

ENGR 2323 Digital Design Lab
Counters and Clock Division

Counters
Counters are sequential circuits that generate an ordered sequence. An n-bit counter can
count in binary from 0 to 2n–1. For example, a 3-bit counter counts from 0 to 7 and the repeats.
Assuming the state memory initially holds 000, the count sequence is 000, 001, 010, 011, 100,
101, 110, 111, 000 etc. Either n flip-flops or a n-bit register is needed for the state memory of a
n-bit counter.

A modulo p counter counts from 0 to p-1 and then repeats the sequence. An n-bit counter is a
modulo p counter where p = 2n. For values of p that are not an integer power of 2, one could
start with a n-bit counter design and add circuitry to reset the count to 0 when the count of p-1
was detected. A BCD counter (modulo 10) can be created from a 4-bit counter. The binary
count sequence for a modulo 10 counter is: 0000, 0001, 0010 …, 1000, 1001, 0000.

The VHDL of Figures 1 and 3 show a modulo 3 counter behavioral design. The modulo 3 counter
has three states for the counts from 0 to 2 and the state transitions go through the sequence of
states corresponding to the count and then roll over and repeats when the count hits 2.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY counter IS

PORT(CLOCK, RESETN, CE : IN STD_LOGIC;

 F : OUT STD_LOGIC_VECTOR(1 DOWNTO 0));

END counter;

Figure 1. Entity of Modulo 3 Counter

The functional simulation of the design is shown in Figure 2. The simulation shows counting
through the full sequence and repeating after count 2 along with the operation when reset and
when the count is not enabled.

Figure 2. Functional Simulation of Modulo 3 Counter

2

Figure 3. Architecture of Modulo 3 Counter

An alternative behavioral design for the modulo 3 counter is shown in Figure 4. The entity is the
same as that used for the previous design, but instead of specifying the sequence of states the
counter goes through, unsigned binary counting is described.

ARCHITECTURE behavior of counter IS

TYPE STATETYPE IS (COUNT0, COUNT1, COUNT2);

SIGNAL STATE : STATETYPE;

BEGIN

 -- next state logic

 PROCESS(CLOCK, RESETN)

 BEGIN

 IF RESETN = '0' THEN

 STATE <= COUNT0;

 ELSIF RISING_EDGE(CLOCK) THEN

 CASE STATE IS

 WHEN COUNT0 =>

 IF CE = '1' THEN

 STATE <= COUNT1;

 ELSE

 STATE <= COUNT0;

 END IF;

 WHEN COUNT1 =>

 IF CE = '1' THEN

 STATE <= COUNT2;

 ELSE

 STATE <= COUNT1;

 END IF;

 WHEN COUNT2 =>

 IF CE = '1' THEN

 STATE <= COUNT0;

 ELSE

 STATE <= COUNT2;

 END IF;

 END CASE;

 END IF;

 END PROCESS;

 -- output logic

 F <= "00" WHEN STATE = COUNT0 ELSE

 "01" WHEN STATE = COUNT1 ELSE

 "10" WHEN STATE = COUNT2 ELSE

 "00";

END behavior;

3

A 2-bit unsigned signal COUNT is defined. On reset, COUNT is initialized to zero (2-bit 00) and
when counting, COUNT is incremented by one. When a count of 2 is detected, the count is reset
to 0. To support unsigned arithmetic, the unsigned data type, and type conversion from
unsigned to standard logic, the numeric package (ieee.numeric_std) is used. This package
is also part of the IEEE library and provides support for unsigned and signed integers, arithmetic
operations, comparisons, type conversion, etc.

Figure 4. Modulo 3 Counter

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.all;

ENTITY counter IS

PORT(CLOCK, RESETN, CE : IN STD_LOGIC;

 F : OUT STD_LOGIC_VECTOR(1 DOWNTO 0));

END counter;

ARCHITECTURE behavior of counter IS

-- 2-bit unsigned number

SIGNAL COUNT : UNSIGNED(1 DOWNTO 0);

BEGIN

 PROCESS(CLOCK, RESETN)

 BEGIN

 IF RESETN = '0' THEN

 COUNT <= "00";

 ELSIF RISING_EDGE(CLOCK) THEN

 IF CE = '1' THEN

 IF COUNT = "10" THEN

 COUNT <= "00";

 ELSE

 COUNT <= COUNT + 1;

 END IF;

 END IF;

 END IF;

 END PROCESS;

 -- convert unsigned count to standard logic

 F <= STD_LOGIC_VECTOR(COUNT);

END behavior;

4

For synthesis, the output F needs to be standard logic and the COUNT is thus converted from
unsigned to standard logic. The functional simulation of the is design is identical to that shown
in Figure 2.

The style of counter design shown in Figure 4 is useful for large counts where the number of
states is prohibitively large. The design algorithm is at a higher level of abstraction than that of
Figures 1 and 3 and realized more on the VHDL compiler for synthesis.

Clock Division
The DE10-Standard board has several external clocks (external to the Cyclone V FPGA) that can
be used for designs. There are four 50MHz clocks for user logic, one 25MHz clock for the Hard
Processor System (HPS), one 25MHz clock for ethernet, and two 24MHz clocks for USB.

