
CSCI 3230 Data Structures
Sorting

Weitian Tong, Ph.D.

Department of Computer Science
Georgia Southern University
Website: www.weitiantong.com
Email:wtong@georgiasouthern.edu

www.weitiantong.com


Table of contents

1. Comparison Sort

Selection Sort

Bubble Sort

Insertion Sort

Merge Sort

Heap Sort

Quick Sort

Lower Bound on Comparison Sorting (Optional)

2. Linear Sorting

Counting Sort

Radix Sort

Bucket Sort



Comparison Sort



Comparison Sort

Sort the input by successive comparison of pairs of input elements.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

e.g. 3 < 11?

Comparison Sort algorithms are very general: they make no assumptions
about the values of the input elements.

1/32



Sort in place, Stable sort

Sort in place: require only O(1) additional memory.

e.g. sort by swapping elements within the input array

A sorting algorithm is said to be stable if the ordering of identical keys in
the input is preserved in the output.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

1 2 2 3 3 4 5 6 7 11

The stable sort property is important, for example, when entries with
identical keys are already ordered by another criterion.

2/32



Comparison Sort

Selection Sort



Selection Sort

Selection Sort operates by
• first finding the smallest element in the input list, and moving it to the
output list;

• then finding the next smallest value and does the same;
• continuing in this way until all the input elements have been selected
and placed in the output list in the correct order.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

1 2 2 3 3 4 5 6 7 11

3/32



Selection Sort

Selection Sort operates by
• first finding the smallest element in the input list, and moving it to the
output list;

• then finding the next smallest value and does the same;
• continuing in this way until all the input elements have been selected
and placed in the output list in the correct order.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

1 2 2 3 3 4 5 6 7 11

3/32



Selection Sort

Selection Sort operates by
• first finding the smallest element in the input list, and moving it to the
output list;

• then finding the next smallest value and does the same;
• continuing in this way until all the input elements have been selected
and placed in the output list in the correct order.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

1 2 2 3 3 4 5 6 7 11

3/32



Selection Sort

Selection Sort operates by
• first finding the smallest element in the input list, and moving it to the
output list;

• then finding the next smallest value and does the same;
• continuing in this way until all the input elements have been selected
and placed in the output list in the correct order.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

1 2 2 3 3 4 5 6 7 11

3/32



Selection Sort

Selection Sort operates by
• first finding the smallest element in the input list, and moving it to the
output list;

• then finding the next smallest value and does the same;
• continuing in this way until all the input elements have been selected
and placed in the output list in the correct order.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

1 2 2 3 3 4 5 6 7 11

3/32



Selection Sort

Selection Sort operates by
• first finding the smallest element in the input list, and moving it to the
output list;

• then finding the next smallest value and does the same;
• continuing in this way until all the input elements have been selected
and placed in the output list in the correct order.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

1 2 2 3 3 4 5 6 7 11

3/32



Selection Sort

Selection Sort operates by
• first finding the smallest element in the input list, and moving it to the
output list;

• then finding the next smallest value and does the same;
• continuing in this way until all the input elements have been selected
and placed in the output list in the correct order.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

1 2 2 3 3 4 5 6 7 11

3/32



Selection Sort

Selection Sort operates by
• first finding the smallest element in the input list, and moving it to the
output list;

• then finding the next smallest value and does the same;
• continuing in this way until all the input elements have been selected
and placed in the output list in the correct order.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

1 2 2 3 3 4 5 6 7 11

3/32



Selection Sort

Selection Sort operates by
• first finding the smallest element in the input list, and moving it to the
output list;

• then finding the next smallest value and does the same;
• continuing in this way until all the input elements have been selected
and placed in the output list in the correct order.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

1 2 2 3 3 4 5 6 7 11

3/32



Selection Sort

Selection Sort operates by
• first finding the smallest element in the input list, and moving it to the
output list;

• then finding the next smallest value and does the same;
• continuing in this way until all the input elements have been selected
and placed in the output list in the correct order.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

1 2 2 3 3 4 5 6 7 11

3/32



Selection Sort

Selection Sort operates by
• first finding the smallest element in the input list, and moving it to the
output list;

• then finding the next smallest value and does the same;
• continuing in this way until all the input elements have been selected
and placed in the output list in the correct order.

0 1 2 3 4 5 6 7 8 9
4 3 7 11 2 2 1 3 5 6

1 2 2 3 3 4 5 6 7 11

3/32



Selection Sort

1 for i = 0 to n−1
2 // A [ 0 , . . . , i − 1 ] : i smal lest keys in sorted order .
3 // A [ i , . . . , n − 1 ] : s the remaining keys
4 jmin = i
5 for j = i +1 to n−1
6 i f A [ j ] < A [ jmin ]
7 jmin = j
8 swap A [ i ] with A [ jmin ]

Total running time:

T(n) =
n−1∑
i=0

(n− i− 1) =
n−1∑
i=0

i = O(n2)

4/32



Selection Sort

1 for i = 0 to n−1
2 // A [ 0 , . . . , i − 1 ] : i smal lest keys in sorted order .
3 // A [ i , . . . , n − 1 ] : s the remaining keys
4 jmin = i
5 for j = i +1 to n−1
6 i f A [ j ] < A [ jmin ]
7 jmin = j
8 swap A [ i ] with A [ jmin ]

Running time?

