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Priority Queue

A priority queue stores a collection of entries

Each entry is a pair (key, value)

Allow for efficient insertion and removal based on keys

1 c lass MinPrior i tyQueue {
2 a co l l e c t i on of en t r i e s
3 −−−−−−
4 s i z e ( ) ;
5 isEmpty ( ) ;
6 i n se r t ( K key , V value ) ;
7 min ( ) ;
8 removeMin ( ) ;
9 }

1 c lass Entry {
2 key
3 value
4 −−−−−−
5 getKey ( )
6 getValue ( )
7 }
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Total Order Relations, Comparator ADT

Keys can be arbitrary objects on which an order is defined

When the priority queue needs a comparator to compare two keys
Mathematical concept of total order relation ≤

• Comparability property: either x ≤ y or y ≤ x
• Antisymmetric property: x ≤ y and y ≤ x⇒ x = y
• Transitive property: x ≤ y and y ≤ z⇒ x ≤ z

A comparator encapsulates the action of comparing two objects according
to a given total order relation
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Example Comparator

1 /** Class represent ing a point in the plane
2 with in teger coordinates */
3 publ ic c lass Point2D {
4 protected in t xc , yc ; // coordinates
5 publ ic Point2D ( i n t x , i n t y ) {
6 xc = x ;
7 yc = y ;
8 }
9 publ ic i n t getX ( ) {
10 return xc ;
11 }
12 publ ic i n t getY ( ) {
13 return yc ;
14 }
15 }
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Example Comparator

1 /** Comparator fo r 2D points under
2 the standard lex i cog raph i c order . */
3 publ ic c lass Lex icographic implements Comparator {
4 i n t xa , ya , xb , yb ;
5 publ ic i n t compare ( Object a , Object b ) {
6 xa = ( ( Point2D ) a ) . getX ( ) ;
7 ya = ( ( Point2D ) a ) . getY ( ) ;
8 xb = ( ( Point2D ) b ) . getX ( ) ;
9 yb = ( ( Point2D ) b ) . getY ( ) ;
10 i f ( xa ! = xb )
11 return ( xb > xa ) ;
12 else
13 return ( yb >= ya ) ;
14 }
15 }
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Sequence-based Priority Queue

Implement with an unsorted list

4 5 2 3 1

Performance:
• insert takes O(1) time
since we can insert the item at
the beginning or end of the
sequence

• removeMin and min take O(n)
time
since we have to traverse the
entire sequence to find the
smallest key

Implement with a sorted list

1 2 3 4 5

Performance:
• insert takes O(n) time
since we have to find the place
where to insert the item

• removeMin and min take O(1)
time
since the smallest key is at the
beginning
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Application: Priority Queue Sorting

Use a priority queue to sort a list of comparable elements

insert and removeMin
1 Algori thm PQ− Sort ( S , C )
2 Input : l i s t S , comparator C for the elements of S
3 Output : l i s t S sorted in inc reas ing order according to C
4

5 P ← p r i o r i t y queue with comparator C
6 while ! S . isEmpty ( )
7 e ← S . remove ( S . f i r s t ( ) )
8 P . i n se r t ( e , ∅ )
9 while ! P . isEmpty ( )
10 e ← P . removeMin ( ) . getKey ( )
11 S . addLast ( e )

The running time of this sorting method depends on the priority queue
implementation
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Motivation for Heaps

Goal:
• O(log n) insertion
• O(log n) removal

Remember that O(log n) is almost as good as O(1)!
e.g., n = 1, 000, 000, 000→ log n ≈ 30

There are min heaps and max heaps.

We will assume min heaps.
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Min Heaps

A min heap is a binary tree storing keys at its nodes and satisfying the
following properties:
• Heap-order: for every internal node v other than the root

key(v) ≥ key(parent(v))

• (Almost) complete binary tree: let h be the height of the heap
• for i = 0, . . . ,h− 1, there are 2i nodes of depth i
• at depth h− 1,

• the internal nodes are to the left of the external nodes
• Only the rightmost internal node may have a single child

2
5

9 7
6

The last node of a heapis the rightmost node of depth h
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Height of a Heap (Optional)

Theorem
A heap storing n keys has height O(log n)

Let h be the height of a heap storing n keys

Since there are 2i keys at depth i = 0, . . . ,h− 1 and at least one key at
depth h, we have

n ≥ 1+ 2+ 4+ . . .+ 2h−1 + 1

Thus, n ≥ 2h , i.e., h ≤ log n

8/14



Insert into a Heap

The insertion algorithm consists of three steps
• Find the insertion node z (the new last node)
• Store k at z
• Restore the heap-order property (Upheap)

Upheap runs in O(log n) time

2
5

9 7
6
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Updating the Last Node

The insertion node can be found by traversing a path of O(log n) nodes
• Go up until a left child or the root is reached
• If a left child is reached, go to the right child
• Go down left until a leaf is reached

Similar algorithm for updating the last node after a removal
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Removal from a Heap

The removeMin algorithm consists of three steps
• Replace the root key with the key of the last node w
• Remove w
• Restore the heap-order property (DownHeap)

DownHeap runs in O(log n) time
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Heap

Array-based Heap Implementation



Recall: Array-Based Representation of Binary Trees

0 1 2 3 4 5 6 7 8 9 10 11
A B C D E H I F G

A

B

D E

F G

C

H I

0

1 2

3 4 5 6

9 10
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Array-based Heap Implementation

Heap
A heap is an (Almost) complete binary tree storing keys at its nodes and
satisfying Heap-order.

Implement heap with array or arraylist.

A

B

D

F G

E

C

H I

0

1 2

3 4 5 6

7 8

the last node is the rightmost node in the array
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Heap Construction

A trivial way is to keep inserting (key, element) pairs. Time: O(n log n)

Can we make it faster?

Divide and Conquer? Hint: O(n)

3

8 5

2

4 6

Time: O(n)
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Thank you!

Questions?
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