Georgia Southern University
Allen E. Paulson College of Engineering and Computing
Information Technology Department
Dr. Atef Shalan

Course: IT2530-Operating Systems
Module 7- Shell Scripting– reading material

Contents and Reading Material
7	Shell Scripting	1
7.1	Types of Shell	2
7.2	Shell Commands and Utilities	3
7.3	Basic shell commands	3
7.3.1	Text File Manipulation	4
7.3.2	File system Management	4
7.3.3	Process Management	4
7.3.4	Network Management	5
7.3.5	System Management	5
7.3.6	User Management	6
7.4	Shell Script Structure	6
7.5	Variables, Operators, and Logic Structures	6
7.6	Shell Logic Structures	9
7.6.1	Conditional statements	10
7.6.2	Loop statements	11
7.7	Shell Functions	12

[bookmark: _Toc91077152]Shell Scripting

A shell script is a sequence of commands that users have a repeated use for it. The Unix/Linux “Shell” is a system program that provides access to some OS kernel functions through the command-line interface. User commands can be entered into the shell program in two ways: directly through the shell window or from a file called the shell script file. Shell program interprets script commands. I.e., it reads commands from the script line by line and executes them.
[bookmark: _Toc91077153]Types of Shell

A Shell Script program is analogs to a programming language. The following are the most common shell types:
· sh:
· Name: Bourne Shell
· The original shell
· By Steven Bourne of AT&T
· Not the standard shell
· Still used on some UNIX/Linux systems.
· This is the basic shell, a small program with few features.
· Use prompt of $
· bash:
· Name: Bourne Again shell
· GNU Improved Bourne Shell
· The default for all Unix versions
· A superset of the Bourne shell with various add-ons and plug-ins
· the standard shell for common users
· Intuitive, flexible, and easy to learn.
· A powerful tool for advanced scripting and professional user.
· Use prompt of $
· csh:
· Name: C Shell
· C-like script syntax
· By Bill Joy of Univ. of California
· Used by C language programmers.
· Use prompt of %
· ksh:
· Name: Korn shell
· A superset of the Bourne Shell and C Shell;
· By David Korn of AT&T
· Very hard for beginners.
· Use prompt of $
To learn about the supported shells on a Linux system, you execute the following command.
$ cat /etc/shells

To know what shell you currently use
$ echo $SHELL

To switch shell: type the shell name, examples:
$ bash
$ exec bash

[bookmark: _Toc91077154]Shell Commands and Utilities

When the shell program executes a command, bash creates a new bash process using a fork method. Some shell commands do not create new processes: built-in commands. Built-in commands are not Kernel commands but rather, they are implemented as part of the shell program itself. Unlike kernel commands, a built-in command is executed directly, without creating a new process. Examples of Bash built-in-commands are:
:, ., break, cd, continue, eval, exec, exit, export, hash, pwd, return, set, shift, test, times, trap, and unset, alias, bind, command, declare, echo, enable, help, let, local, logout, read, type, typeset, and unalias

The mysystem.sh file (by Machtelt Garrels, Bash-Beginners-Guide) is a shell example that executes some commands (date, w, uname, uptime) to display information about you and your machine.
 1 #!/bin/bash
 2 clear
 3 echo "This is information provided by mysystem.sh. Program starts now."
 4 echo "Hello, $USER"
 5 echo
 6 echo "Today's date is `date`, this is week `date +"%V"`."
 7 echo
 8 echo "These users are currently connected:"
 9 w | cut -d " " -f 1 - | grep -v USER | sort -u
 10 echo
 11 echo "This is `uname -s` running on a `uname -m` processor."
 12 echo
 13 echo "This is the uptime information:"
 14 uptime

[bookmark: _Toc91077155]Basic shell commands

Unix commands allow to navigate and control Unix/Linux system and manage user files or directories. The main categories of Unix/Linux commands are the following.
· Text File Manipulation
· Filesystem Management
· Process Management
· Network Management
· System Management
· User Management
The following paragraphs include the main commands in each category
[bookmark: _Toc91077156]Text File Manipulation

Text file manipulation commands help inspect, view, and process text files (e.g., configuration files and data files).
cat –display file contents on the standard output
more/less: view text file on separate pages
head/tail: show the first (or last) a specified number of lines of a text file
grep: search for text patterns in text files
cmp: compare two files.
cut: removes part of a file.