O(n− i− 1)

Total running time:

T(n) =
n−1∑
i=0

(n− i− 1) =
n−1∑
i=0

i = O(n2)

4/32



Selection Sort

1 for i = 0 to n−1
2 // A [ 0 , . . . , i − 1 ] : i smal lest keys in sorted order .
3 // A [ i , . . . , n − 1 ] : s the remaining keys
4 jmin = i
5 for j = i +1 to n−1
6 i f A [ j ] < A [ jmin ]
7 jmin = j
8 swap A [ i ] with A [ jmin ]

Running time?
O(n− i− 1)

Total running time:

T(n) =
n−1∑
i=0

(n− i− 1) =
n−1∑
i=0

i = O(n2)

4/32



Selection Sort

1 for i = 0 to n−1
2 // A [ 0 , . . . , i − 1 ] : i smal lest keys in sorted order .
3 // A [ i , . . . , n − 1 ] : s the remaining keys
4 jmin = i
5 for j = i +1 to n−1
6 i f A [ j ] < A [ jmin ]
7 jmin = j
8 swap A [ i ] with A [ jmin ]

Running time?
O(n− i− 1)

Total running time:

T(n) =
n−1∑
i=0

(n− i− 1) =
n−1∑
i=0

i = O(n2)

4/32



Comparison Sort

Bubble Sort



Bubble Sort

Bubble Sort operates:
• Successively comparing adjacent elements, swap them if they are out
of order;

• After the 1st pass, the largest element is in the correct position;
• continuing in this way until sort the entire array.

0 1 2 3 4
4 3 7 11 2

5/32



Bubble Sort

Bubble Sort operates:
• Successively comparing adjacent elements, swap them if they are out
of order;

• After the 1st pass, the largest element is in the correct position;
• continuing in this way until sort the entire array.

0 1 2 3 4
4 3 7 11 2
0 1 2 3 4
4 3 7 11 2

5/32



Bubble Sort

Bubble Sort operates:
• Successively comparing adjacent elements, swap them if they are out
of order;

• After the 1st pass, the largest element is in the correct position;
• continuing in this way until sort the entire array.

0 1 2 3 4
4 3 7 11 2
0 1 2 3 4
3 4 7 11 2

5/32



Bubble Sort

Bubble Sort operates:
• Successively comparing adjacent elements, swap them if they are out
of order;

• After the 1st pass, the largest element is in the correct position;
• continuing in this way until sort the entire array.

0 1 2 3 4
4 3 7 11 2
0 1 2 3 4
3 4 7 11 2

5/32



Bubble Sort

Bubble Sort operates:
• Successively comparing adjacent elements, swap them if they are out
of order;

• After the 1st pass, the largest element is in the correct position;
• continuing in this way until sort the entire array.

0 1 2 3 4
4 3 7 11 2
0 1 2 3 4
3 4 7 11 2

5/32



Bubble Sort

Bubble Sort operates:
• Successively comparing adjacent elements, swap them if they are out
of order;

• After the 1st pass, the largest element is in the correct position;
• continuing in this way until sort the entire array.

0 1 2 3 4
4 3 7 11 2
0 1 2 3 4
3 4 7 11 2

5/32



Bubble Sort

Bubble Sort operates:
• Successively comparing adjacent elements, swap them if they are out
of order;

• After the 1st pass, the largest element is in the correct position;
• continuing in this way until sort the entire array.

0 1 2 3 4
4 3 7 11 2
0 1 2 3 4
3 4 7 2 11

5/32



Bubble Sort

Bubble Sort operates:
• Successively comparing adjacent elements, swap them if they are out
of order;

• After the 1st pass, the largest element is in the correct position;
• continuing in this way until sort the entire array.

0 1 2 3 4
4 3 7 11 2
0 1 2 3 4
3 4 2 7 11

5/32



Bubble Sort

Bubble Sort operates:
• Successively comparing adjacent elements, swap them if they are out
of order;

• After the 1st pass, the largest element is in the correct position;
• continuing in this way until sort the entire array.

0 1 2 3 4
4 3 7 11 2
0 1 2 3 4
3 4 2 7 11
0 1 2 3 4
3 4 2 7 11

5/32



Bubble Sort

Bubble Sort operates:
• Successively comparing adjacent elements, swap them if they are out
of order;

• After the 1st pass, the largest element is in the correct position;
• continuing in this way until sort the entire array.

0 1 2 3 4
4 3 7 11 2
0 1 2 3 4
3 4 2 7 11
0 1 2 3 4
3 2 4 7 11

5/32



Bubble Sort

Bubble Sort operates:
• Successively comparing adjacent elements, swap them if they are out
of order;

• After the 1st pass, the largest element is in the correct position;
• continuing in this way until sort the entire array.

0 1 2 3 4
4 3 7 11 2
0 1 2 3 4
3 4 2 7 11
0 1 2 3 4
2 3 4 7 11

5/32



Bubble Sort

Bubble Sort operates:
• Successively comparing adjacent elements, swap them if they are out
of order;

• After the 1st pass, the largest element is in the correct position;
• continuing in this way until sort the entire array.

0 1 2 3 4
4 3 7 11 2
0 1 2 3 4
3 4 2 7 11
0 1 2 3 4
2 3 4 7 11

5/32



Bubble Sort

1 for i = n−1 downto 1
2 // A [ i + 1 , . . . , n − 1 ] :
3 // n− i −1 l a r ge s t keys in sorted order .
4 // A [ 0 , . . . , i ] : the remaining keys
5 for j = 0 to i −1
6 i f A [ j ] > A [ j + 1 ]
7 swap A [ j ] and A [ j + 1 ]

Total running time:

T(n) =
n−1∑
i=0

i = O(n2)

6/32



Bubble Sort

1 for i = n−1 downto 1
2 // A [ i + 1 , . . . , n − 1 ] :
3 // n− i −1 l a r ge s t keys in sorted order .
4 // A [ 0 , . . . , i ] : the remaining keys
5 for j = 0 to i −1
6 i f A [ j ] > A [ j + 1 ]
7 swap A [ j ] and A [ j + 1 ]

Running time?

