
CSCI 3230 Data Structures
Graph

Weitian Tong, Ph.D.

Department of Computer Science
Georgia Southern University
Website: www.weitiantong.com
Email:wtong@georgiasouthern.edu

www.weitiantong.com

Table of contents

1. Graph

Introduction

Represent and Implement Graphs

2. Depth First Search

3. Breadth First Search

4. Shortest Path

Dijkstra’s Algorithm

5. Minimum Spanning Tree

Prim’s algorithm

Kruskal’s algorithm

Graph

Graph

Introduction

Graph

A graph G is a pair (V, E), where
• V is a set of nodes, called vertices
• E is a collection of pairs of vertices, called edges

Note that vertices and edges are positions and store elements

• Directed edge: ordered pair of vertices (u, v)
• Undirected edge: unordered pair of vertices (u, v)
• Directed graph (Digraph): all the edges are directed
• Undirected graph: all the edges are undirected

1/24

Graph

A graph G is a pair (V, E), where
• V is a set of nodes, called vertices
• E is a collection of pairs of vertices, called edges

Note that vertices and edges are positions and store elements

• Directed edge: ordered pair of vertices (u, v)
• Undirected edge: unordered pair of vertices (u, v)
• Directed graph (Digraph): all the edges are directed
• Undirected graph: all the edges are undirected

1/24

Basic Concepts

Endpoints of an edge: a and a are the endpoints of e1
Edges incident on a vertex: e1 and e3 are incident on a
Adjacent vertices: a and b are adjacent
Degree of a vertex: d has degree 4
Parallel edges: e2 and e13 are parallel edges
Self-loop: e12 is a self-loop

a

b c

d e

f g

e1

e2e3

e4
e5

e6
e7

e8
e9

e10

e11

e12
e13

2/24

More Basic Concepts: Paths and Cycles

Path: a sequence of alternating vertices and edges, begins with a vertex,
ends with a vertex.

Simple path: path such that all its vertices and edges are distinct

Cycle: circular sequence of alternating vertices and edges

Simple cycle: cycle such that all its vertices and edges are distinct

a-b-d-e-b-ca

b c

d e

f g

e1

e2e3

e4
e5

e6
e7

e8
e9

e10

e11

3/24

More Basic Concepts: Paths and Cycles

Path: a sequence of alternating vertices and edges, begins with a vertex,
ends with a vertex.

Simple path: path such that all its vertices and edges are distinct

Cycle: circular sequence of alternating vertices and edges

Simple cycle: cycle such that all its vertices and edges are distinct

a-b-ca

b c

d e

f g

e1

e2e3

e4
e5

e6
e7

e8
e9

e10

e11

3/24

More Basic Concepts: Paths and Cycles

Path: a sequence of alternating vertices and edges, begins with a vertex,
ends with a vertex.

Simple path: path such that all its vertices and edges are distinct

Cycle: circular sequence of alternating vertices and edges

Simple cycle: cycle such that all its vertices and edges are distinct

a-b-e-c-b-d-aa

b c

d e

f g

e1

e2e3

e4
e5

e6
e7

e8
e9

e10

e11

3/24

More Basic Concepts: Paths and Cycles

Path: a sequence of alternating vertices and edges, begins with a vertex,
ends with a vertex.

Simple path: path such that all its vertices and edges are distinct

Cycle: circular sequence of alternating vertices and edges

Simple cycle: cycle such that all its vertices and edges are distinct

a-b-d-aa

b c

d e

f g

e1

e2e3

e4
e5

e6
e7

e8
e9

e10

e11

3/24

More Basic Concepts: Subgraphs and Trees

Subgraph S = (VS, ES): VS ⊂ V, and ES ⊂ E

Spanning subgraph S = (VS, ES): VS = V, and ES ⊂ E

Connected component: a maximal connected subgraph of G

Tree: a connected, acyclic, undirected graph

Forest: a set of trees (not necessarily connected)

