
CSCI 3230 Data Structures
Trees

Weitian Tong, Ph.D.

Department of Computer Science
Georgia Southern University
Website: www.weitiantong.com
Email:wtong@georgiasouthern.edu

www.weitiantong.com

Table of contents

1. What is a tree?

2. Traverse a tree

3. Binary tree

Inorder Traversal

Implementation of Binary Tree

What is a tree?

What is a tree?

Formulas

single-line multi-line

aligned at

relation sign several places center

first left,
centered,
last right

• In computer science, a tree is an abstract model of a hierarchical
structure

• A tree consists of nodes with a parent-child relation
• Applications:

• Organization charts
• File systems
• Programming environments

1/15

Tree Terminology

A

B

E F

I J K

C

G H

D

Root: node without parentInternal node: node with at least one childExternal node (a.k.a leaf): node without childrenParent – Child relationship

Ancestors of a node: itsself, parent, grandparent, grand-grandparent, etc.Depth of a node: the number of edges from the root to the node, d(E) = 2Descendant of a node: itself, child, grandchild, grand-grandchild, etc.

Height of a tree: maximum depth of any node, H = 3Subtree: tree consisting of a node and its descendants

2/15

Tree Terminology

A

B

E F

I J K

C

G H

D

Root: node without parent

Internal node: node with at least one childExternal node (a.k.a leaf): node without childrenParent – Child relationship

Ancestors of a node: itsself, parent, grandparent, grand-grandparent, etc.Depth of a node: the number of edges from the root to the node, d(E) = 2Descendant of a node: itself, child, grandchild, grand-grandchild, etc.

Height of a tree: maximum depth of any node, H = 3Subtree: tree consisting of a node and its descendants

2/15

Tree Terminology

A

B

E F

I J K

C

G H

D

Root: node without parentInternal node: node with at least one childExternal node (a.k.a leaf): node without children

Parent – Child relationship

Ancestors of a node: itsself, parent, grandparent, grand-grandparent, etc.Depth of a node: the number of edges from the root to the node, d(E) = 2Descendant of a node: itself, child, grandchild, grand-grandchild, etc.

Height of a tree: maximum depth of any node, H = 3Subtree: tree consisting of a node and its descendants

2/15

Tree Terminology

A

B

E F

I J K

C

G H

D

Root: node without parent

Internal node: node with at least one child

External node (a.k.a leaf): node without childrenParent – Child relationship

Ancestors of a node: itsself, parent, grandparent, grand-grandparent, etc.Depth of a node: the number of edges from the root to the node, d(E) = 2Descendant of a node: itself, child, grandchild, grand-grandchild, etc.

Height of a tree: maximum depth of any node, H = 3Subtree: tree consisting of a node and its descendants

2/15

Tree Terminology

A

B

E F

I J K

C

G H

D

Root: node without parentInternal node: node with at least one child

External node (a.k.a leaf): node without children

Parent – Child relationship

Ancestors of a node: itsself, parent, grandparent, grand-grandparent, etc.Depth of a node: the number of edges from the root to the node, d(E) = 2Descendant of a node: itself, child, grandchild, grand-grandchild, etc.

Height of a tree: maximum depth of any node, H = 3Subtree: tree consisting of a node and its descendants

2/15

Tree Terminology

A

B

E F

I J K

C

G H

D

Root: node without parentInternal node: node with at least one childExternal node (a.k.a leaf): node without childrenParent – Child relationship

Ancestors of a node: itsself, parent, grandparent, grand-grandparent, etc.

Depth of a node: the number of edges from the root to the node, d(E) = 2Descendant of a node: itself, child, grandchild, grand-grandchild, etc.Height of a tree: maximum depth of any node, H = 3Subtree: tree consisting of a node and its descendants

2/15

Tree Terminology

A

B

E F

I J K

C

G H

D

Root: node without parentInternal node: node with at least one childExternal node (a.k.a leaf): node without childrenParent – Child relationshipAncestors of a node: itsself, parent, grandparent, grand-grandparent, etc.Depth of a node: the number of edges from the root to the node, d(E) = 2

Descendant of a node: itself, child, grandchild, grand-grandchild, etc.

