3GEORGIA §OU'IHERN

NIVERSITY

ENGR 2323 Digital Design Lab
State Machine Design using VHDL

VHDL Designs
A VHDL design consists of two parts: the entity and the architecture. The entity specifies the
interface of the design and the architecture specifies the operation of the design.

Structural architectures are similar to a circuit schematic in how design is described; the
operation is described in terms of components and the interconnections between the
components. Behavioral architectures are similar to a high-level program implementation of an
algorithm; the operation is described in terms of the algorithm performed.

Behavioral architectures can be used to describe sequential circuit operation in terms of the
states, state transitions, and outputs. The architecture for a sequential circuit can come from
the state transition table or state diagram. The architecture for more complex designs can
come from a register transfer language description of the design.

VHDL Process Statements

A process statement is executed concurrently with other concurrent statements. The
statements inside of a process statement are executed sequentially like in a typical high-level
programming language.

The general format of an architecture using a process statement is shown in Figure 1.

ARCHITECTURE behavior of design IS
signal declarations
BEGIN
PROCESS (process sensitivity list)
BEGIN
sequential statement
sequential statement
etc.
END PROCESS;

concurrent statement
concurrent statement

etc.

END behavior;

Figure 1. Architecture using Process

The sensitivity list of the process must contain all signals that if changed the process needs to
respond to. The process starts execution when an event (signal value change) for one of the
signals in the sensitivity list occurs. The process statements are executed sequentially in order.

When the last statement is executed, the process is finished, and any signal assignment is
performed. The process is not executed again until another event occurs for a signal in the
sensitivity list.

For synchronous sequential circuits, the event starting a process is typically a change in the
synchronizing signal (clock).

State Memory

For synchronous sequential circuits, flip-flops or registers based on flip-flops are used for the
state memory. For asynchronous sequential circuits, latches are used for the state memory.
State memory can be inferred in VHDL by using a conditional statement that does not specify all
the possible cases (if statement with no else portion). The value of the signal when not
specified in this case is interpreted as a hold of the last value. The VHDL segment of Figure 2
illustrates this for the state transitions of a synchronous sequential circuit with asynchronous
reset.

PROCESS (CLOCK, RESETN)
BEGIN
IF RESETN = '0' THEN
STATE <= STATEO;
ELSIF RISING EDGE (CLOCK) THEN
CASE STATE IS
WHEN STATEQO =>
IF X = '0'" THEN
STATE <= STATEO;

ELSE
STATE <= STATEL;
END TF;
WHEN STATE1l =>
IF X = '0"'" THEN
STATE <= STATEO;
ELSE
STATE <= STATEL;
END TIF;
END CASE;
END TF;

END PROCESS;
Figure 2. VHDL Segment lllustrating State Memory

The sensitivity list of the process contains the CLOCK and RESETN signals. The state memory
should only change if the state machine is reset (any time) or on the active portion of the clock
(rising edge). Notice that the behavior of the circuit is not specified for cases where the RESETN
is high and the CLOCK is not a rising edge. The VHDL compiler infers a hold and for these cases
the STATE will hold its value (STATE <= STATE).

Sequential Circuit Design using VHDL

Following is a VHDL design of a modulo 4 counter (2-bit counter). The counter will count up (00,
01, 10, 11, 00, ...) when the control is activated and hold at the current count when control is
deactivated. This is the same design that was realized using a schematic design for lab 5. The
state diagram and state transition table for the modulo-4 counter are provided in Figures 3 and
4. Since this will be designed using a behavioral architecture, the next state and output
equations are not needed. For a structural architecture, the next state and output equations
would be needed.

CE=0

CE=1 CE=1
One (01)
CE=0 01
C\ CE=0
Zero (00) CE=0 />
i !

Figure 3. State Diagram of Modulo 4 Counter (2-bit counter)

Q1 QO CE F1FO Ql+ QO+
000 00 00
001 00 01
010 01 01
011 01 10
100 10 10
101 10 11
110 11 11
111 11 00
Figure 4. State Transition Table of Modulo 4 Counter (2-bit counter)

The entity of the VHDL design for the modulo 4 counter is given in Figure 5 and the architecture
is given in Figure 7.

The counter inputs are the clock (CLOCK), reset (RESETN), and count enable (CE). The counter
output is a 2-bit signal corresponding to the count value (F).