Spanning Tree: a spanning subgraph that is a tree

subgraph ({a,d,b}, {e1, e3, e4})a

b c

d e

f g

e1

e2e3

e4
e5

e6
e7

e8
e9

e10

e11
4/24

More Basic Concepts: Subgraphs and Trees

Subgraph S = (VS, ES): VS ⊂ V, and ES ⊂ E

Spanning subgraph S = (VS, ES): VS = V, and ES ⊂ E

Connected component: a maximal connected subgraph of G

Tree: a connected, acyclic, undirected graph

Forest: a set of trees (not necessarily connected)

Spanning Tree: a spanning subgraph that is a tree

Spanning subgraph ({a,b, c,d, e, f,g}, {red edges})a

b c

d e

f g

e1

e2e3

e4
e5

e6
e7

e8
e9

e10

e11
4/24

More Basic Concepts: Subgraphs and Trees

Subgraph S = (VS, ES): VS ⊂ V, and ES ⊂ E

Spanning subgraph S = (VS, ES): VS = V, and ES ⊂ E

Connected component: a maximal connected subgraph of G

Tree: a connected, acyclic, undirected graph

Forest: a set of trees (not necessarily connected)

Spanning Tree: a spanning subgraph that is a tree

a

b c

d e

f g

e1

e2e3

e4
e5

e6
e7

e8
e9

e10

e11
4/24

More Basic Concepts: Subgraphs and Trees

Subgraph S = (VS, ES): VS ⊂ V, and ES ⊂ E

Spanning subgraph S = (VS, ES): VS = V, and ES ⊂ E

Connected component: a maximal connected subgraph of G

Tree: a connected, acyclic, undirected graph

Forest: a set of trees (not necessarily connected)

Spanning Tree: a spanning subgraph that is a tree

h

i

Not Connected componenta

b c

d e

f g

e1

e2e3

e4
e5

e6
e7

e8
e9

e10

e11
4/24

More Basic Concepts: Subgraphs and Trees

Subgraph S = (VS, ES): VS ⊂ V, and ES ⊂ E

Spanning subgraph S = (VS, ES): VS = V, and ES ⊂ E

Connected component: a maximal connected subgraph of G

Tree: a connected, acyclic, undirected graph

Forest: a set of trees (not necessarily connected)

Spanning Tree: a spanning subgraph that is a tree

a

b c

d e

f g

e1

e2e3

e4
e5

e6
e7

e8
e9

e10

e11
4/24

More Basic Concepts: Subgraphs and Trees

Subgraph S = (VS, ES): VS ⊂ V, and ES ⊂ E

Spanning subgraph S = (VS, ES): VS = V, and ES ⊂ E

Connected component: a maximal connected subgraph of G

Tree: a connected, acyclic, undirected graph

Forest: a set of trees (not necessarily connected)

Spanning Tree: a spanning subgraph that is a tree

Spanning subgraph ({a,b, c,d, e, f,g}, {red edges})

Tree ({a,b, c,d, e, f,g}, {red edges})a

b c

d e

f g

e1

e2e3

e4
e5

e6
e7

e8
e9

e10

e11
4/24

More Basic Concepts: Subgraphs and Trees

Subgraph S = (VS, ES): VS ⊂ V, and ES ⊂ E

Spanning subgraph S = (VS, ES): VS = V, and ES ⊂ E

Connected component: a maximal connected subgraph of G

Tree: a connected, acyclic, undirected graph

Forest: a set of trees (not necessarily connected)

Spanning Tree: a spanning subgraph that is a tree

Tree ({a,b, c,d, e, f}, {red edges})a

b c

d e

f g

e1

e2e3

e4
e5

e6
e7

e8
e9

e10

e11
4/24

More Basic Concepts: Subgraphs and Trees

Subgraph S = (VS, ES): VS ⊂ V, and ES ⊂ E

Spanning subgraph S = (VS, ES): VS = V, and ES ⊂ E

Connected component: a maximal connected subgraph of G

Tree: a connected, acyclic, undirected graph

Forest: a set of trees (not necessarily connected)

Spanning Tree: a spanning subgraph that is a tree

Foresta

b c

d e

f g

e1

e2e3

e4
e5

e6
e7

e8
e9

e10

e11
4/24

More Basic Concepts: Subgraphs and Trees

Subgraph S = (VS, ES): VS ⊂ V, and ES ⊂ E

Spanning subgraph S = (VS, ES): VS = V, and ES ⊂ E

Connected component: a maximal connected subgraph of G

Tree: a connected, acyclic, undirected graph

Forest: a set of trees (not necessarily connected)