For many practical applications, a lower clock frequency is needed. Phase lock loops (PLL)
provide one mechanism for increasing or decreasing a clock frequency. The Cyclone V chip on
the DE10-Standard board has six PLLs. A PLL may not be able to provide the specific frequency
for an application so a clock division circuit may be used in addition to or instead of a PLL. For
example, 1Hz is a common frequency in the design of a timer or other design where an actual
time clock is required.

Creating a lower clock frequency from a higher clock frequency is clock division. The new
frequency fnew is related to the original frequency f by a scale factor (divider) N.
f/fnew = N or fnew = f/N

To create a 1kHz clock from a 50MHz clock, the scale factor N would need to be
N = 50M/1k = 50,000,000/1000 = 50,000. Note PLLs can also be used to provide a faster clock
and support both multiplier and divider scale factors.

Figure 5 shows an example of clock division where the original clock is 25MHz (40ns period) and
the output clock frequency after clock division is 6.25MHz (160ns period). A scale factor of 4 is
used for the clock division. The VHDL code of Figure 6 was used to perform this clock division.

Figure 5. Clock Division

Like the example of Figure 4, the numeric package (ieee.numeric_std) is used to provide

support for arithmetic and comparison operations. An integer signal COUNT is used to count
the number of clock cycles of the input clock. Although the scale factor is 4, to achieve a 50%
duty cycle of the output clock (equal time high and low in every period) , a count of 2 is
detected and used to toggle the TEMP_CLOCK signal. Since TEMP_CLOCK is toggled twice every

5

output clock cycle, the scale factor is 4 (four input clock cycles for every one output clock cycle).
Concurrent with the counting and toggling process, the CLOCK_OUT signal is set to the
TEMP_CLOCK. The TEMP_CLOCK signal is needed since it is used on both the left and right side
of signal assignment in the process (OUT signals can only be used on left side of signal
assignment).

Figure 6. VHDL for Clock Division with Scale Factor of 4

Using Clock Division as Part of a Design
A slower clock or timing operation may be needed for a design. These can be incorporated
using single file or multiple file design. For a single file design, a VHDL architecture may have
multiple process statements executing concurrently (in parallel). For example, a design

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.all;

ENTITY clock_div IS

PORT(CLOCK_IN : IN STD_LOGIC;

 RESETN : IN STD_LOGIC;

 CLOCK_OUT : OUT STD_LOGIC);

END clock_div;

ARCHITECTURE behavior of clock_div IS

SIGNAL COUNT : INTEGER := 1;

SIGNAL TEMP_CLOCK : STD_LOGIC := '0';

BEGIN

 PROCESS (CLOCK_IN, RESETN)

 BEGIN

 IF (RESETN = '0') THEN

 COUNT <= 1;

 -- TEMP_CLOCK initialized with 0

 TEMP_CLOCK <= '0';

 ELSIF (RISING_EDGE(CLOCK)) THEN

 COUNT <= COUNT + 1;

 IF (COUNT = 2) THEN

 -- TEMP_CLOCK inverted every two cycles

 TEMP_CLOCK <= NOT(TEMP_CLOCK);

 COUNT <= 1;

 END IF;

 END IF;

 END PROCESS;

CLOCK_OUT <= TEMP_CLOCK;

END behavior;

6

requiring a D flip-flop with a slower clock than available could have a clock division design and
flip-flop design in parallel as shown in Figure 7.

Figure 7. Combined D flip-flop Clock Divider Design

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.all;

ENTITY dff_with_clock_div IS

PORT(D, CLOCK : IN STD_LOGIC;

 RESETN : IN STD_LOGIC;

 Q : OUT STD_LOGIC);

END dff_with_clock_div ;

ARCHITECTURE behavior of dff_with_clock_div IS

SIGNAL COUNT : INTEGER := 1;

SIGNAL TEMP_CLOCK : STD_LOGIC := '0';

BEGIN

 -- clock division

 PROCESS (CLOCK, RESETN)

 BEGIN

 IF (RESETN = '0') THEN

 COUNT <= 1;

 TEMP_CLOCK <= '0';

 ELSIF (RISING_EDGE(CLOCK)) THEN

 COUNT <= COUNT + 1;

 IF (COUNT = 2) THEN

 TEMP_CLOCK <= NOT(TEMP_CLOCK);

 COUNT <= 1;

 END IF;

 END IF;

 END PROCESS;

 -- D flip-flop using slower clock

 PROCESS (TEMP_CLOCK, RESETN)

 BEGIN

 IF (RESETN = ‘0’) THEN

 Q <= ‘0’;

 ELSIF (RISING_EDGE(TEMP_CLOCK)) THEN

 Q <= D;

 END IF;

 END PROCESS;

END behavior;

7

The architecture has two process statements, one describing the clock division operation and
the other describing the D flip-flop operation. The D flip-flop uses the slower clock
TEMP_CLOCK produced by clock division rather than the CLOCK input.

Single file designs often have simpler project structures but require the entity to support all the
input and outputs signals for all portions of the design. Design reuse is more difficult with single
file designs. A multiple file design often uses a schematic or structural VHDL design for the top
level where all the designs are integrated. Multiple file designs are better for design reuse but
the project structure is more complex.

References
[1] DE10-Standard User Manual, Terasic Inc., 2017

Last modified Tuesday, October 4, 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

