CSCI 3230 Data Structures

Trees

Weitian Tong, Ph.D.

Department of Computer Science
Georgia Southern University
Website: www.weitiantong.com
Emailwtong@georgiasouthern.edu

www.weitiantong.com

Table of contents

1. What is a tree?
2. Traverse a tree

3. Binary tree
Inorder Traversal

Implementation of Binary Tree

What is a tree?

What is a tree?

as \
/ first left,

centered,

last right

several places

- In computer science, a tree is an abstract model of a hierarchical

structure
- Atree consists of nodes with a parent-child relation

- Applications:
- Organization charts

- File systems
- Programming environments

1/15

Tree Terminology

2/15

Tree Terminology

Root: node without parent

2/15

Tree Terminology

Parent - Child relationship

2/15

Tree Terminology

: node with at least one child

2/15

Tree Terminology

: node without children

2/15

Tree Terminology

of a node: itsself, parent, grandparent, grand-grandparent, etc.

2/15

Tree Terminology

Descendant of a node: itself, child, grandchild, grand-grandchild, etc.

2/15

Tree Terminology

of a node: the number of edges from the root to the node, d(E) =2

2/15

Tree Terminology

Height of a tree: maximum depth of any node, H =3

2/15

Tree Terminology

Subtree: tree consisting of a node and its descendants
.

2/15

Tree Interface

1 class treeNode { 1 class Tree {
2 element 2 root
3 parent 3 size
4 children 4 height
6 getParent () 6 root ()
7 setPartent () 7 size ()
8 getChildren () 8 isEmpty ()
5 setChildren () 5 isinternal(node)
1 numcChildren () 1 isExternal (node)
" " isRoot(node)
w) 2 traversal ()
w o}

3/15

Traverse a tree

Preorder Traversal

1+ Algorithm preOrder(v)

s visit(v)
+ for each child w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

4/15

Preorder Traversal

1+ Algorithm preOrder(v)
5 visit(v)

. for each child w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

1. Motivations

[1.2 Avidity] [2.1 Stock Fraud] [22 Ponzi Scheme] [2.3 Bank Robbery]

4/15

Preorder Traversal

1+ Algorithm preOrder(v)
5 visit(v)

. for each child w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants
:
Make Money Fast!

1. Motivations

[1.2 Avidity] [2.1 Stock Fraud] [22 Ponzi Scheme] [2.3 Bank Robbery]

4/15

Preorder Traversal

1+ Algorithm preOrder(v)
5 visit(v)

. for each child w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants
:
Make Money Fast!

1. Motivations

[1.2 Avidity] [2.1 Stock Fraud] [22 Ponzi Scheme] [2.3 Bank Robbery]

4/15

Preorder Traversal

1+ Algorithm preOrder(v)
5 visit(v)

. for each child w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants
:
Make Money Fast!

3
[1.2 Avidity] [2.1 Stock Fraud] [22 Ponzi Scheme] [2.3 Bank Robbery]

4/15

Preorder Traversal

1+ Algorithm preOrder(v)
5 visit(v)

. for each child w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants
:
Make Money Fast!

3 4
[1.2 Avidity] [2.1 Stock Fraud] [22 Ponzi Scheme] [2.3 Bank Robbery]

4/15

Preorder Traversal

1+ Algorithm preOrder(v)
5 visit(v)

. for each child w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

3 4
[1.2 Avidity] [2.1 Stock Fraud] [22 Ponzi Scheme] [2.3 Bank Robbery]

4/15

Preorder Traversal

1+ Algorithm preOrder(v)
5 visit(v)

. for each child w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

3 4 6
[1.2 Avidity] [2.1 Stock Fraud] [22 Ponzi Scheme] [2.3 Bank Robbery]

4/15

Preorder Traversal

1+ Algorithm preOrder(v)
5 visit(v)

. for each child w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

3 4 6 7
[1.2 Avidity] [2.1 Stock Fraud] [22 Ponzi Scheme] [2.3 Bank Robbery]

4/15

Preorder Traversal

1+ Algorithm preOrder(v)
5 visit(v)

. for each child w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

3 4 6 7 8
[1.2 Avidity] [2.1 Stock Fraud] [22 Ponzi Scheme] [2.3 Bank Robbery]

4/15

Preorder Traversal

1+ Algorithm preOrder(v)
5 visit(v)

. for each child w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

3 4 6 7 8
[1.2 Avidity] [2.1 Stock Fraud] [22 Ponzi Scheme] [2.3 Bank Robbery]

4/15

Postorder Traversal

1+ Algorithm postOrder(v)

s for each child w of v
‘ postorder (w)
s visit(v)