Spanning Tree: a spanning subgraph that is a tree

Spanning subgraph ({a,b, c,d, e, f,g}, {red edges})

a

b c

d e

f g

e1

e2e3

e4
e5

e6
e7

e8
e9

e10

e11
4/24

Properties

Property 1∑
v deg(v) = 2|E|

Proof: each edge is counted twice

Property 2
In an undirected graph with no self-loops and no multiple edges
|E| ≤ |V|(|V| − 1)/2

Proof: each vertex has degree at most (|V| − 1)

What is the bound for a digraph? |E| ≤ |V|(|V| − 1)

5/24

Properties

Property 1∑
v deg(v) = 2|E|

Proof: each edge is counted twice

Property 2
In an undirected graph with no self-loops and no multiple edges
|E| ≤ |V|(|V| − 1)/2

Proof: each vertex has degree at most (|V| − 1)

What is the bound for a digraph? |E| ≤ |V|(|V| − 1)

5/24

Properties

Property 1∑
v deg(v) = 2|E|

Proof: each edge is counted twice

Property 2
In an undirected graph with no self-loops and no multiple edges
|E| ≤ |V|(|V| − 1)/2

Proof: each vertex has degree at most (|V| − 1)

What is the bound for a digraph? |E| ≤ |V|(|V| − 1)

5/24

Properties

Property 1∑
v deg(v) = 2|E|

Proof: each edge is counted twice

Property 2
In an undirected graph with no self-loops and no multiple edges
|E| ≤ |V|(|V| − 1)/2

Proof: each vertex has degree at most (|V| − 1)

What is the bound for a digraph? |E| ≤ |V|(|V| − 1)

5/24

Properties

Property 1∑
v deg(v) = 2|E|

Proof: each edge is counted twice

Property 2
In an undirected graph with no self-loops and no multiple edges
|E| ≤ |V|(|V| − 1)/2

Proof: each vertex has degree at most (|V| − 1)

What is the bound for a digraph?

|E| ≤ |V|(|V| − 1)

5/24

Properties

Property 1∑
v deg(v) = 2|E|

Proof: each edge is counted twice

Property 2
In an undirected graph with no self-loops and no multiple edges
|E| ≤ |V|(|V| − 1)/2

Proof: each vertex has degree at most (|V| − 1)

What is the bound for a digraph? |E| ≤ |V|(|V| − 1)

5/24

Graph Interface: Graph.java

1 publ ic in te r face Graph<V , E> {
2 numVertices () ;
3 numEdges () ;
4

5 outDegree (Vertex <V> v) ;
6 inDegree (Vertex <V> v) ;
7

8 getEdge (Vertex <V> u , Vertex <V> v) ;
9 endVert ices (Edge<E> e) ;
10

11 i n se r t Ve r t e x (V element) ;
12 inser tEdge (Vertex <V> u , Vertex <V> v , E element) ;
13