Height of a tree: maximum depth of any node, H = 3Subtree: tree consisting of a node and its descendants

2/15

Tree Terminology

A

B

E F

I J K

C

G H

D

Root: node without parentInternal node: node with at least one childExternal node (a.k.a leaf): node without childrenParent – Child relationshipAncestors of a node: itsself, parent, grandparent, grand-grandparent, etc.

Depth of a node: the number of edges from the root to the node, d(E) = 2

Descendant of a node: itself, child, grandchild, grand-grandchild, etc.Height of a tree: maximum depth of any node, H = 3Subtree: tree consisting of a node and its descendants

2/15

Tree Terminology

A

B

E F

I J K

C

G H

D

Root: node without parentInternal node: node with at least one childExternal node (a.k.a leaf): node without childrenParent – Child relationship

Ancestors of a node: itsself, parent, grandparent, grand-grandparent, etc.Depth of a node: the number of edges from the root to the node, d(E) = 2Descendant of a node: itself, child, grandchild, grand-grandchild, etc.

Height of a tree: maximum depth of any node, H = 3

Subtree: tree consisting of a node and its descendants

2/15

Tree Terminology

A

B

E F

I J K

C

G H

D

Root: node without parentInternal node: node with at least one childExternal node (a.k.a leaf): node without childrenParent – Child relationship

Ancestors of a node: itsself, parent, grandparent, grand-grandparent, etc.Depth of a node: the number of edges from the root to the node, d(E) = 2Descendant of a node: itself, child, grandchild, grand-grandchild, etc.

Height of a tree: maximum depth of any node, H = 3

Subtree: tree consisting of a node and its descendants

2/15

Tree Interface

1 c lass treeNode {
2 element
3 parent
4 ch i ldren
5 −−−−−−−−−−−−−−−−−
6 getParent ()
7 setPar tent ()
8 getChi ldren ()
9 setCh i ldren ()
10 numChildren ()
11 . . .
12 }

1 c lass Tree {
2 root
3 s i z e
4 height
5 −−−−−−−−−−−−−
6 root ()
7 s i z e ()
8 isEmpty ()
9 i s I n t e r n a l (node)
10 i s E x t e rna l (node)
11 i sRoot (node)
12 t r a ve r s a l ()
13 . . .
14 }

3/15

Traverse a tree

Preorder Traversal

1 Algori thm preOrder (v)
2

3 v i s i t (v)
4 for each ch i ld w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1

2

3 4

5

6 7 8

9

4/15

Preorder Traversal

1 Algori thm preOrder (v)
2

3 v i s i t (v)
4 for each ch i ld w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1

2

3 4

5

6 7 8

9

4/15

Preorder Traversal

1 Algori thm preOrder (v)
2

3 v i s i t (v)
4 for each ch i ld w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1

2

3 4

5

6 7 8

9

4/15

Preorder Traversal

1 Algori thm preOrder (v)
2

3 v i s i t (v)
4 for each ch i ld w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1

2

3 4

5

6 7 8

9

4/15

Preorder Traversal

1 Algori thm preOrder (v)
2

3 v i s i t (v)
4 for each ch i ld w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1

2

3

4

5

6 7 8

9

4/15

Preorder Traversal

1 Algori thm preOrder (v)
2

3 v i s i t (v)
4 for each ch i ld w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1

2

3 4

5

6 7 8

9

4/15

Preorder Traversal

1 Algori thm preOrder (v)
2

3 v i s i t (v)
4 for each ch i ld w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1

2

3 4

5

6 7 8

9

4/15

Preorder Traversal

1 Algori thm preOrder (v)
2

3 v i s i t (v)
4 for each ch i ld w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1

