
CSCI 3230 Data Structures
Algorithm analysis

Weitian Tong, Ph.D.

Department of Computer Science
Georgia Southern University
Website: www.weitiantong.com
Email:wtong@georgiasouthern.edu

www.weitiantong.com

Table of contents

1. Compare two algorithms

2. Counting Primitive Operation

3. How to compare two functions

Classifying Running Time

Some Math to Review

Asymptotic Notation & Proving Bounds

4. Algorithm Complexity vs Problem Complexity

Compare two algorithms

Compare two algorithms via experiments

• Write a program implementing the algorithm
• Run the program with inputs of varying size and composition
• Use a method like System.currentTimeMillis() to get an accurate
measure of the actual running time

• Plot the results

Limitations:
• May be difficult to implement the algorithm
• Too many inputs
• In order to compare two algorithms, same hardware and software
environments must be used

1/17

Compare two algorithms via experiments

• Write a program implementing the algorithm
• Run the program with inputs of varying size and composition
• Use a method like System.currentTimeMillis() to get an accurate
measure of the actual running time

• Plot the results

Limitations:
• May be difficult to implement the algorithm
• Too many inputs
• In order to compare two algorithms, same hardware and software
environments must be used

1/17

Compare two algorithms via theorectical model

• Uses a high-level description (pseudo-code) of the algorithm instead
of an implementation

• Characterizes running time as a function of the input size, n.
• Takes into account all possible inputs
• Allows us to evaluate the speed of an algorithm independent of the
hardware/software environment

Primitive Operation: Basic computation operations
Examples:
• Evaluating an expression
• Assigning a value to a variable
• Indexing into an array
• Calling a method
• Returning from a method

2/17

Compare two algorithms via theorectical model

• Uses a high-level description (pseudo-code) of the algorithm instead
of an implementation

• Characterizes running time as a function of the input size, n.
• Takes into account all possible inputs
• Allows us to evaluate the speed of an algorithm independent of the
hardware/software environment

Primitive Operation: Basic computation operations
Examples:
• Evaluating an expression
• Assigning a value to a variable
• Indexing into an array
• Calling a method
• Returning from a method

2/17

Counting Primitive Operation

Example: find max from an array

1 Algori thm arrayMax (A , n)
2 currentMax = A [0] // ≈ 2
3 for i = 1 to n − 1 do
4 i f A [i] > currentMax then
5 currentMax = A [i] // ≈ 4(n− 1)
6 return currentMax // ≈ 1

In total, 4n− 1
• a = Time taken by the fastest primitive operation
• b = Time taken by the slowest primitive operation

Let T(n) be worst-case time of arrayMax. Then

a(4n− 1) ≤ T(n) ≤ b(4n− 1)

Changing the hardware/ software environment only affects T(n) by a
constant factor

3/17

Example: Selection Sort

1 publ ic s t a t i c i n t [] se l ec t i onSor t (i n t [] a r r) {
2 for (i = 0 to n − 1) {
3 i n t indexOfCurrentMin = i ; // ≈ 1× n
4 for (i n t j = i + 1 to n) {
5 i f (a r r [j] < a r r [indexOfCurrentMin]) {
6 indexOfCurrentMin = j ;
7 } // ≈ 4× (n− i) for each i
8 }
9 i n t currentMin = ar r [indexOfCurrentMin] ; // ≈ 2× n
10 ar r [indexOfCurrentMin] = ar r [i] ; // ≈ 3× n
11 ar r [i] = currentMin ; // ≈ 2× n
12 }
13 return ar r ; // ≈ 1
14 }

In total,
1+ 8n+ 4×

n−1∑
i=0

(n− i)

4/17

How to compare two functions

Growth factor

Given two algorithms
• A1: running time / # of primitive operations f(n) = n+ 100
• A2: running time / # of primitive operations g(n) = n2

Which algorithm is faster?

Growth Rate: how fast a function becomes larger as n increases?

To compare two algorithms, we prefer the algorithm, whose running time
function has smaller growth rate.

5/17

Growth factor

Given two algorithms
• A1: running time / # of primitive operations f(n) = n+ 100
• A2: running time / # of primitive operations g(n) = n2

Which algorithm is faster?