O(i)

Total running time:

T(n) =
n−1∑
i=0

i = O(n2)

6/32



Bubble Sort

1 for i = n−1 downto 1
2 // A [ i + 1 , . . . , n − 1 ] :
3 // n− i −1 l a r ge s t keys in sorted order .
4 // A [ 0 , . . . , i ] : the remaining keys
5 for j = 0 to i −1
6 i f A [ j ] > A [ j + 1 ]
7 swap A [ j ] and A [ j + 1 ]

Running time?
O(i)

Total running time:

T(n) =
n−1∑
i=0

i = O(n2)

6/32



Bubble Sort

1 for i = n−1 downto 1
2 // A [ i + 1 , . . . , n − 1 ] :
3 // n− i −1 l a r ge s t keys in sorted order .
4 // A [ 0 , . . . , i ] : the remaining keys
5 for j = 0 to i −1
6 i f A [ j ] > A [ j + 1 ]
7 swap A [ j ] and A [ j + 1 ]

Running time?
O(i)

Total running time:

T(n) =
n−1∑
i=0

i = O(n2)

6/32



Comparison Sort

Insertion Sort



Insertion Sort

Like Selection Sort, Insertion Sort maintains two sublists:
• A left sublist containing sorted keys
• A right sublist containing the remaining unsorted keys

Unlike Selection Sort, the keys in the left sublist are
• not the smallest keys in the input list,
• but the first sorted keys in the input list.

0 1 2 3 4
4 3 7 11 5

7/32



Insertion Sort

Like Selection Sort, Insertion Sort maintains two sublists:
• A left sublist containing sorted keys
• A right sublist containing the remaining unsorted keys

Unlike Selection Sort, the keys in the left sublist are
• not the smallest keys in the input list,
• but the first sorted keys in the input list.

0 1 2 3 4
4 3 7 11 5
0 1 2 3 4
4 3 7 11 5

key = 3

7/32



Insertion Sort

Like Selection Sort, Insertion Sort maintains two sublists:
• A left sublist containing sorted keys
• A right sublist containing the remaining unsorted keys

Unlike Selection Sort, the keys in the left sublist are
• not the smallest keys in the input list,
• but the first sorted keys in the input list.

0 1 2 3 4
4 3 7 11 5
0 1 2 3 4

4 7 11 5

key = 3

7/32



Insertion Sort

Like Selection Sort, Insertion Sort maintains two sublists:
• A left sublist containing sorted keys
• A right sublist containing the remaining unsorted keys

Unlike Selection Sort, the keys in the left sublist are
• not the smallest keys in the input list,
• but the first sorted keys in the input list.

0 1 2 3 4
4 3 7 11 5
0 1 2 3 4
3 4 7 11 5

key = 3

7/32



Insertion Sort

Like Selection Sort, Insertion Sort maintains two sublists:
• A left sublist containing sorted keys
• A right sublist containing the remaining unsorted keys

Unlike Selection Sort, the keys in the left sublist are
• not the smallest keys in the input list,
• but the first sorted keys in the input list.

0 1 2 3 4
4 3 7 11 5
0 1 2 3 4
3 4 7 11 5

key = 7

7/32



Insertion Sort

Like Selection Sort, Insertion Sort maintains two sublists:
• A left sublist containing sorted keys
• A right sublist containing the remaining unsorted keys

Unlike Selection Sort, the keys in the left sublist are
• not the smallest keys in the input list,
• but the first sorted keys in the input list.

0 1 2 3 4
4 3 7 11 5
0 1 2 3 4
3 4 7 11 5

key = 11

7/32



Insertion Sort

Like Selection Sort, Insertion Sort maintains two sublists:
• A left sublist containing sorted keys
• A right sublist containing the remaining unsorted keys

Unlike Selection Sort, the keys in the left sublist are
• not the smallest keys in the input list,
• but the first sorted keys in the input list.

0 1 2 3 4
4 3 7 11 5
0 1 2 3 4
3 4 7 11 5

key = 5

7/32



Insertion Sort

Like Selection Sort, Insertion Sort maintains two sublists:
• A left sublist containing sorted keys
• A right sublist containing the remaining unsorted keys

Unlike Selection Sort, the keys in the left sublist are
• not the smallest keys in the input list,
• but the first sorted keys in the input list.

0 1 2 3 4
4 3 7 11 5
0 1 2 3 4
3 4 7 11

key = 5

7/32



Insertion Sort

Like Selection Sort, Insertion Sort maintains two sublists:
• A left sublist containing sorted keys
• A right sublist containing the remaining unsorted keys

Unlike Selection Sort, the keys in the left sublist are
• not the smallest keys in the input list,
• but the first sorted keys in the input list.

0 1 2 3 4
4 3 7 11 5
0 1 2 3 4
3 4 7 11

key = 5

7/32



Insertion Sort

Like Selection Sort, Insertion Sort maintains two sublists:
• A left sublist containing sorted keys
• A right sublist containing the remaining unsorted keys

Unlike Selection Sort, the keys in the left sublist are
• not the smallest keys in the input list,
• but the first sorted keys in the input list.