2

3 4

5

6

7 8

9

4/15

Preorder Traversal

1 Algori thm preOrder (v)
2

3 v i s i t (v)
4 for each ch i ld w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1

2

3 4

5

6 7

8

9

4/15

Preorder Traversal

1 Algori thm preOrder (v)
2

3 v i s i t (v)
4 for each ch i ld w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1

2

3 4

5

6 7 8

9

4/15

Preorder Traversal

1 Algori thm preOrder (v)
2

3 v i s i t (v)
4 for each ch i ld w of v
5 preorder (w)

In a preorder traversal, a node is visited before its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1

2

3 4

5

6 7 8

9

4/15

Postorder Traversal

1 Algori thm postOrder (v)
2

3 for each ch i ld w of v
4 postorder (w)
5 v i s i t (v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1 2

3

4 5 6

7 8

9

5/15

Postorder Traversal

1 Algori thm postOrder (v)
2

3 for each ch i ld w of v
4 postorder (w)
5 v i s i t (v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1 2

3

4 5 6

7 8

9

5/15

Postorder Traversal

1 Algori thm postOrder (v)
2

3 for each ch i ld w of v
4 postorder (w)
5 v i s i t (v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1

2

3

4 5 6

7 8

9

5/15

Postorder Traversal

1 Algori thm postOrder (v)
2

3 for each ch i ld w of v
4 postorder (w)
5 v i s i t (v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1 2

3

4 5 6

7 8

9

5/15

Postorder Traversal

1 Algori thm postOrder (v)
2

3 for each ch i ld w of v
4 postorder (w)
5 v i s i t (v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1 2

3

4 5 6

7 8

9

5/15

Postorder Traversal

1 Algori thm postOrder (v)
2

3 for each ch i ld w of v
4 postorder (w)
5 v i s i t (v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1 2

3

4

5 6

7 8

9

5/15

Postorder Traversal

1 Algori thm postOrder (v)
2

3 for each ch i ld w of v
4 postorder (w)
5 v i s i t (v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1 2

3

4 5

6

7 8

9

5/15

Postorder Traversal

1 Algori thm postOrder (v)
2

3 for each ch i ld w of v
4 postorder (w)
5 v i s i t (v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1 2

3

4 5 6

7 8

9

5/15

Postorder Traversal

1 Algori thm postOrder (v)
2

3 for each ch i ld w of v
4 postorder (w)
5 v i s i t (v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1 2

3

4 5 6

7

8

9

5/15

Postorder Traversal

1 Algori thm postOrder (v)
2

3 for each ch i ld w of v
4 postorder (w)
5 v i s i t (v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1 2

3

4 5 6

7 8

9

5/15

Postorder Traversal

1 Algori thm postOrder (v)
2

3 for each ch i ld w of v
4 postorder (w)
5 v i s i t (v)

In a postorder traversal, a node is visited after its descendants

Make Money Fast!

1. Motivations

1.1 Greed 1.2 Avidity

2. Methods

2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery

References

1 2

3

4 5 6

7 8

9

5/15

Binary tree

Binary tree

A

B

D E

H I

C

F G

Binary tree: each internal node has at most two children (exactly two for
proper binary trees)

Applications:
• arithmetic expressions
• decision processes
• searching

6/15

Arithmetic Expression Tree

Binary tree associated with an arithmetic expression
• internal nodes: operators
• external nodes: operands

Example: arithmetic expression tree for the expression

(2× (a− 1) + (3× b))

+

×

2 −

a 1

×

3 b

7/15

Decision Tree

Binary tree associated with a decision process
• internal nodes: questions with yes/no answer
• external nodes: decisions

Example: dining decision

Want a fast meal?

How about coffee?

Starbucks Chipotle

On expense account?

