
CSCI 3230 Data Structures
Search Trees

Weitian Tong, Ph.D.

Department of Computer Science
Georgia Southern University
Website: www.weitiantong.com
Email:wtong@georgiasouthern.edu

www.weitiantong.com

Table of contents

1. Binary Search Tree

2. AVL Tree

3. Red-Black Tree

Binary Search Tree

Binary search tree

Binary search tree
A binary search tree is a binary tree storing keys (or key-value entries) at
its internal nodes and satisfying the following property:
• Let u, v, and w be three nodes such that u is in the left subtree of v
and w is in the right subtree of v. We have

key(u) ≤ key(v) ≤ key(w)

• External nodes do not store items

6

2

1 4

9

8

An inorder traversal visits the keys in increasing order 1/26

Search

1 // TreeSearch (k , v) :
2 i f T . i s E x t e rna l (v)
3 return v // not f ind
4 i f k < key (v)
5 return TreeSearch (k , l e f t (v))
6 else i f k = key (v)
7 return v
8 else // k > key (v)
9 return TreeSearch (k , r i g h t (v))

Search for 4 6

2

1 4

9

8

2/26

Search

1 // TreeSearch (k , v) :
2 i f T . i s E x t e rna l (v)
3 return v // not f ind
4 i f k < key (v)
5 return TreeSearch (k , l e f t (v))
6 else i f k = key (v)
7 return v
8 else // k > key (v)
9 return TreeSearch (k , r i g h t (v))

Search for 4 6

2

1 4

9

8

2/26

Search

1 // TreeSearch (k , v) :
2 i f T . i s E x t e rna l (v)
3 return v // not f ind
4 i f k < key (v)
5 return TreeSearch (k , l e f t (v))
6 else i f k = key (v)
7 return v
8 else // k > key (v)
9 return TreeSearch (k , r i g h t (v))

Search for 4 6

2

1 4

9

8

6

2/26

Search

1 // TreeSearch (k , v) :
2 i f T . i s E x t e rna l (v)
3 return v // not f ind
4 i f k < key (v)
5 return TreeSearch (k , l e f t (v))
6 else i f k = key (v)
7 return v
8 else // k > key (v)
9 return TreeSearch (k , r i g h t (v))

Search for 4 6

2

1 4

9

8

6≤

2

2/26

Search

1 // TreeSearch (k , v) :
2 i f T . i s E x t e rna l (v)
3 return v // not f ind
4 i f k < key (v)
5 return TreeSearch (k , l e f t (v))
6 else i f k = key (v)
7 return v
8 else // k > key (v)
9 return TreeSearch (k , r i g h t (v))

Search for 4 6

2

1 4

9

8

6≤

2 ≥

4

2/26

Insertion: insert 5

6

2

1 4

9

8

3/26

Insertion: insert 5

6

2

1 4

9

8

6

3/26

Insertion: insert 5

6

2

1 4

9

8

6
<

2

3/26

Insertion: insert 5

6

2

1 4

9

8

6
<

2
>

4

3/26

Insertion: insert 5

6

2

1 4

9

8

6
<

2
>

4
>

3/26

Insertion: insert 5

6

2

1 4

9

8

5

3/26

Deletion: delete 4

6

2

1 4

5

9

8

4/26

Deletion: delete 4

6

2

1 4

5

9

8

6

4/26

Deletion: delete 4

6

2

1 4

5

9

8

6
<

2

4/26

Deletion: delete 4

6

2

1 4

5

9

8

6
<

2
>

4

4/26

Deletion: delete 4

6

2

1 4

5

9

84

4/26

Deletion: delete 4

6

2

1 4

5

9

85

4/26

Deletion: (cont.) delete 3

1

3

2 8

6

5

9

5/26

Deletion: (cont.) delete 3

1

3

2 8

6

5

9

3

5/26

Deletion: (cont.) delete 3

1

3

2 8

6

5

9

3

5

5/26

Deletion: (cont.) delete 3

1

3

2 8

6

5

9

5

5/26

Performance

Consider a size-n binary search tree of height h
• the space used is O(n)
• search, insertion, deletion take O(h) time
• The height h is

• O(n) in the worst case and
• O(logn) in the best case (balanced)

6/26

AVL Tree

AVL Tree

AVL Tree
An AVL Tree is a balanced binary search tree such that for every internal
node v of T, the heights of the children of v can differ by at most 1.

44

17

32

78

50

48 62

88

7/26

AVL Tree

AVL Tree
An AVL Tree is a balanced binary search tree such that for every internal
node v of T, the heights of the children of v can differ by at most 1.