0 1 2 3 4
4 3 7 11 5
0 1 2 3 4
3 4 5 7 11

key = 5

7/32



Insertion Sort

1 for i = 1 to n−1
2 // A [ 0 , . . . , i − 1 ] :
3 // f i r s t i keys of the input in sorted order .
4 // A [ i , . . . , n − 1 ] : the remaining keys
5 key = A [ i ]
6 j = i
7 while j > 0 & A [ j − 1 ] > key
8 A [ j ] = A [ j − 1 ]
9 j = j −1
10 A [ j ] = key

Total running time:

T(n) =
n−1∑
i=0

i = O(n2)

8/32



Insertion Sort

1 for i = 1 to n−1
2 // A [ 0 , . . . , i − 1 ] :
3 // f i r s t i keys of the input in sorted order .
4 // A [ i , . . . , n − 1 ] : the remaining keys
5 key = A [ i ]
6 j = i
7 while j > 0 & A [ j − 1 ] > key
8 A [ j ] = A [ j − 1 ]
9 j = j −1
10 A [ j ] = key

Running time?

O(i)

Total running time:

T(n) =
n−1∑
i=0

i = O(n2)

8/32



Insertion Sort

1 for i = 1 to n−1
2 // A [ 0 , . . . , i − 1 ] :
3 // f i r s t i keys of the input in sorted order .
4 // A [ i , . . . , n − 1 ] : the remaining keys
5 key = A [ i ]
6 j = i
7 while j > 0 & A [ j − 1 ] > key
8 A [ j ] = A [ j − 1 ]
9 j = j −1
10 A [ j ] = key

Running time?
O(i)

Total running time:

T(n) =
n−1∑
i=0

i = O(n2)

8/32



Insertion Sort

1 for i = 1 to n−1
2 // A [ 0 , . . . , i − 1 ] :
3 // f i r s t i keys of the input in sorted order .
4 // A [ i , . . . , n − 1 ] : the remaining keys
5 key = A [ i ]
6 j = i
7 while j > 0 & A [ j − 1 ] > key
8 A [ j ] = A [ j − 1 ]
9 j = j −1
10 A [ j ] = key

Running time?
O(i)

Total running time:

T(n) =
n−1∑
i=0

i = O(n2)

8/32



Selection sort vs Bubble sort vs Insertion sort

Selection Sort, Bubble Sort, Insertion Sort have O(n2) running time.

However, all can also easily be designed to
• Sort in place
• Stable sort

9/32



Comparison Sort

Merge Sort



Recursive Sorts

Divide-and-conquer is a general algorithm design paradigm:
• Divide: divide the input data S in two disjoint subsets S1 and S2
• Recur: solve the subproblems associated with S1 and S2
• Conquer: combine the solutions for S1 and S2 to solve S

The base case for the recursion is a subproblem of size 0 or 1

Recursive Sorts: Given list of objects to be sorted
• Split the list into two sublists.
• Recursively have two friends sort the two sublists.
• Combine the two sorted sublists into one entirely sorted list.

Examples: Merge Sort, Quick Sort, ...

10/32



Merge Sort

Merge-sort is a sorting algorithm based on the divide-and-conquer
paradigm

Merge Sort was invented by John von Neumann, one of the pioneers of
computing, in 1945.

1 Algori thm mergeSort ( S )
2 // Input : sequence S with n elements
3 // Output : sequence S sorted
4 i f S . s i z e ( ) > 1
5 ( S1 , S2 ) = pa r t i t i on ( S , n/2) // Div ide
6 mergeSort ( S1 ) // Recur
7 mergeSort ( S2 ) // Recur
8 S = merge ( S1 , S2 ) // Conquer

11/32



Merging Two Sorted Sequences

1 Algori thm merge ( A , B )
2 // Input sequences A and B with n/2 elements each
3 // Output sorted sequence of A B
4 S = empty sequence
5 while ! A . isEmpty ( ) and ! B . isEmpty ( )
6 i f A . f i r s t ( ) . element ( ) < B . f i r s t ( ) . element ( )
7 S . addLast ( A . remove ( A . f i r s t ( ) ) )
8 else
9 S . addLast (B . remove (B . f i r s t ( ) ) )
10

11 while ! A . isEmpty ( )
12 S . addLast ( A . remove ( A . f i r s t ( ) ) )
13 while ! B . isEmpty ( )
14 S . addLast (B . remove (B . f i r s t ( ) ) )
15 return S

12/32



Merging Sort Tree

Merge-Sort Tree:
• each node represents a recursive call of merge-sort and stores
unsorted sequence before the execution and its partition sorted
sequence at the end of the execution

• the root is the initial call
• the leaves are calls on subsequences of size 0 or 1

7 2 9 4 | 3 8 6 1→ 1 2 3 4 6 7 8 9

7 2 | 9 4→ 2 4 7 9

7 | 2→ 2 7

7→ 7 2→ 2

9 | 4→ 4 9

9→ 9 4→ 4

3 8 | 6 1→ 1 3 6 8

3 | 8→ 3 8

3→ 3 8→ 8

6 | 1→ 1 6

6→ 6 1→ 1
13/32



Analysis of Merge-Sort

. . . . . . . . .

i 2i n/2i

1 2 n/2

0 1 n

depth ♯seq size

14/32



Analysis of Merge-Sort

. . . . . . . . .

i 2i n/2i

1 2 n/2

0 1 n

depth ♯seq size

The height h of the merge-sort tree is O(log n)
• at each recursive call we divide the sequence in half. 14/32



Analysis of Merge-Sort

. . . . . . . . .

i 2i n/2i

1 2 n/2

0 1 n

depth ♯seq size

The overall amount or work done at the nodes of depth i is O(n)
• we partition and merge 2i sequences of size n/2i 14/32



Analysis of Merge-Sort

. . . . . . . . .

i 2i n/2i

1 2 n/2

0 1 n

depth ♯seq size

Thus, the total running time of merge-sort is O(n log n)!

14/32



More Discussion on Merge Sort

Sort in place?

