

ENGR 2323 Digital Design Lab
Introduction to VHDL

VHDL
Hardware description languages (HDL) allow for the design, documentation, synthesis, and
verification of complex digital designs. Hardware description languages are high-level languages
resembling programming languages that allow one to specify a circuit design in a form that
resembles a computer program. Hardware description languages allow the designer to describe
a design at various levels of abstraction from high-level behavioral descriptions to low-level
using primitive components. HDLs are geared to describing hardware structures and the
hardware structure’s behavior and they differ from conventional high-level programming
languages in that they support parallel (concurrent) operation.

VHDL stands for VHSIC HDL, where VHSIC stands for very high-speed integrated circuit and HDL
stands for hardware description language. VHDL is non-proprietary and an IEEE standard (IEEE
1076 – 2019). Verilog is another commonly used digital circuit HDL, but we will focus on VHDL
in this course.

VHDL Designs
HDLs are typically used with CAD tools such as Quartus that take the HDL design and synthesize
the hardware (convert description to primitive components and necessary connections) similar
to how a compiler takes a high-level program and generates a machine language program.
Designs can be specified using waveforms, schematics, or HDLs. We have used the Quartus
schematic (block diagram) editor for both combinational and sequential circuit design. HDLs can
be a better design choice for more complex circuits.

A VHDL design consists of two parts: the interface (entity) and the implementation
(architecture). The interface specifies the inputs and outputs, in other words the interface
specifies what the circuit looks like to user from outside. The implementation specifies the
operation of the circuit and is primarily important to the designer (not the user). The
implementation for a circuit is not unique, for example a designer may use one architecture to
test their logic but use another for the actual implementation and verify timing.

Consider the digital circuit schematic of Figure 1 that realizes the Boolean expression

F U V U V W=  +   .

2

Figure 1. Schematic Design

The circuit inputs are U, V, and W (all single bit) and the circuit output is F (single bit). The VHDL
entity of Figure 2a describes the interface and the architecture of Figure 2b shows a dataflow
implementation.

Figure 2a. VHDL Entity

Figure 2b. VHDL Dataflow Architecture

In Figures 2a and 2b, the words entity, is, port, in, out, end, architecture, begin,

and, or, not are all VHDL reserved words. The symbols :, ;, and <= are VHDL symbols. The <=

symbol is for signal assignment. VHDL is case-insensitive and is a strongly typed language (no
type conversion). Semicolons (;) indicate the end of a VHDL statement. Two dashes (--) indicate
a comment.

In Quartus projects, design modules can be schematic designs, HDL designs, or a mixture of
both. The top-level design module must have the same name as the project.

Entity
The library statements in the VHDL code define the compiled design units that will be used in
the design. These statements will almost always be included at the top of the VHDL code and
give access to previously designed units known as packages.

The use statement specifies which entities or packages to use out of the library. In the entity of
Figure 2a, USE ieee.std_logic_1164.all; imports all of the std_logic_1164 package

from the IEEE library. The std_logic_1164 package defines a 9-valued logic system, of which
only 4 values can be used for synthesis of designs (1, 0, - (don’t care), Z (high impedance).

The entity defines the interface of the module and the port list defines the signals accessible
outside the module. The signals can either be input (in), output (out), or bidirectional (inout)
and the signal type can either be std_logic (single bit signal) or std_logic_vector (bus). The

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY ckt IS

 PORT (U, V, W : IN STD_LOGIC;

 F : OUT STD_LOGIC);

END ckt;

ARCHITECTURE dataflow OF ckt IS

BEGIN

 F <= (not U and V) or (not U and not V and W);

END dataflow;

3

width of the bus can be defined in either ascending or descending order (0 upto 3) or (3 downto
0).

Architecture
The architecture defines the operation of the module. Multiple architectures can be defined for
an entity and a configuration statement can be used to specify which architecture to use (we
will not do this in this course).

Statements in the architecture block are concurrent (not sequential as in most programming
languages). The order in which they appear does not affect the outcome and all the operations
are performed at the same time. VHDL does allow sequential statements to be used as part of a
process.

Designs cane be described using four styles of modeling: structural, dataflow, behavioral, and
mixed.

Structural Architectures
Structural architectures describe the operation in terms of components and the
interconnections between them. Structural architectures are similar to the circuit schematic
that they model.

Dataflow Architectures
Dataflow architectures describe the operation using concurrent assignment statements. The
assignment statements may be logic expressions or register transfer language (RTL) expressions
describing how signals flow through the design

Behavioral Architectures
Behavioral architectures describe the operation in terms of the algorithm performed by the
module. These architectures look similar to high level program implementations of algorithms.
Behavioral architectures often use sequential assignment statements inside process
statements.