14 removeVertex (Vertex <V> v) ;
15 removeEdge (Edge<E> e) ;
16 }

6/24

Code/Graph.java

Graph

Represent and Implement Graphs

Representing Graphs

Three basic methods
• Edge List
• Adjacency List
• Adjacency Matrix

1 2

3

5 4

e1

e2
e3

e4
e5

e6

e7

7/24

Representing Graphs

Three basic methods
• Edge List
• Adjacency List
• Adjacency Matrix

1 2

3

5 4

e1

e2
e3

e4
e5

e6

e7

7/24

Representing Graphs

Three basic methods
• Edge List
• Adjacency List
• Adjacency Matrix

1 2

3

5 4

e1

e2
e3

e4
e5

e6

e7

1 2 3 4 5

e1 e2 e3 e4 e5 e6 e7

Vertex object:
• element

Edge object:
• element
• origin vertex object
• destination vertex object 7/24

Representing Graphs

Three basic methods
• Edge List
• Adjacency List
• Adjacency Matrix

1 2

3

5 4

e1

e2
e3

e4
e5

e6

e7

1

2

3

4

5

v2 v5

v1 v5 v3 v4

v2 v4

v2 v5 v3

v4 v1 v2

7/24

Representing Graphs

Three basic methods
• Edge List
• Adjacency List
• Adjacency Matrix

1 2

3

5 4

e1

e2
e3

e4
e5

e6

e7

1 2 3 4 5

1 0 1 0 0 1

2 1 0 1 1 1

3 0 1 0 1 0

4 0 1 1 0 1

5 1 1 0 1 0 7/24

Performance

• n vertices, m edges
• no parallel edges
• no self-loops Edge

Edge List Adjacency List Adjacency Matrix

Space n+m n+m n2

areAdjacent(v, w) m min(deg(v), deg(w)) 1

insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1

removeVertex(v) m n + m n2

removeEdge(e) 1 deg(v) + deg(w) 1

8/24

Depth First Search

Depth First Search

Main Idea:
• Continue searching “deeper” into the graph, until we get “stuck”.
• If we get stuck, “backtrack” to the first “available” vertex.

Used to help solve many graph problems, including
• Nodes that are reachable from a specific node v
• Detection of cycles
• Extraction of strongly connected components
• Topological sorts

9/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB E

A

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB E

A

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB E

A

B

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB E

A

B

C

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB E

A

B

C

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB E

A

B

C

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB E

A

B

C

D

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB E

A

B

C

D

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB E

A

B

C

D

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB E

A

B

C

D

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB E

A

B

C

ED

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB E

A

B

C

ED

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB E

A

B

C

D E

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB E

A

B D E

C

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB E

A

D E

C

B

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

A

C

DB ED E

C

B

A

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

1 DFS (G)
2 // i n i t i a l i z e ver tex
3 for each ver tex u in V
4 u . co lor = GRAY
5 for each ver tex u in V
6 i f u . co lor = GRAY
7 DFS− V i s i t (u)

1 DFS− V i s i t (u)
2

3 u . co lor = RED
4 for each v in u . Adj
5 i f v . co lor = GRAY
6 DFS− V i s i t (v)
7 u . co lor = BLACK

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

1 DFS (G)
2 // i n i t i a l i z e ver tex
3 for each ver tex u in V
4 u . co lor = GRAY
5 for each ver tex u in V
6 i f u . co lor = GRAY
7 DFS− V i s i t (u)

1 DFS− V i s i t (u)
2

3 u . co lor = RED
4 for each v in u . Adj
5 i f v . co lor = GRAY
6 DFS− V i s i t (v)
7 u . co lor = BLACK

Running time: O(n+m) (assuming adjacency list)

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

1 DFS (G)
2 // i n i t i a l i z e ver tex
3 for each ver tex u in V
4 u . co lor = GRAY
5 for each ver tex u in V
6 i f u . co lor = GRAY
7 DFS− V i s i t (u)

1 DFS− V i s i t (u)
2

3 u . co lor = RED
4 for each v in u . Adj
5 i f v . co lor = GRAY
6 DFS− V i s i t (v)
7 u . co lor = BLACK

DFS-Visit(u) visits all the vertices and edges in the connected component
of us

10/24

Depth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished (still exploring from it)
• Black: finished (found everything reachable from it).

1 DFS (G)
2 // i n i t i a l i z e ver tex
3 for each ver tex u in V
4 u . co lor = GRAY
5 for each ver tex u in V
6 i f u . co lor = GRAY
7 DFS− V i s i t (u)

1 DFS− V i s i t (u)
2

3 u . co lor = RED
4 for each v in u . Adj
5 i f v . co lor = GRAY
6 DFS− V i s i t (v)
7 u . co lor = BLACK

The discovery edges labeled by DFS-Visit(u) form a spanning tree of the
connected component of u

10/24

DFS Application 1: Path Finding

The DFS pattern can be used to find a path between two given vertices u
and z, if one exists

1 DFS−Path (u , z , s tack)
2

3 u . co lor = RED
4 push u onto stack
5 i f u = z
6 return true
7 for each v in u . Adj // explore edge (u , v)
8 i f v . co lor = GRAY
9 i f DFS−Path (v , z , s tack)
10 return true
11 u . co lor = BLACK
12 pop u from stack
13 return fa l se

11/24

DFS Application 2: Cycle Finding

The DFS pattern can be used to determine whether a graph is acyclic.

