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Priority Queue

A priority queue stores a collection of entries
Each entry is a pair (key, value)

Allow for efficient insertion and removal based on keys

1 class MinPriorityQueue { 1 class Entry {
2 a collection of entries 2 key

3 Tmm=== 3 value

4 size(): I

5 iskmpty () ; 5 getKey ()

6 insert(K key, V value); 6 getValue ()
7 min(); 7}

s removeMin () ;
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Total Order Relations, Comparator ADT

Keys can be arbitrary objects on which an order is defined

When the priority queue needs a comparator to compare two keys
Mathematical concept of total order relation <

- Comparability property: either x <y ory < x
- Antisymmetric property: x <yandy < x=x=y
- Transitive property: x <yandy<z=x<z

A comparator encapsulates the action of comparing two objects according
to a given total order relation
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Example Comparator

1 [** Class representing a point in the plane

2 with integer coordinates =/

s public class Point2D {

‘ protected int xc, yc; // coordinates
5 public Point2D(int x, int y) {
6 XC = X;

. yc = y;

5 }

9 public int getx() {

10 return xc;

w }

2 public int getYy() {

3 return yc;

10 }
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Example Comparator

1 [*x Comparator for 2D points under

2 the standard lexicographic order. =/

s public class Lexicographic implements Comparator{
4 int xa, ya, xb, yb;

5 public int compare(Object a, Object b) f{
6 xa = ((Point2D) a).getX();

; ya = ((Point2D) a).getY();

8 xb = ((Point2D) b).getX():

9 yb = ((Point2D) b).getY();

1 if (xa '= xb)

" return (xb > xa);

2 else

B return (yb >= vya);

“ }
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Sequence-based Priority Queue

Implement with an unsorted list Implement with a sorted list
f —> 5 — 2 —> 3 — 1 1 — 2 — 3 — 4 —> 5
Performance: Performance:
- insert takes O(1) time - insert takes O(n) time
since we can insert the item at since we have to find the place
the beginning or end of the where to insert the item
sequence
- removeMin and min take O(n) - removeMin and min take O(1)
time time
since we have to traverse the since the smallest key is at the
entire sequence to find the beginning
smallest key
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Application: Priority Queue Sorting

Use a priority queue to sort a list of comparable elements

insert and removeMin
1 Algorithm PQ-Sort(S, C)
2 Input: list S, comparator C for the elements of S
3 Output: list S sorted in increasing order according to C

s P « priority queue with comparator C
s while !S.isEmpty()

7 e « S.remove(S.first())

8 P.insert (e, 0)

s while !'P.isEmpty()

10 e < P.removeMin () .getKey ()

7 S.addLast(e)

The running time of this sorting method depends on the priority queue
implementation
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Motivation for Heaps

Goal:
- O(log n) insertion
- O(log n) removal

Remember that O(log n) is almost as good as O(1)!
e.g.,n = 1,000, 000,000 — logn ~ 30

There are min heaps and max heaps.

We will assume min heaps.
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A min heap is a binary tree storing keys at its nodes and satisfying the
following properties:

- Heap-order: for every internal node v other than the root
key(v) > key(parent(v))

- (Almost) complete binary tree: let h be the height of the heap

- fori=0,...,h—1,there are 2' nodes of depth i
- atdepth h —1,
- the internal nodes are to the left of the external nodes
- Only the rightmost internal node may have a single child

(6)
TN
©)
T
The last node of a heapis the rightmost node of depth h
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Height of a Heap (Optional)

Theorem
A heap storing n keys has height O(log n)
Let h be the height of a heap storing n keys

Since there are 2 keys at depth i = 0,...,h —1and at least one key at
depth h, we have

N>14+2+4+...42"" 41

Thus,n > 2" ie, h <logn

depth keys
0 1
1 2
h-1 2h-1
h 1
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Insert into a Heap

The insertion algorithm consists of three steps
- Find the insertion node z (the new last node)
- Store katz
- Restore the heap-order property (Upheap)

SN ~
@Q

new node z
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Insert into a Heap

The insertion algorithm consists of three steps
- Find the insertion node z (the new last node)
- Store kat z

- Restore the heap-order property (Upheap)
Upheap runs in O(log n) time

last node z
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Updating the Last Node

The insertion node can be found by traversing a path of O(log n) nodes
- Go up until a left child or the root is reached
- If a left child is reached, go to the right child
- Go down left until a leaf is reached

Similar algorithm for updating the last node after a removal
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Removal from a Heap

The removeMin algorithm consists of three steps
- Replace the root key with the key of the last node w
- Remove w

- Restore the heap-order property (DownHeap)

@/ \’

last node w
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Removal from a Heap

The removeMin algorithm consists of three steps
- Replace the root key with the key of the last node w
- Remove w

- Restore the heap-order property (DownHeap)
DownHeap runs in O(logn) time

last node w
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Array-based Heap Implementation



Recall: Array-Based Representation of Binary Trees

—_
N

G
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Array-based Heap Implementation

Heap
A heap is an (Almost) complete binary tree storing keys at its nodes and
satisfying Heap-order.

Implement heap with array or arraylist.

1 2
®
3 N4 5 7 6
O o
TN 8
c

the last node is the rightmost node in the array
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Heap Construction

A trivial way is to keep inserting (key, element) pairs.  Time: O(nlog n)
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Heap Construction

A trivial way is to keep inserting (key, element) pairs.  Time: O(nlog n)

Can we make it faster?

Divide and Conquer? Hint: O(n)

Time: O(n)
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Thank you!

Questions?
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