Mixed Architectures
Mixed architectures use any combination of the above three styles to describe the operation.

Full Adder Design
Consider the design of a full adder. A full adder takes two one-bit numbers and a carry in and
generates a one-bit sum and a carry out.

The sum and carry out can be realized using the expressions

inS X Y C=  

in inCo X Y X C Y C=  +  + 

4

X Y Cin S Co

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Figure 3. Function Table for Full Adder

Figure 4a shows the entity for the full adder design. There are three inputs X, U, and Cin. The
inputs are each 1-bit of type standard logic. There are two outputs S and Cout, each 1-bit and of
type standard logic.

Figure 4a. fulladder Entity

Figure 4b shows a dataflow architecture for the full adder. The operation is described using
concurrent assignment statements corresponding to the Boolean expressions describing the
design.

Figure 4b. fulladder Dataflow Architecture

Figure 5 shows a structural architecture for the full adder.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY fulladder IS

PORT(X, Y, Cin : IN STD_LOGIC;

 S, Cout : OUT STD_LOGIC);

END fulladder;

ARCHITECTURE dataflow of fulladder IS

BEGIN

 S <= X XOR Y XOR Cin;

 Cout <= (X AND Y) OR (X AND Cin) OR (Y AND Cin);

END dataflow;

5

Figure 5. fulladder Structural Architecture

The structural design uses the AND_gate, OR_gate, and XOR_gate components. These were
previously designed and compiled. The AND_gate component is shown in Figure 6. Signals are
used for internal signals to make connections between components. These are like having a
wire with the signal name.

ARCHITECTURE structural of fulladder IS

COMPONENT AND_gate

PORT(A, B : IN STD_LOGIC;

 Y : OUT STD_LOGIC);

END COMPONENT;

COMPONENT OR_gate

PORT(A, B : IN STD_LOGIC;

 Y : OUT STD_LOGIC);

END COMPONENT;

COMPONENT XOR_gate

PORT(A, B : IN STD_LOGIC;

 Y : OUT STD_LOGIC);

END COMPONENT;

SIGNAL V1 : STD_LOGIC;

SIGNAL V2, V3, V4, V5 : STD_LOGIC;

BEGIN

-- S <= X XOR Y XOR Cin;

gate1: XOR_gate PORT MAP(X, Y, V1);

gate2: XOR_gate PORT MAP(V1, Cin, S);

-- Cout <= (X AND Y) OR (X AND Cin) OR (Y AND Cin);

gate3: AND_gate PORT MAP(X, Y, V2);

gate4: AND_gate PORT MAP(X, Cin, V3);

gate5: AND_gate PORT MAP(Y, Cin, V4);

gate6: OR_gate PORT MAP(V2, V3, V5);

gate7: OR_gate PORT MAP(V4, V5, Cout);

END structural;

6

Figure 6. AND_gate Component

The components are declared using the component statement and then instantiated each time
the component is used. As part of instantiating the component, the component connections are
specified using a port map. The signals are matched to the component entity by the order in the
port map. Gate3 is an AND_gate component. The inputs of the gate are X (mapped to A of
AND_gate) and Y (mapped to B of AND_gate) and the output is signal V1 (mapped to Y of the
AND_gate).

Behavioral Architecture and Process Statements
Behavioral architectures often look nothing like how the design ends up being implemented
and one is relying on the compiler to translate the design to a hardware implementation.
Behavioral descriptions are often used to model complex designs that would be difficult to
model using one of the other architectures such as a commercial microprocessor. Behavioral
descriptions can also be used to evaluate a design and determine if functionally it is correct and
later convert the design or portions of the design to a structural architecture.

Behavioral architectures often use process statements. Statements in processes are executed
sequentially but the signal assignments are all made at the end of the process. A process is a
concurrent statement and can be thought of as a single operation. Processes are executed
concurrently with other concurrent statements (signal assignment statements, other processes,
etc.) in the architecture.

Figures 7 and 8 show two behavioral architectures for the full adder design. The Figure 7
description does not use a process and is describing the operation conditionally, similar to the
way a function table specifies operation.

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.All;

ENTITY AND_gate IS

PORT(A, B : IN STD_LOGIC;

 Y : OUT STD_LOGIC);

END AND_gate;

ARCHITECTURE dataflow of AND_gate IS

BEGIN

 Y <= A AND B ;

END dataflow;

7

Figure 7. fulladder Behavorial Architecture

The Figure 8 description also describes the full adder operation conditionally but using a
process statement.