In a postorder traversal, a node is visited after its descendants

5/15

Postorder Traversal

1+ Algorithm postOrder(v)
;s for each child w of v
‘ postorder (w)

s visit(v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

[TZ Avwd\'ty] [2.1 Stock Fraud] [2.2 Ponzi Scheme] [2.3 Bank Rabbery]

5/15

Postorder Traversal

1+ Algorithm postOrder(v)
;s for each child w of v
‘ postorder (w)

s visit(v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1
[TZ Avwd\'ty] [2.1 Stock Fraud] [2.2 Ponzi Scheme] [2.3 Bank Rabbery]

5/15

Postorder Traversal

1+ Algorithm postOrder(v)
;s for each child w of v
‘ postorder (w)

s visit(v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1 2
[TZ Avwd\'ty] [2.1 Stock Fraud] [2.2 Ponzi Scheme] [2.3 Bank Rabbery]

5/15

Postorder Traversal

1+ Algorithm postOrder(v)
;s for each child w of v
‘ postorder (w)

s visit(v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1 2
[TZ Avwd\'ty] [2.1 Stock Fraud] [2.2 Ponzi Scheme] [2.3 Bank Rabbery]

5/15

Postorder Traversal

1+ Algorithm postOrder(v)
;s for each child w of v
‘ postorder (w)

s visit(v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1 2 4
[TZ Avwd\'ty] [2.1 Stock Fraud] [2.2 Ponzi Scheme] [2.3 Bank Rabbery]

5/15

Postorder Traversal

1+ Algorithm postOrder(v)
;s for each child w of v
‘ postorder (w)

s visit(v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1 2 4 5
[TZ Avwd\'ty] [2.1 Stock Fraud] [2.2 Ponzi Scheme] [2.3 Bank Rabbery]

5/15

Postorder Traversal

1+ Algorithm postOrder(v)
;s for each child w of v
‘ postorder (w)

s visit(v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1 2 4 5 6
[TZ Avwd\'ty] [2.1 Stock Fraud] [2.2 Ponzi Scheme] [2.3 Bank Rabbery]

5/15

Postorder Traversal

1+ Algorithm postOrder(v)
;s for each child w of v
‘ postorder (w)

s visit(v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1 2 4 5 6
[TZ Avwd\'ty] [2.1 Stock Fraud] [2.2 Ponzi Scheme] [2.3 Bank Rabbery]

5/15

Postorder Traversal

1+ Algorithm postOrder(v)
;s for each child w of v
‘ postorder (w)

s visit(v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1 2 4 5 6
[TZ Avwd\'ty] [2.1 Stock Fraud] [2.2 Ponzi Scheme] [2.3 Bank Rabbery]

5/15

Postorder Traversal

1+ Algorithm postOrder(v)
;s for each child w of v
‘ postorder (w)

s visit(v)

In a postorder traversal, a node is visited after its descendants
9

Make Money Fast!

1. Motivations

1 2 4 5 6
[TZ Avwd\'ty] [2.1 Stock Fraud] [2.2 Ponzi Scheme] [2.3 Bank Rabbery]

5/15

Binary tree

Binary tree: each internal node has at most two children (exactly two for
proper binary trees)

Applications:
- arithmetic expressions
- decision processes

- searching

6/15

Arithmetic Expression Tree

Binary tree associated with an arithmetic expression
- internal nodes: operators
- external nodes: operands

Example: arithmetic expression tree for the expression
2x(a=1)43xb))
/\
/ \
@

(=)

N\
7\

7/15

Decision Tree

Binary tree associated with a decision process
- internal nodes: questions with yes/no answer
- external nodes: decisions

Example: dining decision

[Want a fast meal?]

YES NO
[How about coffee?] [On expense account?j
YES NO YES NO

Starbucks Chipotle Gracie’s Gracie's

8/15

Properties of Proper Binary Trees

Proper Binary Tree: every internal node has exactly two children
Let

- n: number of nodes

- e: number of external nodes Properties:

- i: number of internal nodes 1. e=i+1

- h: height 2. n=2¢e—1
3.h<i
4 h<(n-1)/2

s s = 5. e <2
6. h > log,e
./D\/D\ 7. h>logy(n+1) —1
O /D\
a6

9/15

Binary Tree Interface

class Tree {

1

class binaryTreeNode {

[/ children
leftChild
rightChild

/| getChildren ()
/| setChildren ()
getLeftChild ()
setLeftChild ()
getRightChild ()
setRightChild ()

1

root

size

height

root ()

size ()

isEmpty ()
isinternal(node)
isExternal (node)
isRoot(node)
traversal ()

10/15

Binary tree

Inorder Traversal

Inorder Traversal

v Algorithm inOrder(v)

s if left (v) # null

“ inOrder (left (v))

s visit(v)

s if right(v) # null

; inOrder (right (v))

