j‘:GEORGIA §OIU'IHERN

NIVERSITY

ENGR 2323 Digital Design Lab
Counters and Clock Division

Counters

Counters are sequential circuits that generate an ordered sequence. An n-bit counter can
count in binary from 0 to 2"-1. For example, a 3-bit counter counts from 0 to 7 and the repeats.
Assuming the state memory initially holds 000, the count sequence is 000, 001, 010, 011, 100,
101, 110, 111, 000 etc. Either n flip-flops or a n-bit register is needed for the state memory of a
n-bit counter.

A modulo p counter counts from 0 to p-1 and then repeats the sequence. An n-bit counter is a
modulo p counter where p = 2". For values of p that are not an integer power of 2, one could
start with a n-bit counter design and add circuitry to reset the count to 0 when the count of p-1
was detected. A BCD counter (modulo 10) can be created from a 4-bit counter. The binary
count sequence for a modulo 10 counter is: 0000, 0001, 0010 ..., 1000, 1001, 0000.

The VHDL of Figures 1 and 3 show a modulo 3 counter behavioral design. The modulo 3 counter
has three states for the counts from 0 to 2 and the state transitions go through the sequence of
states corresponding to the count and then roll over and repeats when the count hits 2.

LIBRARY ieee;
USE ieee.std logic 1164.all;

ENTITY counter IS
PORT (CLOCK, RESETN, CE : IN STD LOGIC;

F : OUT STD_LOGIC_VECTOR(l DOWNTO 0)) ;
END counter;

Figure 1. Entity of Modulo 3 Counter

The functional simulation of the design is shown in Figure 2. The simulation shows counting
through the full sequence and repeating after count 2 along with the operation when reset and
when the count is not enabled.

Master Time Bar. A » | Pointer. |'IQ4.3S ns | Interval: |'IQ4.35 ns | Start: | | End: | |

0 ps 40? ns ELO(I) ns 120i0 ns ‘IE»OiO ns 200.0ns

0 ps

L ERESETN I—,_
i, CE L
® oF 0 [G D S | 2 b 0 L

Figure 2. Functional Simulation of Modulo 3 Counter

ARCHITECTURE behavior of counter IS
TYPE STATETYPE IS (COUNTO, COUNT1, COUNT2);
SIGNAL STATE : STATETYPE;
BEGIN
-- next state logic
PROCESS (CLOCK, RESETN)
BEGIN
IF RESETN = '0' THEN
STATE <= COUNTO;
ELSIF RISING_EDGE(CLOCK) THEN
CASE STATE IS
WHEN COUNTO =>
IF CE = 'l' THEN
STATE <= COUNT1;

ELSE
STATE <= COUNTO;
END TF;
WHEN COUNT1 =>
IF CE = '"1l' THEN
STATE <= COUNT2;
ELSE
STATE <= COUNTI1;
END TF;
WHEN COUNTZ2 =>
IF CE = '"1' THEN
STATE <= COUNTO;
ELSE
STATE <= COUNT2;
END TF;

END CASE;
END IF;
END PROCESS;

-— output logic

F <= "00" WHEN STATE = COUNTO ELSE
"01l"™ WHEN STATE = COUNT1 ELSE
"10" WHEN STATE COUNT2 ELSE
"00";

END behavior;

Figure 3. Architecture of Modulo 3 Counter

An alternative behavioral design for the modulo 3 counter is shown in Figure 4. The entity is the
same as that used for the previous design, but instead of specifying the sequence of states the

counter goes through, unsigned binary counting is described.

A 2-bit unsigned signal COUNT is defined. On reset, COUNT is initialized to zero (2-bit 00) and
when counting, COUNT is incremented by one. When a count of 2 is detected, the count is reset
to 0. To support unsigned arithmetic, the unsigned data type, and type conversion from
unsigned to standard logic, the numeric package (ieee.numeric std)is used. This package
is also part of the IEEE library and provides support for unsigned and signed integers, arithmetic
operations, comparisons, type conversion, etc.

LIBRARY ieee;
USE ieee.std logic 1164.all;
USE ieee.numeric std.all;

ENTITY counter IS
PORT (CLOCK, RESETN, CE : IN STD LOGIC;

F : OUT STD_LOGIC_VECTOR(l DOWNTO 0)) ;
END counter;

ARCHITECTURE behavior of counter IS
-— 2-bit unsigned number
SIGNAL COUNT : UNSIGNED (1 DOWNTO O);

BEGIN
PROCESS (CLOCK, RESETN)
BEGIN
IF RESETN = '0O' THEN
COUNT <= "00";
ELSIF RISING EDGE (CLOCK) THEN

IF CE = '1l' THEN
IF COUNT = "10"™ THEN
COUNT <= "00";
ELSE
COUNT <= COUNT + 1;
END TIF;
END TF;

END TIF;
END PROCESS;

-- convert unsigned count to standard logic
F <= STD LOGIC VECTOR (COUNT) ;

END behavior;
Figure 4. Modulo 3 Counter

For synthesis, the output F needs to be standard logic and the COUNT is thus converted from
unsigned to standard logic. The functional simulation of the is design is identical to that shown
in Figure 2.

The style of counter design shown in Figure 4 is useful for large counts where the number of
states is prohibitively large. The design algorithm is at a higher level of abstraction than that of
Figures 1 and 3 and realized more on the VHDL compiler for synthesis.

Clock Division

The DE10-Standard board has several external clocks (external to the Cyclone V FPGA) that can
be used for designs. There are four 50MHz clocks for user logic, one 25MHz clock for the Hard
Processor System (HPS), one 25MHz clock for ethernet, and two 24MHz clocks for USB.