File viewing and exiting
vi: command-based text editor
gedit/emacs: GUI text editors

[bookmark: _Toc91077157]File system Management

File system management commands allow managing files and access permissions, they also allow navigating filesystems and managing directories.

File operation management commands
ls: list files and directories of the current folder
cp: copy files between folders
rm: remove files and/or directories
mv: move files from a folder to another, also used for renaming files
chmod: change file access permissions
chown: change file ownership

Directory management commands
cd: change the current directory
pwd: display current directory location
ln: make links to files and directories
mkdir: make a new directory
rmdir: remove a directory

[bookmark: _Toc91077158]Process Management

Process management commands allow listing executing processes and viewing and controlling their status.

man: display manual or help pages for a specified command
ps: lists current processes
top: shows a real-time view of the running system processes
kill: kill a process
history: show previously used shell commands

[bookmark: _Toc91077159]Network Management
Network management commands allow inspecting network setup and exploring network connections. These commands also allow remote access to the system and system resources.

Networking commands in Unix
Ifconfig/ip: show and configure IP address information
ping: check whether a remote host is reachable via ICMP ping or not
netstat: displays network connections and routing information

Remote access commands
telnet: remote access protocol and utility based on clear text (insecure, no encryption).
ssh: Secure remote access utility

File transfers commands
ftp –File Transfer Protocol and client utility based on clear text (insecure)
sftp: secure file transfer protocol and client utility
wget: retrieves content from remote servers via HTTP/HTTPS and FTP protocols

[bookmark: _Toc91077160]System Management
System management commands allow configuring hostname and viewing/setting system information:
Unix system status commands
hostname: show or set a computer hostname
uname: prints basic system information
w: show who is logged on the system and lists their activities

Time and Date commands
date: show current date and time of the computer
sleep: wait for a specified time (in seconds)
uptime: show how long the system has been up

Shutdown and Reboot commands
shutdown –shut the system down gracefully
halt: ungraceful shutdown kills system OS services and does not stop it gracefully.
reboot: an ungraceful reboot of the system without stopping its services

[bookmark: _Toc91077161]User Management
User management commands allow viewing and configuring user information.
whoami: show the currently active user
groups: show the groups of the current user
passwd: change the user password
last: show the history of user logins into the system

[bookmark: _Toc91077162]Shell Script Structure

In this section, we learn about the shell script program structure. A shell is typically executed by entering the name of the script file on the command line. To create a shell script, you may open a new file in a text editor such as vi, emacs, gedit. The script file name cannot conflict with existing commands and is recommended to end in .sh (e.g., ~/myScripts). To be able to execute the script, it should have execute permission. To do that, you may run the following command:
chmod u+x script1.sh
After saving your script into specific folder (e.g., ~/scripts), you can execute it as follows
./myScript.sh
To get a shell script accessible from any storage location, you may add the script file path (e.g., ~/scripts) into the PATH environment variable as follows
export PATH="$PATH:~/scripts"

Comments are parts of a shell script which does not affect its execution. Comments start with a # character. Comments are mainly used to identify script information to make code easy to read by other users and to record timely modifications.
[bookmark: _Toc91077163]Variables, Operators, and Logic Structures

A shell script program can include commend lines, logic structure, variables, and operators. Shell variables are symbolic names that help keep values in memory for later use. Operators can be used in scripts to allow performing mathematical, logical, string operations, and other operations.
There are three types of variables
· Global Variables:
· Global variables (AKA environment variables) are available in all shells.
· They can be displayed using env or printenv commands
· Examples are
CC=gcc
CDPATH=.:~:/usr/local:/usr:/
SHELL=/bin/bash
· Local Variables
· Local variables are only available in the current shell.
· They can be set and displayed using the set command.
· Examples are
COLUMNS=65
GROUPS=()
HERE=/home/adam
A variable is created when their values are set in an assignment statement, examples:

VARNAME="value"
welcome=’Hello’
Variable contents are accessed using ‘$’, Example viewing the value of a variable is:
echo $welcome # will print Hello
The above variables are local and only available in the current shell, i.e., child processes of the current shell will not see these variables. Exporting the variables allows passing these variables to the subshells. Variables that are exported are referred to as environment variables. Setting and exporting variables are usually done in one step as follows:
export VARNAME="value"
export welcome=’Hello’
Some parameters have specific meaning in shell scripting. These parameters may only be referenced but not assigned. Examples of these parameters are:
· $0: a parameter that contains the script filename
· $1, $2, …, $n: a sequence of positional command line parameters, 1st, 2nd 3rd respectively.
· $#: number of command-line parameters
· $$: process ID of the shell window program
· $*: expansion of the positional parameters, starting from one.
· $@: expansion of the positional parameters as a loop of one parameter at a time
· $?: exit the code of the last command

The original code of the following example can be found in Machtelt Garrels book.

#!/bin/bash
positional.sh
This script reads 3 positional parameters and prints them out.
POSPAR1="$1"
POSPAR2="$2"
POSPAR3="$3"
echo "$1 is the first positional parameter, \$1."
echo "$2 is the second positional parameter, \$2."
echo "$3 is the third positional parameter, \$3."
echo
echo "The total number of positional parameters is $#."
By executing this code we get the following
user ~> positional.sh one two three four five
one is the first positional parameter, $1.
two is the second positional parameter, $2.
three is the third positional parameter, $3.
The total number of positional parameters is 5.

user ~> positional.sh one two
one is the first positional parameter, $1.
Some words have special meaning to the shell program as reserved words. To remove the special meaning of an assigned parameter value, quoting is used. Quoting uses specific characters to introduce a different meaning to the string value as follows.
· Escape character: uses a non-quoted backslash character (\) to remove the special meaning from a single character, e.g.,
myVar = 1
echo $myVar # will print 1
echo \$myVar # will print $myVar. This is because the $ lost its shell scripting meaning.
· Single quotes: preserve the literal value of each character enclosed within the two quotes, e.g.,
echo '$data' # will print $data, not the value in it.
· Double quotes: preserve the literal value of all character enclosed except for $, `, and \, e.g.,
$age = 23
echo “Adam is $age years old” # will print Adam is 23 years old.

Shell Script can capture user input during execution. To read from the standard input device we use the read command, e.g.,
echo “Who are you?”
read username
echo “Hello $username”
Shell expansion is a mechanism that interprets or resolves the command tokens into other meaningful tokens based on the type of expansion. There are mainly eight kinds of expansion in shell scripting. Understanding these expansion help script programmers to design and interpret script commands and their parameters.
· Brace expansion: allows generating arbitrary strings using a pattern.
echo person_{1,2,3}_age # will print person_1_age person_2_age person_3_age
· Tilde expansion: specifies a tilde-prefix (enclosed between the first character ~ and the following /), which has a meaning based on the tilde-prefix type.
~ # will be interpreted to the value of $HOME
~/foo # will be interpreted to $HOME/foo
~fred/foo # will be interpreted to the subdirectory foo of the home directory of the user Fred
~+/foo # will be interpreted to $PWD/foo
~-/foo # will be interpreted to ${OLDPWD-'~-'}/foo
· Shell parameter and variable expansion: The "$" character introduces parameter expansion, command substitution, or arithmetic expansion by substituting the value of parameter or variable.
echo $SHELL # will print / bin/bash
· Command substitution: run a shell command and store its output to a variable or display back using echo command.
echo "Today is $(date)" # will print today's date, note date is a command
echo "Today is `date`" # will do the same
· Arithmetic expansion: allows evaluating an arithmetic expression substituting its result. E.g.,
Var++ # variable post-increment
Var1 + var2 # addition
Var1 * var2 # multiply
Var1 ** var2 # exponentiation
Var1 > var2 # greater
Var1 <= var2 # less or equal
Condition1 && Condition2 #logical AND
Condition1 !! Condition2 # logical OR
expr ? expr : expr # conditional evaluation
etc.
· Process substitution: passes the output of one process to the input of another (pipelining)
who | wc −l # the output of who will be passed to wc -l command to count the number of lines.
· Word splitting: treats each of the Internal Field Separators in $IFS as a delimiter and splits the results into separate words.
Str = “this is any string with some words”
IFS = ‘ ‘
read -a words <<< “$str”
echo “there are ${#strarr[*]} words in the given string”
will print there are 7 words in the given string
· File name expansion: allow using special characters as wildcards for matching filenames
*.txt # all files with .txt extension
A??.txt # all files with three letters that starts with a and that have .txt extension
Details of these shell expansions are required in this module and their details can be found in section 3.4 of Machtelt Garrels book.