YES
Normally, merging is not in-place: new memory must be allocated to hold
S. It is possible to do in-place merging using linked lists.
• Code is more complicated
• Only changes memory usage by a constant factor

Stable?

YES

15/32



More Discussion on Merge Sort

Sort in place?

YES
Normally, merging is not in-place: new memory must be allocated to hold
S. It is possible to do in-place merging using linked lists.
• Code is more complicated
• Only changes memory usage by a constant factor

Stable?

YES

15/32



More Discussion on Merge Sort

Sort in place?

YES
Normally, merging is not in-place: new memory must be allocated to hold
S. It is possible to do in-place merging using linked lists.
• Code is more complicated
• Only changes memory usage by a constant factor

Stable?

YES

15/32



More Discussion on Merge Sort

Sort in place?

YES
Normally, merging is not in-place: new memory must be allocated to hold
S. It is possible to do in-place merging using linked lists.
• Code is more complicated
• Only changes memory usage by a constant factor

Stable?

YES

15/32



Comparison Sort

Heap Sort



Heap Sort

Invented by Williams & Floyd in 1964
Heap Sort:
• Build an array-based (max) heap
• Iteratively call removeMax() to extract the keys in descending order

Running time?:

O(n log n) worst case

Sorts in place?:

YES
Stable?:

NO as heap operations may disorder ties

16/32



Heap Sort

Invented by Williams & Floyd in 1964
Heap Sort:
• Build an array-based (max) heap
• Iteratively call removeMax() to extract the keys in descending order

Running time?:

O(n log n) worst case

Sorts in place?:

YES
Stable?:

NO as heap operations may disorder ties

16/32



Heap Sort

Invented by Williams & Floyd in 1964
Heap Sort:
• Build an array-based (max) heap
• Iteratively call removeMax() to extract the keys in descending order

Running time?:

O(n log n) worst case

Sorts in place?:

YES
Stable?:

NO as heap operations may disorder ties

16/32



Heap Sort

Invented by Williams & Floyd in 1964
Heap Sort:
• Build an array-based (max) heap
• Iteratively call removeMax() to extract the keys in descending order

Running time?:

O(n log n) worst case

Sorts in place?:

YES
Stable?:

NO as heap operations may disorder ties

16/32



Heap Sort

Invented by Williams & Floyd in 1964
Heap Sort:
• Build an array-based (max) heap
• Iteratively call removeMax() to extract the keys in descending order

Running time?:

O(n log n) worst case

Sorts in place?:

YES

Stable?:

NO as heap operations may disorder ties

16/32



Heap Sort

Invented by Williams & Floyd in 1964
Heap Sort:
• Build an array-based (max) heap
• Iteratively call removeMax() to extract the keys in descending order

Running time?:

O(n log n) worst case

Sorts in place?:

YES
Stable?:

NO as heap operations may disorder ties

16/32



Heap Sort

Invented by Williams & Floyd in 1964
Heap Sort:
• Build an array-based (max) heap
• Iteratively call removeMax() to extract the keys in descending order

Running time?:

O(n log n) worst case

Sorts in place?:

YES
Stable?:

NO as heap operations may disorder ties

16/32



Heap Sort

Invented by Williams & Floyd in 1964
Heap Sort:
• Build an array-based (max) heap
• Iteratively call removeMax() to extract the keys in descending order

Running time?:

O(n log n) worst case

Sorts in place?:

YES
Stable?:

NO as heap operations may disorder ties

16/32



Heapsort is Not Stable

3

1 2

3

1

2

2

3

2

1

2
2nd 1st

insert 2 upheap

3

2

3

2 2
2nd1st

insert 2

When we call the method removeMax(), which side should we go?

17/32



Comparison Sort

Quick Sort



Quick Sort

Invented by C.A.R. Hoare in 1960

Quick-sort is a divide-and-conquer algorithm

1 Algori thm QuickSort ( S )
2 // L : l ess ; E : equal ; G : g reater
3 // p : p i vo t or pos i t ion
4 i f S . s i z e ( ) > 1
5 ( L , E , G ) = Pa r t i t i o n ( S , p ) // Div ide
6 QuickSort ( L ) //Recur : Small elements are sorted
7 QuickSort (G ) //Recur : Large elements are sorted
8 S = ( L , E , G ) //Conquer : Thus input i s sorted

18/32



Quick Sort

Invented by C.A.R. Hoare in 1960

Quick-sort is a divide-and-conquer algorithm

1 Algori thm QuickSort ( S )
2 // L : l ess ; E : equal ; G : g reater
3 // p : p i vo t or pos i t ion
4 i f S . s i z e ( ) > 1
5 ( L , E , G ) = Pa r t i t i o n ( S , p ) // Div ide
6 QuickSort ( L ) //Recur : Small elements are sorted
7 QuickSort (G ) //Recur : Large elements are sorted
8 S = ( L , E , G ) //Conquer : Thus input i s sorted

Key step

18/32



Partition

1 Algori thm pa r t i t i o n ( S , p )
2 // Input : sequence S , pos i t ion p of p ivo t
3 // Output : subsequences L , E , G of the elements of S

less than , equal to , or greater than the pivot ,
resp .

4 L , E , G <− empty sequences
5 while ! S . isEmpty ( )
6 y <− S . remove ( S . f i r s t ( ) )
7 i f y < p
8 L . addLast ( y )
9 else i f y = p
10 E . addLast ( y )
11 else // y > p
12 G . addLast ( y )
13 return L , E , G

19/32



Partition

1 Algori thm pa r t i t i o n ( S , p )
2 // Input : sequence S , pos i t ion p of p ivo t
3 // Output : subsequences L , E , G of the elements of S

less than , equal to , or greater than the pivot ,
resp .