Growth Rate: how fast a function becomes larger as n increases?

To compare two algorithms, we prefer the algorithm, whose running time
function has smaller growth rate.

5/17

How to compare two functions

Classifying Running Time

Classifying Running Time

Name T(n) n = 10 n = 100 n = 1000 n = 10000
Constant 1 1 1 1 1
Logarithmic log n 3 6 9 13
Square Root n1/2 3 10 31 100
Linear n 10 100 1000 10000
N-Log-N n log n 30 600 9000 130000
Quadratic n2 100 10000 106 108

Cubic n3 1000 106 109 1012

Exponential 2n 1024 1030 10300 103000

6/17

Classifying Running Time

Which are more alike?
n1000, n2, 2n

first and second

How about
1000 · n2, 3 · n2, 2 · n3

first and second

Which algorithm is better?

1000 · n2 + 108, n3

first

7/17

Classifying Running Time

Which are more alike?
n1000, n2, 2n

first and second

How about
1000 · n2, 3 · n2, 2 · n3

first and second

Which algorithm is better?

1000 · n2 + 108, n3

first

7/17

Classifying Running Time

Which are more alike?
n1000, n2, 2n

first and second

How about
1000 · n2, 3 · n2, 2 · n3

first and second

Which algorithm is better?

1000 · n2 + 108, n3

first

7/17

Classifying Running Time

Which are more alike?
n1000, n2, 2n

first and second

How about
1000 · n2, 3 · n2, 2 · n3

first and second

Which algorithm is better?

1000 · n2 + 108, n3

first

7/17

Classifying Running Time

Which are more alike?
n1000, n2, 2n

first and second

How about
1000 · n2, 3 · n2, 2 · n3

first and second

Which algorithm is better?

1000 · n2 + 108, n3

first

7/17

Classifying Running Time

Which are more alike?
n1000, n2, 2n

first and second

How about
1000 · n2, 3 · n2, 2 · n3

first and second

Which algorithm is better?

1000 · n2 + 108, n3

first

7/17

How to compare two functions

Some Math to Review

Basic math

• Summations: Σ (what is Σn
i=1i?)

• Logarithms and Exponents

• properties of logarithms:
• logb(xy) = logb x+ logb y
• logb(x/y) = logb x− logb y
• logb xa = a logb x
• logb a = logx a/ logx b

• properties of exponentials:
• a(b+c) = abac
• abc = (ab)c
• ab/ac = a(b−c)

• b = aloga b (why?)
• bc = ac·loga b (why?)

• Existential (∃) and universal (∀) operators
• Proof techniques (Proof by contradiction, mathematical induction, ...)

8/17

How to compare two functions

Asymptotic Notation & Proving Bounds

Asymptotic notations: O,Ω,Θ

How to compare two numerical numbers?

≤,≥,=, <,>

How to compare the growth rates of two functions?

O,Ω,Θ

Roughly, O ≈≤, Ω ≈≥, Θ ≈=

Given two functions f(n) = n2, g(n) = n3, we say f(n) = O(g(n)) or
g(n) = Ω(f(n)).

9/17

Big-Oh notation

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are
positive constants c and n0 such that

f(n) ≤ c · g(n),∀ n > n0

n

c · g(n)

f(n)
g(n)

n0

10/17

Big-Oh notation

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are
positive constants c and n0 such that

f(n) ≤ c · g(n),∀ n > n0

Example 1: 2n+ 10 is O(n)

2n+ 10 ≤ cn
(c− 2)n ≥ 10

n ≥ 10/(c− 2)

Pick c = 3 and n0 = 10

Practice:
• 2n+ 3 log n+ 100 is O(n)
• 3n3 + 20n2 + 5 is O(n3)
• 3 log n+ 1000 is O(log n)

11/17

Big-Oh notation

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are
positive constants c and n0 such that

f(n) ≤ c · g(n),∀ n > n0

Example 1: 2n+ 10 is O(n)

2n+ 10 ≤ cn
(c− 2)n ≥ 10

n ≥ 10/(c− 2)