1 DFS− Cyc le (u)
2

3 u . co lor = RED
4 for each v in u . Adj // explore edge (u , v)
5 i f v . co lor = RED // detect a back edge
6 return true
7 else i f v . co lor = GRAY
8 i f DFS− Cyc le (v)
9 return true
10 u . co lor = BLACK
11 return fa l se

12/24

Breadth First Search

Breadth First Search

Main Idea:
• Search the graph “as wide as possible”

Used to help solve many graph problems, including
• A BFS traversal of a graph G
• Visits all the vertices and edges of G
• Determines whether G is connected
• Computes the connected components of G
• Computes a spanning forest of G
• Cycle detection
• Find and report a path with the minimum number of edges between
two given vertices

13/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

AA

B C D

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

BB C D

E

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E F

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B CC D

E F

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E F

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C DD

E F

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

EE F

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E FF

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E F

Level 1

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E F

Level 1

Level 2

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E F

Level 1

Level 2

Level 3

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E F

Level 1

Level 2

Level 3

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

1 BFS (G , s)
2 for each u in V
3 u . co lor = GRAY // i n i t i a l i z e ver tex
4 s . co lor = RED
5 Q . enqueue (s)
6 while Q i s not empty
7 u = Q . dequeue ()
8 for each v in u . Adj
9 i f v . co lor = GRAY
10 v . co lor = red
11 Q . enqueue (v)
12 u . co lor = BLACK

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E F

Level 1

Level 2

Level 3

Running time: O(n+m) (assuming adjacency list)

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E F

Level 1

Level 2

Level 3

BFS(G,s) visits all the vertices and edges in the connected component of s

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E F

Level 1

Level 2

Level 3

The discovery edges labeled by BFS(G,s) form a spanning tree of the
connected component of s

14/24

Breadth First Search

Keep track of progress by colouring vertices:
• Gray: undiscovered vertices
• Red: discovered, but not finished
• Black: finished

A

E

CB D

F

A

B C D

E F

Level 1

Level 2

Level 3

For each vertex v in Level i, shortest distance between s and v is i

14/24

Application: Shortest Paths on an Unweighted Graph

1 BFS (G , s)
2

3 for each u in V // i n i t i a l i z e ver tex
4 u . d = ∞
5 // record the shor tes t distance between s and u
6

7 u . p = nul l
8 // record the parent of u on the shor tes t path from

s to u
9

10 u . co lor = GRAY

15/24

Application: Shortest Paths on an Unweighted Graph

1 s . co lor = RED
2 s . d = 0
3 Q . enqueue (s)
4 while Q i s not empty
5 u = Q . dequeue ()
6 for each v in u . Adj
7 i f v . co lor = GRAY
8 v . co lor = red
9 v . d = u . d + 1
10 v . p = u
11 Q . enqueue (v)
12 u . co lor = BLACK

Proof of correctness?

A key property: Any subpath of a shortest path is a shortest path

15/24

Application: Shortest Paths on an Unweighted Graph

1 s . co lor = RED
2 s . d = 0
3 Q . enqueue (s)
4 while Q i s not empty
5 u = Q . dequeue ()
6 for each v in u . Adj
7 i f v . co lor = GRAY
8 v . co lor = red
9 v . d = u . d + 1
10 v . p = u
11 Q . enqueue (v)
12 u . co lor = BLACK

Proof of correctness?

A key property: Any subpath of a shortest path is a shortest path

15/24

Application: Shortest Paths on an Unweighted Graph

1 s . co lor = RED
2 s . d = 0
3 Q . enqueue (s)
4 while Q i s not empty
5 u = Q . dequeue ()
6 for each v in u . Adj
7 i f v . co lor = GRAY
8 v . co lor = red
9 v . d = u . d + 1
10 v . p = u
11 Q . enqueue (v)
12 u . co lor = BLACK

Proof of correctness?