4 L , E , G <− empty sequences
5 while ! S . isEmpty ( )
6 y <− S . remove ( S . f i r s t ( ) )
7 i f y < p
8 L . addLast ( y )
9 else i f y = p
10 E . addLast ( y )
11 else // y > p
12 G . addLast ( y )
13 return L , E , G

Take O(n) time

19/32



Merging Sort Tree

Quick-Sort Tree:
• each node represents a recursive call of quick-sort and stores

• unsorted sequence before the execution and its partition
• sorted sequence at the end of the execution

• the root is the initial call
• the leaves are calls on subsequences of size 0 or 1

7 2 9 4 3 7 6 1→ 1 2 3 4 6 7 7 9

2 4 3 1→ 1 2 3 4

1→ 1 4 3→ 3 4

4→ 4

7 9 7→ 7 7 9

9→ 9

20/32



Running Time of Quick Sort

The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

One of L and G has size n− 1 and the other has size 0

The running time is proportional to the sum

n+ (n− 1) + . . .+ 2+ 1

Thus, the worst-case running time of Quick Sort is O(n2)

If the pivot is selected randomly, the average-case running time for Quick
Sort is O(n log n).

21/32



Running Time of Quick Sort

The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

One of L and G has size n− 1 and the other has size 0

The running time is proportional to the sum

n+ (n− 1) + . . .+ 2+ 1

Thus, the worst-case running time of Quick Sort is O(n2)

If the pivot is selected randomly, the average-case running time for Quick
Sort is O(n log n).

21/32



More Discussion on Quick Sort

Sort in place?

YES
Stable?

YES
But can not be both!!!

22/32



More Discussion on Quick Sort

Sort in place?

YES

Stable?

YES
But can not be both!!!

22/32



More Discussion on Quick Sort

Sort in place?

YES
Stable?

YES
But can not be both!!!

22/32



More Discussion on Quick Sort

Sort in place?

YES
Stable?

YES

But can not be both!!!

22/32



More Discussion on Quick Sort

Sort in place?

YES
Stable?

YES
But can not be both!!!

22/32



More Discussion on Quick Sort

Sort in place?

YES
Stable?

YES
But can not be both!!!

The algorithm just described is stable. However it does not sort in place:
O(n) new memory is allocated for L, E and G

22/32



More Discussion on Quick Sort

Sort in place?

YES
Stable?

YES
But can not be both!!!

Is there an in-place quick-sort?

22/32



In-Place Quick Sort

3 subsets are maintained
• One containing values less than or equal to the pivot
• One containing values greater than the pivot
• One containing values yet to be processed

0 1 2 3 4 5 6 7 8 9

x

p i j r

≤ x ≥ x unrestricted

23/32



In-Place Quick Sort

1 Algori thm QuickSort ( A , p , r )
2 i f p < r
3 q = Pa r t i t i o n ( A , p , r )
4 QuickSort ( A , p , q − 1 )
5 //Small elements are sorted
6 QuickSort ( A , q + 1 , r )
7 //Large elements are sorted
8 //Thus input i s sorted

24/32



In-Place Quick Sort

1 i nP l a cePa r t i t i on ( A , p , r )
2 x = A [ r ]
3 i = p − 1
4 for j = p to r − 1
5 i f A [ j ] <= x
6 i = i + 1
7 swap A [ j ] and A [ i ]
8 swap A [ i + 1 ] and A [ r ]

x

x

≤ x ≥ x unrestricted

if ≤ x

24/32



Summary of Comparison Sorts

Algorithm Best Worst Average In Place Stable Comments
Selection n2 n2 Yes Yes
Bubble n n2 Yes Yes Must count swaps for

linear best case run-
ning time.

Insertion n n2 Yes Yes Good if often almost
sorted

Merge n log n n log n Yes Yes Good for very large
datasets that require
swapping to disk

Heap n log n n log n Yes No Best if guaranteed
n log n required

Quick n log n n2 n log n Yes Yes Usually fastest in prac-
tice

25/32



Summary of Comparison Sorts

Algorithm Best Worst Average In Place Stable Comments
Selection n2 n2 Yes Yes
Bubble n n2 Yes Yes Must count swaps for

linear best case run-
ning time.

Insertion n n2 Yes Yes Good if often almost
sorted

Merge n log n n log n Yes Yes Good for very large
datasets that require
swapping to disk

Heap n log n n log n Yes No Best if guaranteed
n log n required

Quick n log n n2 n log n Yes Yes Usually fastest in prac-
tice

But not both
25/32



Comparison Sort

Lower Bound on Comparison Sorting
(Optional)



Comparison Sort: Decision Trees

• For a 3-element array, there are 6 external nodes.
• For an n-element array, there are n! external nodes.

1:2

2:3

<1,2,3> 1:3

<1,3,2> <3,2,1>

1:3

<2,1,3> 2:3

<2,3,1> <3,2,1>

Compare A[1] and A[2]left = “≤”, right = “>”

26/32



Comparison Sort: Decision Trees

• For a 3-element array, there are 6 external nodes.
• For an n-element array, there are n! external nodes.

To store n! external nodes, a decision tree must have a height of at least
⌈log(n!)⌉

Worst-case time is equal to the height of the binary decision tree.

T(n) ∈ Ω(log n!) = Ω(n log n)

Thus Merge Sort and Heap Sort are asymptotically optimal.

26/32



Linear Sorting



Linear Sorting

Counting Sort



Counting Sort

Invented by Harold Seward in 1954.

Consider the following case: the elements to be sorted come from a finite
(and preferably small) set [1, . . . , k]

1 0 2 0 1 1 0 2

0 1 2
3 3 2

elements

0 0 0 1 1 1 2 2
0 1 2 3 4 5 6 7 index

Running time: O(n+ k)

27/32



Counting Sort

Invented by Harold Seward in 1954.