Gracie’s Gracie’s

YES

YES YES

NO

NO NO

8/15

Properties of Proper Binary Trees

Proper Binary Tree: every internal node has exactly two children
Let
• n: number of nodes
• e: number of external nodes
• i: number of internal nodes
• h: height

Properties:
1. e = i+ 1
2. n = 2e− 1
3. h ≤ i
4. h ≤ (n− 1)/2
5. e ≤ 2h

6. h ≥ log2 e
7. h ≥ log2(n+ 1)− 1

9/15

Binary Tree Interface

1 c lass binaryTreeNode {
2 . . .
3 // ch i ldren
4 l e f t C h i l d
5 r i g h t Ch i l d
6 −−−−−−−−−−−−−−−−−
7 . . .
8 // getChi ldren ()
9 // setCh i ldren ()
10 ge t Le f t Ch i l d ()
11 se t Le f t Ch i l d ()
12 ge tR igh tCh i ld ()
13 se tR i gh tCh i ld ()
14 . . .
15 }

1 c lass Tree {
2 root
3 s i z e
4 height
5 −−−−−−−−−−−−−
6 root ()
7 s i z e ()
8 isEmpty ()
9 i s I n t e r n a l (node)
10 i s E x t e rna l (node)
11 i sRoot (node)
12 t r a ve r s a l ()
13 . . .
14 }

10/15

Binary tree

Inorder Traversal

Inorder Traversal

1 Algori thm inOrder (v)
2

3 i f l e f t (v) ≠ nul l
4 inOrder (l e f t (v))
5 v i s i t (v)
6 i f r i g h t (v) ≠ nul l
7 inOrder (r i g h t (v))

In an inorder traversal, a node is visited after its left subtree and before its
right subtree

A

B

D E

F G

C

H I

1

2

3

4

5

6

7

8

9

11/15

Inorder Traversal

1 Algori thm inOrder (v)
2

3 i f l e f t (v) ≠ nul l
4 inOrder (l e f t (v))
5 v i s i t (v)
6 i f r i g h t (v) ≠ nul l
7 inOrder (r i g h t (v))

In an inorder traversal, a node is visited after its left subtree and before its
right subtree

A

B

D E

F G

C

H I

1

2

3

4

5

6

7

8

9

11/15

Inorder Traversal

1 Algori thm inOrder (v)
2

3 i f l e f t (v) ≠ nul l
4 inOrder (l e f t (v))
5 v i s i t (v)
6 i f r i g h t (v) ≠ nul l
7 inOrder (r i g h t (v))

In an inorder traversal, a node is visited after its left subtree and before its
right subtree

A

B

D E

F G

C

H I
1

2

3

4

5

6

7

8

9

11/15

Inorder Traversal

1 Algori thm inOrder (v)
2

3 i f l e f t (v) ≠ nul l
4 inOrder (l e f t (v))
5 v i s i t (v)
6 i f r i g h t (v) ≠ nul l
7 inOrder (r i g h t (v))

In an inorder traversal, a node is visited after its left subtree and before its
right subtree

A

B

D E

F G

C

H I
1

2

3

4

5

6

7

8

9

11/15

Inorder Traversal

1 Algori thm inOrder (v)
2

3 i f l e f t (v) ≠ nul l
4 inOrder (l e f t (v))
5 v i s i t (v)
6 i f r i g h t (v) ≠ nul l
7 inOrder (r i g h t (v))

In an inorder traversal, a node is visited after its left subtree and before its
right subtree

A

B

D E

F G

C

H I
1

2

3

4

5

6

7

8

9

11/15

Inorder Traversal

1 Algori thm inOrder (v)
2

3 i f l e f t (v) ≠ nul l
4 inOrder (l e f t (v))
5 v i s i t (v)
6 i f r i g h t (v) ≠ nul l
7 inOrder (r i g h t (v))

In an inorder traversal, a node is visited after its left subtree and before its
right subtree

A

B

D E

F G

C

H I
1

2

3

4

5

6

7

8

9

11/15

Inorder Traversal

1 Algori thm inOrder (v)
2

3 i f l e f t (v) ≠ nul l
4 inOrder (l e f t (v))
5 v i s i t (v)
6 i f r i g h t (v) ≠ nul l
7 inOrder (r i g h t (v))