44

17

32

78

50

48 62

88
1 1

1 1

7/26

AVL Tree

AVL Tree
An AVL Tree is a balanced binary search tree such that for every internal
node v of T, the heights of the children of v can differ by at most 1.

44

17

32

78

50

48 62

88
1 1

1 1

2

2

7/26

AVL Tree

AVL Tree
An AVL Tree is a balanced binary search tree such that for every internal
node v of T, the heights of the children of v can differ by at most 1.

44

17

32

78

50

48 62

88
1 1

1 1

2

2

3

7/26

AVL Tree

AVL Tree
An AVL Tree is a balanced binary search tree such that for every internal
node v of T, the heights of the children of v can differ by at most 1.

44

17

32

78

50

48 62

88
1 1

1 1

2

2

3
4

7/26

Height of an AVL Tree (Optional)

The height of an AVL tree storing n keys is O(log n).

Proof (by induction): Let us bound n(h): the minimum number of internal
nodes of an AVL tree of height h.
• n(1) = 1 and n(2) = 2
• For n > 2, an AVL tree of height h contains the root node, one AVL
subtree of height n− 1 and another of height n− 2.

• That is, n(h) = 1+ n(h− 1) + n(h− 2)
• Knowing n(h− 1) > n(h− 2), we get n(h) > 2n(h− 2).
• n(h) > 2n(h− 2) > 4n(h− 4) > 8n(n− 6) > . . . > 2in(h− 2i)
• Solving the base case we get: n(h) > 2h/2−1

• Taking logarithms: h < 2 log n(h) + 2
• Thus the height of an AVL tree is O(log n)

8/26

Insertion

• Insertion is as in a binary search tree

insert 2

7

4

3 5

8

3

2 1

1 1 0 0

0 0 0 0

9/26

Insertion

• Insertion is as in a binary search tree insert 2

7

4

3 5

8

3

2 1

1 1 0 0

0 0 0 0

9/26

Insertion

• Insertion is as in a binary search tree insert 2

7

4

3 5

8

4

3 1

2 1 0 0

1 0 0 0

0 0
2

9/26

Insertion

• Insertion is as in a binary search tree insert 2

Problem!

7

4

3 5

8

4

3 1

2 1 0 0

1 0 0 0

0 0

9/26

Insertion

• Insertion is as in a binary search tree insert 2

Problem!

7

4

3 5

8

4

3 1

2 1 0 0

1 0 0 0

0 0

4

Search: Starting at the inserted node, traverse toward the root until an
imbalance is discovered.

9/26

Insertion

• Insertion is as in a binary search tree insert 2

7

4

3 5

8

4

3 1

2 1 0 0

1 0 0 0

0 0

z

y

x

Repair (trinode restructuring): 3 nodes x, y and z are distinguished:
• z = the parent of the high sibling
• y = the high sibling
• x = the high child of the high sibling