Consider the following case: the elements to be sorted come from a finite
(and preferably small) set [1, . . . , k]

1 0 2 0 1 1 0 2
0 1 2
3 3 2

elements

0 0 0 1 1 1 2 2
0 1 2 3 4 5 6 7 index

Running time: O(n+ k)

27/32



Counting Sort

Invented by Harold Seward in 1954.

Consider the following case: the elements to be sorted come from a finite
(and preferably small) set [1, . . . , k]

1 0 2 0 1 1 0 2
0 1 2
3 3 2

elements

0 0 0 1 1 1 2 2
0 1 2 3 4 5 6 7 index

Running time: O(n+ k)

27/32



Counting Sort

Invented by Harold Seward in 1954.

Consider the following case: the elements to be sorted come from a finite
(and preferably small) set [1, . . . , k]

1 0 2 0 1 1 0 2
0 1 2
3 3 2

elements

0 0 0 1 1 1 2 2
0 1 2 3 4 5 6 7 index

Running time: O(n+ k)

27/32



Counting Sort

Invented by Harold Seward in 1954.

Consider the following case: the elements to be sorted come from a finite
(and preferably small) set [1, . . . , k]

1 0 2 0 1 1 0 2
0 1 2
3 3 2

elements

0 0 0 1 1 1 2 2
0 1 2 3 4 5 6 7 index

Running time: O(n+ k)

27/32



Counting Sort

Invented by Harold Seward in 1954.

Consider the following case: the elements to be sorted come from a finite
(and preferably small) set [1, . . . , k]

1 0 2 0 1 1 0 2
0 1 2
3 3 2

elements

0 0 0 1 1 1 2 2
0 1 2 3 4 5 6 7 index

Running time: O(n+ k)

27/32



Counting Sort

Invented by Harold Seward in 1954.

Consider the following case: the elements to be sorted come from a finite
(and preferably small) set [1, . . . , k]

1 0 2 0 1 1 0 2
0 1 2
3 3 2

elements

0 0 0 1 1 1 2 2
0 1 2 3 4 5 6 7 index

Running time: O(n+ k)

27/32



Counting Sort

Invented by Harold Seward in 1954.

Consider the following case: the elements to be sorted come from a finite
(and preferably small) set [1, . . . , k]

1 0 2 0 1 1 0 2
0 1 2
3 3 2

elements

0 0 0 1 1 1 2 2
0 1 2 3 4 5 6 7 index

Running time: O(n+ k)

27/32



Counting Sort

Invented by Harold Seward in 1954.

Consider the following case: the elements to be sorted come from a finite
(and preferably small) set [1, . . . , k]

1 0 2 0 1 1 0 2
0 1 2
3 3 2

elements

0 0 0 1 1 1 2 2
0 1 2 3 4 5 6 7 index

Running time: O(n+ k)

27/32



Counting Sort

Invented by Harold Seward in 1954.

Consider the following case: the elements to be sorted come from a finite
(and preferably small) set [1, . . . , k]

1 0 2 0 1 1 0 2
0 1 2
3 3 2

elements

0 0 0 1 1 1 2 2
0 1 2 3 4 5 6 7 index

Running time: O(n+ k)

27/32



Counting Sort

Invented by Harold Seward in 1954.

Consider the following case: the elements to be sorted come from a finite
(and preferably small) set [1, . . . , k]

1 0 2 0 1 1 0 2
0 1 2
3 3 2

elements

0 0 0 1 1 1 2 2
0 1 2 3 4 5 6 7 index

Running time: O(n+ k)

27/32



Counting Sort

Invented by Harold Seward in 1954.

Consider the following case: the elements to be sorted come from a finite
(and preferably small) set [1, . . . , k]

1 0 2 0 1 1 0 2
0 1 2
3 3 2

elements

0 0 0 1 1 1 2 2
0 1 2 3 4 5 6 7 index

Running time: O(n+ k)

27/32



Linear Sorting

Radix Sort



Radix Sort

Suppose input satisfies:
• An array of n numbers
• Each number contains d digits
• Each digit between [0, . . . , k− 1]

344 125 333 134 224 334 143 225 325 243

Main idea:
• Select one digit
• Separate numbers into k piles based on selected digit
• Apply some stable sort algorithm only based on selected digit

28/32



Radix Sort

Suppose input satisfies:
• An array of n numbers
• Each number contains d digits
• Each digit between [0, . . . , k− 1]

344 125 333 134 224 334 143 225 325 243

Main idea:
• Select one digit
• Separate numbers into k piles based on selected digit
• Apply some stable sort algorithm only based on selected digit

28/32



Radix Sort

344
125
333
134
224
334
143
225
325
243

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

29/32



Radix Sort: left first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 4 4
3 3 3
3 3 4
3 2 5

1 2 5
2 2 4
2 2 5
3 2 5
1 3 4
3 3 3
3 3 4
1 4 3
2 4 3
3 4 4

Wrong!

30/32



Radix Sort: left first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 4 4
3 3 3
3 3 4
3 2 5

1 2 5
2 2 4
2 2 5
3 2 5
1 3 4
3 3 3
3 3 4
1 4 3
2 4 3
3 4 4

Wrong!

30/32



Radix Sort: left first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 4 4
3 3 3
3 3 4
3 2 5

1 2 5
2 2 4
2 2 5
3 2 5
1 3 4
3 3 3
3 3 4
1 4 3
2 4 3
3 4 4

Wrong!