For many practical applications, a lower clock frequency is needed. Phase lock loops (PLL)
provide one mechanism for increasing or decreasing a clock frequency. The Cyclone V chip on
the DE10-Standard board has six PLLs. A PLL may not be able to provide the specific frequency
for an application so a clock division circuit may be used in addition to or instead of a PLL. For
example, 1Hz is a common frequency in the design of a timer or other design where an actual
time clock is required.

Creating a lower clock frequency from a higher clock frequency is clock division. The new
frequency frew is related to the original frequency f by a scale factor (divider) N.
f/fnew = N or fnew = f/N

To create a 1kHz clock from a 50MHz clock, the scale factor N would need to be
N = 50M/1k = 50,000,000/1000 = 50,000. Note PLLs can also be used to provide a faster clock
and support both multiplier and divider scale factors.

Figure 5 shows an example of clock division where the original clock is 25MHz (40ns period) and
the output clock frequency after clock division is 6.25MHz (160ns period). A scale factor of 4 is
used for the clock division. The VHDL code of Figure 6 was used to perform this clock division.

Value at| |0 s 800 ns 1600 ns 2400 ns 3200 ns 4000 ns 4800 ns 560,0 ns 6400 ns
Name

ops |0ps
® CLOCK BO
& RESET BO |||

=

ut

(Clock_out BO

Figure 5. Clock Division

¥

Like the example of Figure 4, the numeric package (ieee.numeric std)is used to provide
support for arithmetic and comparison operations. An integer signal COUNT is used to count
the number of clock cycles of the input clock. Although the scale factor is 4, to achieve a 50%
duty cycle of the output clock (equal time high and low in every period) , a count of 2 is
detected and used to toggle the TEMP_CLOCK signal. Since TEMP_CLOCK is toggled twice every

4

output clock cycle, the scale factor is 4 (four input clock cycles for every one output clock cycle).
Concurrent with the counting and toggling process, the CLOCK_OUT signal is set to the
TEMP_CLOCK. The TEMP_CLOCK signal is needed since it is used on both the left and right side
of signal assignment in the process (OUT signals can only be used on left side of signal
assignment).

LIBRARY ieee;
USE ieee.std logic 1l64.all;
USE ieee.numeric std.all;

ENTITY clock div IS

PORT (CLOCK_IN : IN STD LOGIC;
RESETN : IN STD LOGIC;
CLOCK OUT : OUT STD_ LOGIC) ;

END clock div;

ARCHITECTURE behavior of clock div IS
SIGNAL COUNT : INTEGER := 1;
SIGNAL TEMP_CLOCK : STD_LOGIC = '0';

BEGIN
PROCESS (CLOCK_IN, RESETN)
BEGIN
IF (RESETN = '0') THEN
COUNT <= 1;
—-— TEMP CLOCK initialized with O
TEMP_CLOCK <= '0';
ELSIF (RISING EDGE (CLOCK)) THEN
COUNT <= COUNT + 1;
IF (COUNT = 2) THEN
-- TEMP CLOCK inverted every two cycles
TEMP CLOCK <= NOT (TEMP CLOCK) ;
COUNT <= 1;
END IF;
END IF;
END PROCESS;

CLOCK_OUT <= TEMP_CLOCK;

END behavior;

Figure 6. VHDL for Clock Division with Scale Factor of 4

Using Clock Division as Part of a Design

A slower clock or timing operation may be needed for a design. These can be incorporated
using single file or multiple file design. For a single file design, a VHDL architecture may have
multiple process statements executing concurrently (in parallel). For example, a design

5

requiring a D flip-flop with a slower clock than available could have a clock division design and
flip-flop design in parallel as shown in Figure 7.

LIBRARY ieee;
USE ieee.std logic 11l64.all;
USE ieee.numeric std.all;

ENTITY dff with clock div IS
PORT (D, CLOCK : IN STD LOGIC;
RESETN : IN STD LOGIC;
Q : OUT STD LOGIC);
END dff with clock div ;

ARCHITECTURE behavior of dff with clock div IS

SIGNAL COUNT : INTEGER := 1;
SIGNAL TEMP CLOCK : STD LOGIC := '0';
BEGIN

-— clock division
PROCESS (CLOCK, RESETN)
BEGIN
IF (RESETN = '(0') THEN
COUNT <= 1;
TEMP CLOCK <= '0';
ELSIF (RISING EDGE (CLOCK)) THEN
COUNT <= COUNT + 1;
IF (COUNT = 2) THEN
TEMP CLOCK <= NOT(TEMP_CLOCK);
COUNT <= 1;
END IF;
END IF;
END PROCESS;

-—- D flip-flop using slower clock
PROCESS (TEMP CLOCK, RESETN)

BEGIN
IF (RESETN = ‘0’) THEN
Q <= ‘0",
ELSIF (RISING EDGE (TEMP CLOCK)) THEN
Q <= D;
END IF;

END PROCESS;

END behavior;

Figure 7. Combined D flip-flop Clock Divider Design

The architecture has two process statements, one describing the clock division operation and
the other describing the D flip-flop operation. The D flip-flop uses the slower clock
TEMP_CLOCK produced by clock division rather than the CLOCK input.

Single file designs often have simpler project structures but require the entity to support all the
input and outputs signals for all portions of the design. Design reuse is more difficult with single
file designs. A multiple file design often uses a schematic or structural VHDL design for the top
level where all the designs are integrated. Multiple file designs are better for design reuse but
the project structure is more complex.

References
[1] DE10-Standard User Manual, Terasic Inc., 2017

Last modified Tuesday, October 4, 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