A key property: Any subpath of a shortest path is a shortest path
15/24

Shortest Path

Shortest Path on Weighted Graphs

For unweighted graph, BFS finds the shortest paths from a source node s to
every vertex v in the graph.

Here, the length of a path is simply the number of edges on the path.

But what if edges have different “costs”?

16/24

Shortest Path on Weighted Graphs

For unweighted graph, BFS finds the shortest paths from a source node s to
every vertex v in the graph.

Here, the length of a path is simply the number of edges on the path.

But what if edges have different “costs”?

A B

CD

Shortest path from A to C:
A-B-C or A-D-C

A B

CD

2

4 1

10

Shortest path from A to C:
only A-B-C

16/24

Shortest Path Properties

Optimal Substructure
A subpath of a shortest path is itself a shortest path

Shortest Path Tree
There is a tree of shortest paths from a start vertex to all the other vertices

Note that shortest path trees are not necessarily unique.

Consider negative cycle?

Let’s assume there is no negative edges.

17/24

Shortest Path Properties

Optimal Substructure
A subpath of a shortest path is itself a shortest path

Shortest Path Tree
There is a tree of shortest paths from a start vertex to all the other vertices

Note that shortest path trees are not necessarily unique.

Consider negative cycle?

Let’s assume there is no negative edges.

17/24

Shortest Path Properties

Optimal Substructure
A subpath of a shortest path is itself a shortest path

Shortest Path Tree
There is a tree of shortest paths from a start vertex to all the other vertices

Note that shortest path trees are not necessarily unique.

Consider negative cycle?

Let’s assume there is no negative edges.

17/24

Shortest Path Properties

Optimal Substructure
A subpath of a shortest path is itself a shortest path

Shortest Path Tree
There is a tree of shortest paths from a start vertex to all the other vertices

Note that shortest path trees are not necessarily unique.

Consider negative cycle?

Let’s assume there is no negative edges.

17/24

Shortest Path Properties

Optimal Substructure
A subpath of a shortest path is itself a shortest path

Shortest Path Tree
There is a tree of shortest paths from a start vertex to all the other vertices

Note that shortest path trees are not necessarily unique.

Consider negative cycle?

Let’s assume there is no negative edges.

17/24

Shortest Path

Dijkstra’s Algorithm

Dijkstra’s algorithm

Invented by E. Dijkstra in 1959.

• Applies to general, weighted, directed or undirected graph (may
contain cycles).

• But weights must be non-negative. (But they can be 0!)

18/24

Dijkstra’s algorithm

Invented by E. Dijkstra in 1959.

• Applies to general, weighted, directed or undirected graph (may
contain cycles).

• But weights must be non-negative. (But they can be 0!)
Recall BFS:

18/24

Dijkstra’s algorithm

Invented by E. Dijkstra in 1959.

• Applies to general, weighted, directed or undirected graph (may
contain cycles).

• But weights must be non-negative. (But they can be 0!)
Recall BFS:

1 BFS (G , s)
2 for each u in V // i n i t i a l i z e ver tex
3 u . d = ∞
4 // record the shor tes t distance between s and u
5 u . p = nul l
6 // record the parent of u on the shor tes t path from s

to u
7 u . co lor = GRAY

18/24

Dijkstra’s algorithm

Invented by E. Dijkstra in 1959.

• Applies to general, weighted, directed or undirected graph (may
contain cycles).

• But weights must be non-negative. (But they can be 0!)
Recall BFS:

1 s . co lor = RED
2 s . d = 0
3 Q . enqueue (s)

• Search as wide as possible
• Use a Queue – FIFO

1 while Q i s not empty
2 u = Q . dequeue ()
3 for each v in u . Adj
4 i f v . co lor = GRAY
5 v . co lor = red
6 v . d = u . d + 1
7 v . p = u
8 Q . enqueue (v)
9 u . co lor = BLACK

