property 3). So the
number of black nodes is > 2.

- So property 4 assures that all root—leaf paths have at least Q black
nodes.

- The first — layers in the tree are full. Thus

N>142+4448+..+2:77=28 -1 = log(n+1)>42 O

21/26



Insert

- A new node is colored in red.
- If it's the very first node (T's root) — just color it black. Done.

- Only property 3 can be violated: so if the new leaf is z, then its parent
z.p is red and we need to fix it up.

- Due to property 2, the red parent z.p has to have a parent z.p.p.
Due to property 3, z.p.p must be black.

- So now it comes to z's uncle y (the non-z.p child of z.p.p) — 3 cases:

Z.p.p Zp.p
/ Case 1
\ /
Case 2 Case 3

22/26



Insert

Case 1: color z.p and y black and color z.p.p red, and recurse up the fix-up.

Zp.p
v

z.p.p Z.p.p

Case 2: rotate to Case 3

\/- rotate(z.p) to //

Case 3: rotate(z.p.p) to make z.p the parent, then flip colors of z.p.p and z.p.

// rotate(z.p.p) to

23/26



Fventually, a node with at least one child missing is deleted.
- If this node is red — no violation occurs.
- If this node is black, we start the fix-up with the deleted node’s child x

(could be a black dummy leaf)

- If xis red — color it black.

- If x is the root of the tree — just color it black.
- O/w (i.e., x is black & not a root), we're looking into x's sibling w

Case 1. wis red;

Case 2. wis black and it has only black children;

Case 3. w.is black and its child in the reverse direction is red;

Case 4. w s black and its child in the same direction is red.

24/26



Delete: a black node was deleted

Child x is black & not a root, we're looking into x's sibling w

Case 1: w is red; Rotate so that xs sibling is black (check cases 2,3 or 4)

/ rotate to

N
@ e

Case 2: wis black and it has only black children;

W

If w's (and x’s) parent is red color w's parent black and this compensates
for the black node we removed;

(xp]_new x
@, O
w.left w.left
If w's (and x’s) parent is black, recurse the fix-up on it. 25/26



Delete: a black node was deleted

Child x is black & not a root, we're looking into x's sibling w

Case 3: wis black and its child in the reverse direction is red:

deft) neww
W.le
ey R r
w.right

Rotate on w and flip w and its (new) parent color to make it case 4.

Case 4: w is black and its child in the same direction is red.

e
Give w the color of w's parent; rotate w's parent (so w is the new root of
this subtree); color both children of w black

26/26



Thank you!

Questions?



	Binary Search Tree
	AVL Tree
	Red-Black Tree