9/26

Insertion: Trinode Restructuring – Case 1: x ≤ y ≤ z

z

y

x

T0 T1

T2

T3

h

h-1

h-2
h-3

h-3

one is h-3 & one is h-4

y

x

T0 T1

z

T2 T3

h-1

h-2 h-2

h-3 h-3
one is h-3 &
one is h-4

10/26

Insertion: Trinode Restructuring – Case 1: x ≤ y ≤ z

z

y

x

T0 T1

T2

T3

h

h-1

h-2
h-3

h-3

one is h-3 & one is h-4

y

x

T0 T1

z

T2 T3

h-1

h-2 h-2

h-3 h-3
one is h-3 &
one is h-4

10/26

Insertion: Trinode Restructuring – Case 2: z ≤ y ≤ x

z

T0

y

T1

x

T2 T3

h

h-1

h-2

h-3

h-3

one is h-3 & one is h-4

y

z

T0 T1

x

T2 T3

h-1

h-2 h-2

h-3 h-3
one is h-3 &
one is h-4

11/26

Insertion: Trinode Restructuring – Case 2: z ≤ y ≤ x

z

T0

y

T1

x

T2 T3

h

h-1

h-2

h-3

h-3

one is h-3 & one is h-4

y

z

T0 T1

x

T2 T3

h-1

h-2 h-2

h-3 h-3
one is h-3 &
one is h-4

11/26

Insertion: Trinode Restructuring – Case 3: y ≤ x ≤ z

z

y

T0

x

T1 T2

T3

h

h-1

h-2
h-3

h-3

one is h-3 & one is h-4

x

y

T0 T1

z

T2 T3

h-1

h-2 h-2

h-3 h-3
one is h-3 & one is h-4

12/26

Insertion: Trinode Restructuring – Case 3: y ≤ x ≤ z

z

y

T0

x

T1 T2

T3

h

h-1

h-2
h-3

h-3

one is h-3 & one is h-4

x

y

T0 T1

z

T2 T3

h-1

h-2 h-2

h-3 h-3
one is h-3 & one is h-4

12/26

Insertion: Trinode Restructuring – Case 4: z ≤ x ≤ y

z

T0

y

x

T1 T2

T3

h

h-1

h-2

h-3

h-3

one is h-3 & one is h-4

x

z

T0 T1

y

T2 T3

h-1

h-2 h-2

h-3 h-3
one is h-3 & one is h-4

13/26

Insertion: Trinode Restructuring – Case 4: z ≤ x ≤ y

z

T0

y

x

T1 T2

T3

h

h-1

h-2

h-3

h-3

one is h-3 & one is h-4

x

z

T0 T1

y

T2 T3

h-1

h-2 h-2

h-3 h-3
one is h-3 & one is h-4

13/26

Insertion: Trinode Restructuring - the Whole tree

Do we have to repeat this process further up the tree?

No!

• The tree was balanced before the insertion.
• Insertion raised the height of the subtree by 1.
• Rebalancing lowered the height of the subtree by 1.
• Thus the whole tree is still balanced.

14/26

Insertion: Trinode Restructuring - the Whole tree

Do we have to repeat this process further up the tree?

No!

• The tree was balanced before the insertion.
• Insertion raised the height of the subtree by 1.
• Rebalancing lowered the height of the subtree by 1.
• Thus the whole tree is still balanced.

14/26

Deletion

7

4

3 5

8

3

2 1

1 1 0 0

0 0 0 0

15/26

Deletion

7

4

3 5

8

3

2 1

1 1 0 0

0 0 0 0

8

15/26

Deletion

7

4

3 5

8

3

2 0

1 1

0 0 0 0

15/26

Deletion

Problem!

7

4

3 5

8

3

2 0

1 1

0 0 0 0

15/26

Deletion

Problem!

7

4

3 5

8

3

2 0

1 1

0 0 0 0

Search:
• Let w be the node actually removed (i.e., the node matching the key if it
has a leaf child, otherwise the node following in an in-order traversal.)

• Starting at w, traverse toward the root until an imbalance is discovered.

15/26

Deletion

7

4

3 5

8

3

2 0

1 1

0 0 0 0

z

y

x

Repair (trinode restructuring): 3 nodes x, y and z are distinguished:
• z = the parent of the high sibling
• y = the high sibling
• x = the high child of the high sibling

15/26

Deletion: Trinode Restructuring

z

y

x

T0 T1

T2

T3

h

h-1

h-2

h-3

h-3

one is h-3 & one is h-4

y

x

T0 T1

z

T2 T3

h-1

h-2 h-2

h-3 h-3
one is h-3 & one is h-4

Do we have to repeat this process further up the tree?

YES!
• Unfortunately, trinode restructuring may reduce the height of the
subtree, causing another imbalance further up the tree.

16/26

Deletion: Trinode Restructuring

z

y

x

T0 T1

T2

T3

h

h-1

h-2

h-3

h-3

one is h-3 & one is h-4

y

x

T0 T1

z

T2 T3

h-1

h-2 h-2

h-3 h-3
one is h-3 & one is h-4

Do we have to repeat this process further up the tree? YES!
• Unfortunately, trinode restructuring may reduce the height of the
subtree, causing another imbalance further up the tree.

16/26

AVL Tree Performance

Suppose an AVL tree storing n items
• The data structure uses O(n) space
• A single restructuring takes O(1) time

• using a linked-structure binary tree
• Searching takes O(log n) time

• height of tree is O(log n), no restructures needed
• Insertion takes O(log n) time

• initial find is O(log n)
• restructuring up the tree, maintaining heights is O(1)

• Removal takes O(log n) time
• initial find is O(log n)
• restructuring up the tree, maintaining heights is O(log n)

17/26

Red-Black Tree

Rotations

=⇒: Right-rotation;⇐=: Left-rotation

y

x

T0 T1

T2

x

T0

y

T1 T2

• Right-Rotate: the old-root becomes the right child of the new root.
• Left-Rotate: the old-root becomes the left child of the new root.