18/24

Dijkstra’s algorithm: Example

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

0

∞

∞

∞

∞

∞

∞

19/24

Dijkstra’s algorithm: Example

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

a
0

7

∞

∞

∞

∞
5

19/24

Dijkstra’s algorithm: Example

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

a

d

5

0

7

11

20

∞

∞

19/24

Dijkstra’s algorithm: Example

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

a

d

b

5

0

7

11

14

15

∞

19/24

Dijkstra’s algorithm: Example

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

a

d

b

f

5

0

7

11

14

15

22

19/24

Dijkstra’s algorithm: Example

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

a

d

b

f

e

5

0

7

11

14

15

22

19/24

Dijkstra’s algorithm: Example

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

a

d

b

f

e

c

5

0

7

11

14

15

22

19/24

Dijkstra’s algorithm: Example

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

a

d

b

f

e

c

g

5

0

7

11

14

15

22

19/24

Dijkstra’s algorithm

1 i n i t i a l i z e (G , s)
2

3 for each v in V
4 v . d = ∞
5 d . p = nul l
6 s . d = 0

1 re lax (u , v , w)
2

3 i f v . d > u . d + w(u , v)
4 v . d = u . d + w(u , v)
5 v . p = u

1 i n i t i a l i z e (G , s)
2 S = ∅
3 Q = V
4 while Q i s not empty
5 u = Ex t rac t −Min (Q)
6 S = S ∪ u
7 for each v in u . Adj
8 re lax (u , v , w)

Use a Priority Queue

Running time: O(m log n). Why?

Proof of correctness?

20/24

Dijkstra’s algorithm

1 i n i t i a l i z e (G , s)
2

3 for each v in V
4 v . d = ∞
5 d . p = nul l
6 s . d = 0

1 re lax (u , v , w)
2

3 i f v . d > u . d + w(u , v)
4 v . d = u . d + w(u , v)
5 v . p = u

1 i n i t i a l i z e (G , s)
2 S = ∅
3 Q = V
4 while Q i s not empty
5 u = Ex t rac t −Min (Q)
6 S = S ∪ u
7 for each v in u . Adj
8 re lax (u , v , w)

Use a Priority Queue

Running time: O(m log n). Why?

Proof of correctness?

20/24

Dijkstra’s algorithm

1 i n i t i a l i z e (G , s)
2

3 for each v in V
4 v . d = ∞
5 d . p = nul l
6 s . d = 0

1 re lax (u , v , w)
2

3 i f v . d > u . d + w(u , v)
4 v . d = u . d + w(u , v)
5 v . p = u

1 i n i t i a l i z e (G , s)
2 S = ∅
3 Q = V
4 while Q i s not empty
5 u = Ex t rac t −Min (Q)
6 S = S ∪ u
7 for each v in u . Adj
8 re lax (u , v , w)

Use a Priority Queue

Running time: O(m log n). Why?

Proof of correctness?

20/24

Minimum Spanning Tree

Minimum Spanning Tree
A Minimum Spanning Tree (MST) is a subgraph of an undirected graph such
that the subgraph spans (includes) all nodes, is connected, is acyclic, and
has minimum total edge weight.

Greedy idea?

Prim’s algorithm and Kruskal’s algorithm

Both work with weighted and unweighted graphs even when edges have
negative weight.

Note that: we do not fix the root of the spanning tree.

21/24

Minimum Spanning Tree
A Minimum Spanning Tree (MST) is a subgraph of an undirected graph such
that the subgraph spans (includes) all nodes, is connected, is acyclic, and
has minimum total edge weight.

Greedy idea?

Prim’s algorithm and Kruskal’s algorithm

Both work with weighted and unweighted graphs even when edges have
negative weight.

Note that: we do not fix the root of the spanning tree.

21/24

Minimum Spanning Tree
A Minimum Spanning Tree (MST) is a subgraph of an undirected graph such
that the subgraph spans (includes) all nodes, is connected, is acyclic, and
has minimum total edge weight.

Greedy idea?

Prim’s algorithm and Kruskal’s algorithm

Both work with weighted and unweighted graphs even when edges have
negative weight.

Note that: we do not fix the root of the spanning tree.

21/24

Minimum Spanning Tree
A Minimum Spanning Tree (MST) is a subgraph of an undirected graph such
that the subgraph spans (includes) all nodes, is connected, is acyclic, and
has minimum total edge weight.

Greedy idea?

Prim’s algorithm and Kruskal’s algorithm

Both work with weighted and unweighted graphs even when edges have
negative weight.