In an inorder traversal, a node is visited after its left subtree and before its
right subtree

1/15

Inorder Traversal

v Algorithm inOrder(v)

s if left (v) # null

“ inOrder (left (v))
s visit(v)

s if right(v) # null

; inOrder (right (v))

In an inorder traversal, a node is visited after its left subtree and before its

right subtree .
A

1/15

Inorder Traversal

v Algorithm inOrder(v)

s if left (v) # null

“ inOrder (left (v))
s visit(v)

s if right(v) # null

; inOrder (right (v))

In an inorder traversal, a node is visited after its left subtree and before its

right subtree .
A

1/15

Inorder Traversal

v Algorithm inOrder(v)

s if left (v) # null

“ inOrder (left (v))
s visit(v)

s if right(v) # null

; inOrder (right (v))

In an inorder traversal, a node is visited after its left subtree and before its

right subtree
A
, (A)

1/15

Inorder Traversal

v Algorithm inOrder(v)

s if left (v) # null

“ inOrder (left (v))
s visit(v)

s if right(v) # null

; inOrder (right (v))

In an inorder traversal, a node is visited after its left subtree and before its

right subtree .
A

N

L7 N 7
o, B & 0

aw

1/15

Inorder Traversal

v Algorithm inOrder(v)

s if left (v) # null

“ inOrder (left (v))
s visit(v)

s if right(v) # null

; inOrder (right (v))

In an inorder traversal, a node is visited after its left subtree and before its

right subtree .
A

1/15

Inorder Traversal

v Algorithm inOrder(v)

s if left (v) # null

“ inOrder (left (v))
s visit(v)

s if right(v) # null

; inOrder (right (v))

In an inorder traversal, a node is visited after its left subtree and before its

right subtree .
A

NG yd
© @ 0

N

1/15

Inorder Traversal

v Algorithm inOrder(v)

s if left (v) # null

“ inOrder (left (v))
s visit(v)

s if right(v) # null

; inOrder (right (v))

In an inorder traversal, a node is visit6ed after its left subtree and before its

right subtree .
A

NG yd
© @ 0

N

1/15

Inorder Traversal

v Algorithm inOrder(v)

s if left (v) # null

“ inOrder (left (v))
s visit(v)

s if right(v) # null

; inOrder (right (v))

In an inorder traversal, a node is visit6ed after its left subtree and before its

right subtree .
A

1/\4 7/
© O@ERD

N

1/15

Inorder Traversal

v Algorithm inOrder(v)

s if left (v) # null

“ inOrder (left (v))
s visit(v)

s if right(v) # null

; inOrder (right (v))

In an inorder traversal, a node is visit6ed after its left subtree and before its

right subtree .
A

1/\4 7/
© O@ERD

N

1/15

Inorder Traversal

v Algorithm inOrder(v)

s if left (v) # null

“ inOrder (left (v))
s visit(v)

s if right(v) # null

; inOrder (right (v))

In an inorder traversal, a node is visit6ed after its left subtree and before its

right subtree .
A

1/\4 7/9
© O@ER0,

N

1/15

Print and Evaluate Arithmetic Expressions

@2x(@a-1)+@3xb))

/\B /N

JaN &)
@

1 printExpression (v): 1 evalExpr(v):
. if left (v) # null , if isExternal(v)
3 print(”(") 3 return v.element()
“ inOrder(left(v)) . else
s print(v.element()) 5 x = evalExpr(left(v))
s if right(v) # null 6 y = evalExpr(right(v))
7 inOrder(right(v)) 7 x = operator stored at v
8 print (")) s return x % vy

12/15

Binary tree

Implementation of Binary Tree

Array-Based Representation of Binary Trees

Node v is stored at Alrank(v)]

- rank(root) =0
- if node is the left child of parent(node),

rank(node) = 2 - rank(parent(node)) + 1
- if node is the right child of parent(node),

rank(node) = 2 - rank(parent(node)) + 2

0
1 2
3 Nk 5/ 6
o, B, @ 0

13/15

Array-Based Representation of Binary Trees

© 1 2 3 4 5 6 7 8 9 10 11
A|B|C|D|E|H|I F|G

—_
N

14/15

Comparison

- Linked Structure:
- Requires explicit representation of 3 links per position:
parent, left child, right child
- Data structure grows as needed - no wasted space.
- Array:
- Parent and children are implicitly represented:
Lower memory requirements per position

- Memory requirements determined by height of tree. If tree is sparse, this
is highly inefficient.

15/15

Thank you!

Questions?

	What is a tree?
	Traverse a tree
	Binary tree
	Inorder Traversal
	Implementation of Binary Tree