In an inorder traversal, a node is visited after its left subtree and before its
right subtree

A

B

D E

F G

C

H I
1

2

3

4

5

6

7

8

9

11/15

Inorder Traversal

1 Algori thm inOrder (v)
2

3 i f l e f t (v) ≠ nul l
4 inOrder (l e f t (v))
5 v i s i t (v)
6 i f r i g h t (v) ≠ nul l
7 inOrder (r i g h t (v))

In an inorder traversal, a node is visited after its left subtree and before its
right subtree

A

B

D E

F G

C

H I
1

2

3

4

5

6

7

8

9

11/15

Inorder Traversal

1 Algori thm inOrder (v)
2

3 i f l e f t (v) ≠ nul l
4 inOrder (l e f t (v))
5 v i s i t (v)
6 i f r i g h t (v) ≠ nul l
7 inOrder (r i g h t (v))

In an inorder traversal, a node is visited after its left subtree and before its
right subtree

A

B

D E

F G

C

H I
1

2

3

4

5

6

7

8

9

11/15

Inorder Traversal

1 Algori thm inOrder (v)
2

3 i f l e f t (v) ≠ nul l
4 inOrder (l e f t (v))
5 v i s i t (v)
6 i f r i g h t (v) ≠ nul l
7 inOrder (r i g h t (v))

In an inorder traversal, a node is visited after its left subtree and before its
right subtree

A

B

D E

F G

C

H I
1

2

3

4

5

6

7

8

9

11/15

Inorder Traversal

1 Algori thm inOrder (v)
2

3 i f l e f t (v) ≠ nul l
4 inOrder (l e f t (v))
5 v i s i t (v)
6 i f r i g h t (v) ≠ nul l
7 inOrder (r i g h t (v))

In an inorder traversal, a node is visited after its left subtree and before its
right subtree

A

B

D E

F G

C

H I
1

2

3

4

5

6

7

8

9

11/15

Print and Evaluate Arithmetic Expressions

+

×

2 −

a 1

×

3 b

(2× (a− 1) + (3× b))

1 pr in tExpress ion (v) :
2 i f l e f t (v) ≠ nul l
3 pr in t (” (”)
4 inOrder (l e f t (v))
5 pr in t (v . element ())
6 i f r i g h t (v) ≠ nul l
7 inOrder (r i g h t (v))
8 pr in t (”) ”)

1 evalExpr (v) :
2 i f i s E x t e rna l (v)
3 return v . element ()
4 else
5 x = evalExpr (l e f t (v))
6 y = evalExpr (r i g h t (v))
7 * = operator stored at v
8 return x * y

12/15

Binary tree

Implementation of Binary Tree

Array-Based Representation of Binary Trees

Node v is stored at A[rank(v)]
• rank(root) = 0
• if node is the left child of parent(node),

rank(node) = 2 · rank(parent(node)) + 1

• if node is the right child of parent(node),

rank(node) = 2 · rank(parent(node)) + 2

A

B

D E

F G

C

H I

0

1 2

3 4 5 6

9 10
13/15

Array-Based Representation of Binary Trees

0 1 2 3 4 5 6 7 8 9 10 11
A B C D E H I F G

A

B

D E

F G

C

H I

0

1 2

3 4 5 6

9 10

14/15

Comparison

• Linked Structure:
• Requires explicit representation of 3 links per position:

parent, left child, right child
• Data structure grows as needed – no wasted space.

• Array:
• Parent and children are implicitly represented:

Lower memory requirements per position
• Memory requirements determined by height of tree. If tree is sparse, this
is highly inefficient.

15/15

Thank you!

Questions?

15/15

	What is a tree?
	Traverse a tree
	Binary tree
	Inorder Traversal
	Implementation of Binary Tree