Note that: we do not fix the root of the spanning tree.

21/24

Minimum Spanning Tree

Prim’s algorithm

Prim’s algorithm

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

Similar to Dijkstra’s Algorithm except that v.d records edge weights, not
path lengths. Therefore, Prim’s algorithm also has running time O(m log n)

22/24

Prim’s algorithm

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

a

Similar to Dijkstra’s Algorithm except that v.d records edge weights, not
path lengths. Therefore, Prim’s algorithm also has running time O(m log n)

22/24

Prim’s algorithm

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

a

f

Similar to Dijkstra’s Algorithm except that v.d records edge weights, not
path lengths. Therefore, Prim’s algorithm also has running time O(m log n)

22/24

Prim’s algorithm

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

a

f

b

Similar to Dijkstra’s Algorithm except that v.d records edge weights, not
path lengths. Therefore, Prim’s algorithm also has running time O(m log n)

22/24

Prim’s algorithm

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

a

f

b

e

Similar to Dijkstra’s Algorithm except that v.d records edge weights, not
path lengths. Therefore, Prim’s algorithm also has running time O(m log n)

22/24

Prim’s algorithm

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

a

f

b

e

c

Similar to Dijkstra’s Algorithm except that v.d records edge weights, not
path lengths. Therefore, Prim’s algorithm also has running time O(m log n)

22/24

Prim’s algorithm

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

a

f

b

e

c

g

Similar to Dijkstra’s Algorithm except that v.d records edge weights, not
path lengths. Therefore, Prim’s algorithm also has running time O(m log n)

22/24

Prim’s algorithm

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

a

f

b

e

c

g

Similar to Dijkstra’s Algorithm except that v.d records edge weights, not
path lengths. Therefore, Prim’s algorithm also has running time O(m log n)

22/24

Prim’s Algorithm vs Dijkstra’s Algorithm

a b

c

5

9
5

• Shortest path tree rooted at a:

a-b, a-c

• Minimum spanning tree:

a-b-c

23/24

Prim’s Algorithm vs Dijkstra’s Algorithm

a b

c

5

9
5

• Shortest path tree rooted at a: a-b, a-c
• Minimum spanning tree:

a-b-c

23/24

Prim’s Algorithm vs Dijkstra’s Algorithm

a b

c

5

9
5

• Shortest path tree rooted at a: a-b, a-c
• Minimum spanning tree: a-b-c

23/24

Minimum Spanning Tree

Kruskal’s algorithm

Kruskal’s algorithm

• Select edges as light as possible
• If meeting an edge that may induce a cycle, ignore it
• Repeat the above steps

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

24/24

Kruskal’s algorithm

• Select edges as light as possible
• If meeting an edge that may induce a cycle, ignore it
• Repeat the above steps

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

a

24/24

Kruskal’s algorithm

• Select edges as light as possible
• If meeting an edge that may induce a cycle, ignore it
• Repeat the above steps

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

a

e

c

24/24

Kruskal’s algorithm

• Select edges as light as possible
• If meeting an edge that may induce a cycle, ignore it
• Repeat the above steps

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

a

f

e

c

24/24

Kruskal’s algorithm

• Select edges as light as possible
• If meeting an edge that may induce a cycle, ignore it
• Repeat the above steps

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

a

f

b

e

c

24/24

Kruskal’s algorithm

• Select edges as light as possible
• If meeting an edge that may induce a cycle, ignore it
• Repeat the above steps

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

a

f

b

e

c

24/24

Kruskal’s algorithm

• Select edges as light as possible
• If meeting an edge that may induce a cycle, ignore it
• Repeat the above steps

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

a

f

b

e

c

g
24/24

Kruskal’s algorithm

• Select edges as light as possible
• If meeting an edge that may induce a cycle, ignore it
• Repeat the above steps

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

a

f

b

e

c

g

Running time: O(m logm)

24/24

Thank you!

Questions?

24/24

	Graph
	Introduction
	Represent and Implement Graphs

	Depth First Search
	Breadth First Search
	Shortest Path
	Dijkstra's Algorithm

	Minimum Spanning Tree
	Prim's algorithm
	Kruskal's algorithm