ARCHITECTURE behavior of fulladder IS

BEGIN

 PROCESS (X, Y, Cin)

 BEGIN

 IF X='0' AND Y='0' AND Cin='0' THEN

 S <= '0';

 Co <= '0';

 ELSIF X='0' AND Y='0' AND Cin='1' THEN

 S <= '1';

 Co <= '0';

 ELSIF X='0' AND Y='1' AND Cin='0' THEN

 S <= '1';

 Co <= '0';

 ELSIF X='0' AND Y='1' AND Cin='1' THEN

 S <= '0';

 Co <= '1';

 ELSIF X='1' AND Y='0' AND Cin='0' THEN

 S <= '1';

 Co <= '0';

 ELSIF X='1' AND Y='0' AND Cin='1' THEN

 S <= '0';

 Co <= '1';

 ELSIF X='1' AND Y='1' AND Cin='0' THEN

 S <= '0';

 Co <= '1';

 ELSIF X='1' AND Y='1' AND Cin='1' THEN

 S <= '1';

ARCHITECTURE behavior of fulladder IS

BEGIN

 S <= '1' WHEN X='0' AND Y='0' AND Cin='1' ELSE

 '1' WHEN X='0' AND Y='1' AND Cin='0' ELSE

 '1' WHEN X='1' AND Y='0' AND Cin='0' ELSE

 '1' WHEN X='1' AND Y='1' AND Cin='1' ELSE

 '0';

 Cout <= '1' WHEN X='0' AND Y='1' AND Cin='1' ELSE

 '1' WHEN X='1' AND Y='0' AND Cin='1' ELSE

 '1' WHEN X='1' AND Y='1' AND Cin='0' ELSE

 '1' WHEN X='1' AND Y='1' AND Cin='1' ELSE

 '0';

END behavior;

8

 Co <= '1';

 END IF;

 END PROCESS;

END behavior;

Figure 8. fulladder Behavioral Architecture using Process

The process starts execution when an event (signal change) for one of the signals in the
sensitivity list occurs (in Figure 8, the sensitivity list is X, Y, Cin). The process statements are
executed sequentially in order. When the last statement is executed the process is finished and
any signal assignment is performed. The process is not executed again until another event
occurs for a signal in the sensitivity list.

Process statements can be used to describe combinational and sequential logic, but one must
be careful using processes for combinational logic as the compiler often interprets latches
between the inputs and outputs. The design of Figure 8 compiled using Quartus generates
warnings that latches have been inferred for the outputs. For the full adder to be properly
synthesized, the process would need to be reworked to not infer latches for the outputs.

Warning (10631): VHDL Process Statement warning at fulladder.vhd(35): inferring latch(es) for
signal or variable "S", which holds its previous value in one or more paths through the process
Warning (10631): VHDL Process Statement warning at fulladder.vhd(35): inferring latch(es) for
signal or variable "Co", which holds its previous value in one or more paths through the process

Info (10041): Inferred latch for "Co" at fulladder.vhd(35)
Info (10041): Inferred latch for "S" at fulladder.vhd(35)

Overview of VHDL Language
VHDL Data Types
VHDL Standard:

• bit values: '0', '1'

• boolean values: TRUE, FALSE

• integer values: -(231) to +(231 - 1) {SUN Limit}

• natural values: 0 to integer'high (subtype of integer)

• positive values: 1 to integer'high (subtype of integer)

• character values: ASCII characters (eg. 'A')

• time values include units (eg. 10ns, 20us)

• bit_vector array (natural range <>) of bit

IEEE Standard 1164 (package ieee.std_logic_1164.all)

• std_ulogic values: 'U','X','1','0','Z','W','H','L','-'

• 'U' = uninitialized

• 'X' = unknown

• 'W' = weak 'X'

9

• 'Z' = floating

• 'H'/'L' = weak '1'/'0'

• '-' = don't care

• std_logic resolved "std_ulogic" values

• std_logic_vector array (natural range <>) of std_logic

VHDL Statements and Operators
VHDL concurrent statements include:

• Signal assignments (direct assignment, when else, with select)

• Process statement

• Component instantiation

• Generate statement

• Block statement

VHDL Sequential Statements include:

• Signal assignment

• Variable assignment

• Conditional statements (if elsif else, case)

• Loop statements (along with next and exit)

VHDL Arithmetic and Logical Operators include:

• Logical: and, or, nand, nor, xor, not (for boolean or bit ops)

• Relational: =, /=, <, <=, >, >=

• Arithmetic: +, -, *, /, mod, rem, **, abs

• Concatenate: &

References
None

Last modified Wednesday, August 24, 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