18/26

Left-rotation (Right-Rotate pseudo-code is symmetric)

y

x

T0 T1

T2

x

T0

y

T1 T2

1 // l e f t Ro ta t e (Node x) :
2 y = x . r i g h t
3

4 // bui ld l i n k s between x and T1
5 x . r i g h t = y . l e f t
6 i f y . l e f t i s not nul l
7 y . l e f t . parent = x
8

9 // bui ld l i n k s between y and x .
parent

10 y . parent = x . parent
11 i f x i s root
12 root = y
13 else i f x i s the l e f t ch i ld
14 x . parent . l e f t = y
15 else
16 x . parent . r i g h t = y
17

18 y . l e f t = x
19 x . parent = y

19/26

Red-Black Tree

1. Every node has a color: either red or black.
2. Root and dummy leaves are colored black.
3. No red node is a parent of another red node.
4. Each root→leaf path in the tree has the same number of black nodes.
(Black heights matter!!)

13

8

1

6

11

17

15 25

22 27

20/26

Height (Optional)

Claim: A RB-tree with n nodes height at most 2 log2(n+ 1).

Proof: Fix any RB-tree, let h denote its height and n its size.
• On the root→leaf path of length h, there are h+ 1 ≥ h nodes.
• Clearly, the path has no two consecutive red nodes (property 3). So the
number of black nodes is ≥ h

2 .
• So property 4 assures that all root→leaf paths have at least h2 black
nodes.

• The first h2 layers in the tree are full. Thus

n ≥ 1+ 2+ 4+ 8+ ...+ 2 h
2−1 = 2 h

2 − 1 ⇒ log2(n+ 1) ≥ h
2

21/26

Insert

• A new node is colored in red.
• If it’s the very first node (T’s root) — just color it black. Done.
• Only property 3 can be violated: so if the new leaf is z, then its parent
z.p is red and we need to fix it up.

• Due to property 2, the red parent z.p has to have a parent z.p.p.
Due to property 3, z.p.p must be black.

• So now it comes to z’s uncle y (the non-z.p child of z.p.p) — 3 cases:

z.p.p

z.p

z

y Case 1
z.p.p

z.p

z

y

z.p.p

z.p

z

y

Case 2

z.p.p

z.p

z

y

Case 3 22/26

Insert

Case 1: color z.p and y black and color z.p.p red, and recurse up the fix-up.
z.p.p

z.p

z

y

z.p.p

z.p

z

y

z.p.p

z.p

z

y

z.p.p

z.p

z

y

Case 2: rotate to Case 3
z.p.p

z.p

z

y rotate(z.p) to
z.p.p

z

z.p

y

Case 3: rotate(z.p.p) to make z.p the parent, then flip colors of z.p.p and z.p.
z.p.p

z.p

z

y rotate(z.p.p) to
z.p

z z.p.p

23/26

Delete

Eventually, a node with at least one child missing is deleted.
• If this node is red — no violation occurs.
• If this node is black, we start the fix-up with the deleted node’s child x
(could be a black dummy leaf)

• If x is red — color it black.
• If x is the root of the tree — just color it black.
• O/w (i.e., x is black & not a root), we’re looking into x’s sibling w

Case 1. w is red;

Case 2. w is black and it has only black children;

Case 3. w is black and its child in the reverse direction is red;

Case 4. w is black and its child in the same direction is red.

24/26

Delete: a black node was deleted

Child x is black & not a root, we’re looking into x’s sibling w

Case 1: w is red; Rotate so that x’s sibling is black (check cases 2, 3 or 4)
x.p

x w

w.left w.right

rotate to
w

x.p

x w.left

w.right

Case 2: w is black and it has only black children;

x.p

x w

w.left w.right

x.p

x w

w.left w.right

If w’s (and x’s) parent is red, color w’s parent black and this compensates
for the black node we removed;

x.p

x w

w.left w.right

x.p

x w

w.left w.right

new x

If w’s (and x’s) parent is black, recurse the fix-up on it. 25/26

Delete: a black node was deleted

Child x is black & not a root, we’re looking into x’s sibling w

Case 3: w is black and its child in the reverse direction is red;

x.p

x w

w.left w.right

x.p

x w.left

w

w.right

new w

Rotate on w and flip w and its (new) parent color to make it case 4.

Case 4: w is black and its child in the same direction is red.

x.p

x w

w.left w.right

w

x.p

x w.left

w.right

Give w the color of w’s parent; rotate w’s parent (so w is the new root of
this subtree); color both children of w black

26/26

Thank you!

Questions?

26/26

	Binary Search Tree
	AVL Tree
	Red-Black Tree