Pick c = 3 and n0 = 10

Practice:
• 2n+ 3 log n+ 100 is O(n)
• 3n3 + 20n2 + 5 is O(n3)
• 3 log n+ 1000 is O(log n)

11/17

Big-Oh notation

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are
positive constants c and n0 such that

f(n) ≤ c · g(n),∀ n > n0

Example 1: 2n+ 10 is O(n)

2n+ 10 ≤ cn
(c− 2)n ≥ 10

n ≥ 10/(c− 2)

Pick c = 3 and n0 = 10

Practice:
• 2n+ 3 log n+ 100 is O(n)
• 3n3 + 20n2 + 5 is O(n3)
• 3 log n+ 1000 is O(log n) 11/17

Big-Oh rules

We generally specify the tightest and simplest bound.
• Only keep the term with the highest growth rate
• Drop constant coefficient

• Say “2n is O(n)” instead of “2n is O(n2)”
• Say “3n+ 5 is O(n)” instead of “3n+ 5 is O(3n)”

What are the bounds for the following functions under big-Oh?
• 100n29 + 2n17 + 1027

• 105n100 + 3 · 2n + 2 log n
• 16+ n log n+ 2n2

Answer: O(n29), O(2n), O(n2)

12/17

Big-Oh rules

We generally specify the tightest and simplest bound.
• Only keep the term with the highest growth rate
• Drop constant coefficient

• Say “2n is O(n)” instead of “2n is O(n2)”
• Say “3n+ 5 is O(n)” instead of “3n+ 5 is O(3n)”

What are the bounds for the following functions under big-Oh?
• 100n29 + 2n17 + 1027

• 105n100 + 3 · 2n + 2 log n
• 16+ n log n+ 2n2

Answer: O(n29), O(2n), O(n2)

12/17

Big-Oh rules

We generally specify the tightest and simplest bound.
• Only keep the term with the highest growth rate
• Drop constant coefficient

• Say “2n is O(n)” instead of “2n is O(n2)”
• Say “3n+ 5 is O(n)” instead of “3n+ 5 is O(3n)”

What are the bounds for the following functions under big-Oh?
• 100n29 + 2n17 + 1027

• 105n100 + 3 · 2n + 2 log n
• 16+ n log n+ 2n2

Answer: O(n29), O(2n), O(n2)

12/17

Big-Oh rules

We generally specify the tightest and simplest bound.
• Only keep the term with the highest growth rate
• Drop constant coefficient

• Say “2n is O(n)” instead of “2n is O(n2)”
• Say “3n+ 5 is O(n)” instead of “3n+ 5 is O(3n)”

What are the bounds for the following functions under big-Oh?
• 100n29 + 2n17 + 1027

• 105n100 + 3 · 2n + 2 log n
• 16+ n log n+ 2n2

Answer: O(n29), O(2n), O(n2)

12/17

Asymptotic Algorithm Analysis

The asymptotic analysis of an algorithm determines the running time in
big-Oh notation

To perform the asymptotic analysis,
• count worst-case number of primitive operations executed as a
function of the input size

• express this function with big-Oh notation

Example: arrayMax
• arrayMax executes at most constant× (4n− 1) primitive operations
• arrayMax runs in O(n) time

Trick: Since constant factors and lower-order terms are eventually dropped
anyhow, we can disregard them when counting primitive operations

13/17

Example: Computing Prefix Averages

The i-th prefix average of an array X is the average of the first (i+ 1)
elements of X:

A[i] = (X[0] + X[1] + . . .+ X[i])/(i+ 1)

How to computing the array A of prefix averages of another array X?

1 Algori thm pre f i xAverages1 (X , n)
2

3 A = new array of n in tegers
4 for i = 0 to n − 1 do
5 s = X [0]
6 for j = 1 to i do
7 s = s + X [j]
8 A [i] = s / (i + 1)
9 return A

Algorithm prefixAverages1 runs in O(n2) time

14/17

Example: Computing Prefix Averages

The i-th prefix average of an array X is the average of the first (i+ 1)
elements of X:

A[i] = (X[0] + X[1] + . . .+ X[i])/(i+ 1)

How to computing the array A of prefix averages of another array X?