[bookmark: _Toc91077164]Shell Logic Structures

Logic structures provide support sequential flow (sequential logic flow) of commands, branching from one point in a script to another (Conditional branching), and repeating a script part for several times (loop). The following components are the main parts of a shell script structure:
· Sequential Logic: execute commands in the order in which they appear in the shell program.
· Conditional branch: a code point in the program when a logical choice determines the next logical flow of the program.
· Case: conditional statement with multiple branches
· Loop: a part of the shell program code that is executed zero or more times.
[bookmark: _Toc91077165]Conditional statements

Conditional (if) statements allow different courses of action to be taken depending on, depending on the success or failure of a command or a test condition. If statement can have the following syntax:
if command1 # executes successfully
then		
command_a # will be executed
elif command2 #executes successfully
then
command_b # will be executed
command_c # will be executed as well
else
command_d # default command to be executed
fi
elif and else clauses are optional, and they can be omitted.
many elif parts can exist.

Example code
#!/bin/bash
Basic if statement
if [$1 -gt 1000]
then
echo You enetered a large number.
fi

Example 2
if date | grep “Mon”
then
	echo “Let\’s go to work!” 	
fi

Test conditions can include logical operators. The following are some example text conditions with logical operators.
str1 == str2 # True if the two strings are identical	
str1!= str2 # True if strs are different	

num1 –eq num2 # True if numbers are equal
num1 –ne num2 # not equal
num1 –lt num2	# Less than
num1 –gt num2	 #Greater than
num1 –le num2	 #Less than or equal
num1 –ge num2 #Greater than or equal

Example:
if `date +’%H’` -gt 17
then
	echo “Time to go home!!!”
fi

Logical conjunction can combine Boolean expressions as follows:
if date | grep “Fri” && `date +’%H’` -gt 17
then
	echo “Welcome to the weekend!!!”
fi

Primaries are expressions that make up a test command. The following are some of the common primaries.
-a file			Test if file a file exists
-d file			Test if file is a directory
-f file			Test if file is a regular file and not a directory
-s file			Test if the file is not empty
-r file			Test if the file is readable
-w file			Test if the file is writable
-x file			Test if the file is executable

Example:
F=/filepath/filename
if [[-a $F]]; then
print "$F exists"
else
 print "$F does not exist "
fi
[bookmark: _Toc91077166]Loop statements

A loop statement allows a block of code to be repeated a number of times. Loop iterations can be pre-determined (for loop) or conditional (while loop).
The syntax of the for statement is as follows
for var in list do
 	command_1
 	command_2
...
	Command_n
done

Example:
for num in 0 1 2 3 4 do
	echo "$num X 10 = $(($num * 10)) "
done

Example 2:
ls > list
for i in `cat list` do
	cp "$i" "$i".bak
done

The syntax of the while loop is as follows
while command # execute successfully
	do
 	command_1
 	command_2
	# ...
	Command_n
done

Example:
i="100"
while [$i -gt 0]
do
	$i--
	echo "counting backward $i"
done

[bookmark: _Toc91077167]Shell Functions

Shell functions provide a method to identify a part of the code and reuse it when needed. The name of the function must be unique within the shell or script.
The syntax of the function is as follows:
Function_name
{
 	command_1;
 	command_2;
	# ...
	Command_n;
}
Example:
sayHello () {
 echo "Hello there"
}
Hello # Call or invoke your function