30/32



Radix Sort: right first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

3 3 3
1 4 3
2 4 3
3 4 4
1 3 4
2 2 4
3 3 4
1 2 5
2 2 5
3 2 5

2 2 4
1 2 5
2 2 5
3 2 5
3 3 3
1 3 4
3 3 4
1 4 3
2 4 3
3 4 4

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 2 5
3 3 3
3 3 4
3 4 4

1 RadixSort ( A , d )
2 for i = 1 to d
3 apply a stab le sor t to A on d i g i t i

Running time: O(d(n+ k))

31/32



Radix Sort: right first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

3 3 3
1 4 3
2 4 3
3 4 4
1 3 4
2 2 4
3 3 4
1 2 5
2 2 5
3 2 5

2 2 4
1 2 5
2 2 5
3 2 5
3 3 3
1 3 4
3 3 4
1 4 3
2 4 3
3 4 4

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 2 5
3 3 3
3 3 4
3 4 4

1 RadixSort ( A , d )
2 for i = 1 to d
3 apply a stab le sor t to A on d i g i t i

Running time: O(d(n+ k))

31/32



Radix Sort: right first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

3 3 3
1 4 3
2 4 3
3 4 4
1 3 4
2 2 4
3 3 4
1 2 5
2 2 5
3 2 5

2 2 4
1 2 5
2 2 5
3 2 5
3 3 3
1 3 4
3 3 4
1 4 3
2 4 3
3 4 4

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 2 5
3 3 3
3 3 4
3 4 4

1 RadixSort ( A , d )
2 for i = 1 to d
3 apply a stab le sor t to A on d i g i t i

Running time: O(d(n+ k))

31/32



Radix Sort: right first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

3 3 3
1 4 3
2 4 3
3 4 4
1 3 4
2 2 4
3 3 4
1 2 5
2 2 5
3 2 5

2 2 4
1 2 5
2 2 5
3 2 5
3 3 3
1 3 4
3 3 4
1 4 3
2 4 3
3 4 4

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 2 5
3 3 3
3 3 4
3 4 4

1 RadixSort ( A , d )
2 for i = 1 to d
3 apply a stab le sor t to A on d i g i t i

Running time: O(d(n+ k))

31/32



Radix Sort: right first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

3 3 3
1 4 3
2 4 3
3 4 4
1 3 4
2 2 4
3 3 4
1 2 5
2 2 5
3 2 5

2 2 4
1 2 5
2 2 5
3 2 5
3 3 3
1 3 4
3 3 4
1 4 3
2 4 3
3 4 4

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 2 5
3 3 3
3 3 4
3 4 4

1 RadixSort ( A , d )
2 for i = 1 to d
3 apply a stab le sor t to A on d i g i t i

Running time: O(d(n+ k))

31/32



Radix Sort: right first

3 4 4
1 2 5
3 3 3
1 3 4
2 2 4
3 3 4
1 4 3
2 2 5
3 2 5
2 4 3

3 3 3
1 4 3
2 4 3
3 4 4
1 3 4
2 2 4
3 3 4
1 2 5
2 2 5
3 2 5

2 2 4
1 2 5
2 2 5
3 2 5
3 3 3
1 3 4
3 3 4
1 4 3
2 4 3
3 4 4

1 2 5
1 3 4
1 4 3
2 2 4
2 2 5
2 4 3
3 2 5
3 3 3
3 3 4
3 4 4

1 RadixSort ( A , d )
2 for i = 1 to d
3 apply a stab le sor t to A on d i g i t i

Running time: O(d(n+ k))
31/32



Linear Sorting

Bucket Sort



Bucket Sort

Suppose input is constrained to finite interval, e.g., real numbers in the
range [0, 1).

1 BucketSort ( A , d )
2 for i = 1 to n
3 i n se r t A [ i ] to l i s t B [ ⌊n · A[i]⌋ ]
4 for i = 0 to n − 1
5 sor t l i s t B [ i ] with I n se r t Sort
6 // average running time i s O ( 1 )
7 Concatenate l i s t s B [ 0 ] , B [ 1 ] , . . . , B [ n − 1 ]
8 return concatenated l i s t

If input is random and uniformly distributed, expected running time is O(n).

32/32



Bucket Sort

Suppose input is constrained to finite interval, e.g., real numbers in the
range [0, 1).

1 BucketSort ( A , d )
2 for i = 1 to n
3 i n se r t A [ i ] to l i s t B [ ⌊n · A[i]⌋ ]
4 for i = 0 to n − 1
5 sor t l i s t B [ i ] with I n se r t Sort
6 // average running time i s O ( 1 )
7 Concatenate l i s t s B [ 0 ] , B [ 1 ] , . . . , B [ n − 1 ]
8 return concatenated l i s t

If input is random and uniformly distributed, expected running time is O(n).

32/32



Bucket Sort

Suppose input is constrained to finite interval, e.g., real numbers in the
range [0, 1).

1 BucketSort ( A , d )
2 for i = 1 to n
3 i n se r t A [ i ] to l i s t B [ ⌊n · A[i]⌋ ]
4 for i = 0 to n − 1
5 sor t l i s t B [ i ] with I n se r t Sort
6 // average running time i s O ( 1 )
7 Concatenate l i s t s B [ 0 ] , B [ 1 ] , . . . , B [ n − 1 ]
8 return concatenated l i s t

If input is random and uniformly distributed, expected running time is O(n).

32/32



Thank you!

Questions?

32/32


	Comparison Sort
	Selection Sort
	Bubble Sort
	Insertion Sort
	Merge Sort
	Heap Sort
	Quick Sort
	Lower Bound on Comparison Sorting (Optional)

	Linear Sorting
	Counting Sort
	Radix Sort
	Bucket Sort