1 Algori thm pre f i xAverages1 (X , n)
2

3 A = new array of n in tegers
4 for i = 0 to n − 1 do
5 s = X [0]
6 for j = 1 to i do
7 s = s + X [j]
8 A [i] = s / (i + 1)
9 return A

Algorithm prefixAverages1 runs in O(n2) time

14/17

Example: Computing Prefix Averages

The i-th prefix average of an array X is the average of the first (i+ 1)
elements of X:

A[i] = (X[0] + X[1] + . . .+ X[i])/(i+ 1)

How to computing the array A of prefix averages of another array X?

1 Algori thm pre f i xAverages1 (X , n)
2

3 A = new array of n in tegers
4 for i = 0 to n − 1 do
5 s = X [0]
6 for j = 1 to i do
7 s = s + X [j]
8 A [i] = s / (i + 1)
9 return A

Algorithm prefixAverages1 runs in O(n2) time

14/17

Example: Computing Prefix Averages

The i-th prefix average of an array X is the average of the first (i+ 1)
elements of X:

A[i] = (X[0] + X[1] + . . .+ X[i])/(i+ 1)

How to computing the array A of prefix averages of another array X?

1 // Algori thm pref i xAverages2 (X , n)
2 A = new array of n in tegers
3 s = 0
4 for i = 0 to n − 1 do
5 s = s + X [i]
6 A [i] = s / (i + 1)
7 return A

Algorithm prefixAverages2 runs in O(n) time

15/17

Example: Computing Prefix Averages

The i-th prefix average of an array X is the average of the first (i+ 1)
elements of X:

A[i] = (X[0] + X[1] + . . .+ X[i])/(i+ 1)

How to computing the array A of prefix averages of another array X?

1 // Algori thm pref i xAverages2 (X , n)
2 A = new array of n in tegers
3 s = 0
4 for i = 0 to n − 1 do
5 s = s + X [i]
6 A [i] = s / (i + 1)
7 return A

Algorithm prefixAverages2 runs in O(n) time

15/17

Example: Computing Prefix Averages

The i-th prefix average of an array X is the average of the first (i+ 1)
elements of X:

A[i] = (X[0] + X[1] + . . .+ X[i])/(i+ 1)

How to computing the array A of prefix averages of another array X?

1 // Algori thm pref i xAverages2 (X , n)
2 A = new array of n in tegers
3 s = 0
4 for i = 0 to n − 1 do
5 s = s + X [i]
6 A [i] = s / (i + 1)
7 return A

Algorithm prefixAverages2 runs in O(n) time

15/17

Algorithm Complexity vs Problem
Complexity

Time Complexity of an Algorithm

Consider the height of tallest person in our class.

Target to give a YES to the following question:
• Is he/she taller than 1.8 m?
• Is he/she shorter than 1.8 m?

The time complexity of an algorithm is the largest time required on any
input of size n. (Worst case analysis.)
• O(n2): For any input size n ≥ n0, the algorithm takes no more than cn2
time on every input.

• Ω(n2): For any input size n ≥ n0, the algorithm takes at least cn2 time
on at least one input.

• Θ(n2): Do both.

16/17

Time Complexity of an Algorithm

Consider the height of tallest person in our class.

Target to give a YES to the following question:
• Is he/she taller than 1.8 m?
• Is he/she shorter than 1.8 m?

The time complexity of an algorithm is the largest time required on any
input of size n. (Worst case analysis.)
• O(n2): For any input size n ≥ n0, the algorithm takes no more than cn2
time on every input.

• Ω(n2): For any input size n ≥ n0, the algorithm takes at least cn2 time
on at least one input.

• Θ(n2): Do both.

16/17

Time Complexity of a Problem

The time complexity of a problem is the time complexity of the fastest
algorithm that solves the problem.

• O(n2): Provide an algorithm that solves the problem in no more than
this time.

• Ω(n2): Prove that no algorithm can solve it faster
• Θ(n2): Do both.

17/17

Thank you!

Questions?

17/17

	Compare two algorithms
	Counting Primitive Operation
	How to compare two functions
	Classifying Running Time
	Some Math to Review
	Asymptotic Notation & Proving Bounds

	Algorithm Complexity vs Problem Complexity