LIBRARY ieee;
USE ieee.std logic 1164.all;

ENTITY counter IS
PORT (CLOCK, RESETN, CE : IN STD LOGIC;

F : OUT STD_LOGIC_VECTOR(l DOWNTO 0)) ;
END counter;

Figure 5. Module 4 Counter Entity

The architecture consists of a signal STATE of the user defined type STATETYPE used to specify
the current and next state; a PROCESS statement specifying the next state behavior, and a
WHEN ELSE statement specifying the output as a function of the state. Remember that
statements in the process are executed sequentially and the process statement is executed
concurrently with the output logic statement.

The sensitivity list of the process contains the CLOCK and RESETN signals but not the CE signal.
State transitions should only occur if the asynchronous reset is activated or on a rising edge of
the clock. This architecture is not using explicit state variables, Q1 and QO, but there are times
where explicit state assignment would be desirable. The example in Appendix A uses explicit
state assignment. An alternative to using the RISING_EDGE function to detect the rising edge of
the clock is to check that both CLOCK’EVENT and CLOCK = ‘1’ are true.

The functional simulation for the design is given in Figure 6.

(h Simulation Waveform Editor - Ci/Users/tmurphy/Desktop/engr2223counter/counter - counter - [counter_20220917123812.simwwf (Read-0.. — O *

File Edit WView Simulation Help

hIQ X O N ST B OB E KR AR e 2 [

Master Time Bar: A * | Pointer |26.83 ns | Interval: |26.33 ns | Start: | | End: | |
0 ps 100.0 ns 200.0 ns 300.0ns 400.0 ns 500.0 ns 600.0 ns 700.0ns B8000ns
Name Jalue af i i i i i i i
Ops |[0ps

ST T | N I s s e s s e s e
& meseth BOo |||
B cE BO | | | | | | | | | L
= > F BOD oo % o1 T 1 o o0 | X o1 k1o X 11 foo X o1 X 10

< >

0% 00:00:00

Figure 6. Module 4 Counter Functional Simulation

To verify the operation of the counter, for each count the counter holds the count (CE = 0) and
then the counter counts up by one (CE = 1). This is repeated for all four states verifying the
operation for all the state transitions. The simulation also shows the normal counting operation
by having the count enabled enough clock cycles to count through the full sequence and roll
over.

ARCHITECTURE behavior of counter IS
TYPE STATETYPE IS (COUNTO, COUNT1, COUNTZ,
SIGNAL STATE : STATETYPE;
BEGIN
-- next state logic
PROCESS (CLOCK, RESETN)
BEGIN
IF RESETN = '0O' THEN
STATE <= COUNTO;
ELSIF RISING_EDGE(CLOCK) THEN
CASE STATE IS
WHEN COUNTO =>
IF CE = '1' THEN
STATE <= COUNT1;

ELSE
STATE <= COUNTO;
END TIF;
WHEN COUNT1 =>
IF CE = 'l' THEN
STATE <= COUNTZ2;
ELSE
STATE <= COUNT1;
END TIF;
WHEN COUNT2 =>
IF CE = 'l' THEN
STATE <= COUNT3;
ELSE
STATE <= COUNTZ2;
END IF;
WHEN COUNT3 =>
IF CE = 'l' THEN
STATE <= COUNTO;
ELSE
STATE <= COUNT3;
END TIF;
END CASE;
END TIF;

END PROCESS;

-- output logic

F <= "00" WHEN STATE = COUNTO ELSE
"01l" WHEN STATE = COUNT1 ELSE
"10" WHEN STATE COUNTZ2 ELSE
"11l" WHEN state COUNT3 ELSE
"oo";

END behavior;

COUNT?3) ;

Figure 7. Module 4 Counter Architecture

References
None

Appendix A, Design of a 2-bit Up and Down Counter

The state diagram for a 2-bit up and down counter is given in Figure 8 and the state transition
table for the counter is given in Figure 9. The counter counts up through the 2-bit sequence
when CE =1 and UDN = 1 and counts down when CE = 1 and UDN = 0. When not enabled, the
counter holds the current count.

The state names and codings are: countO Q = 00, countl Q =01, count2 Q = 10, and count3 Q =
11. The output is the count, F = Q.

CE=0,
UDN =X

CE=1,

countl (01)
F=01

CE=0,
UDN =X CE=0,
UDN =X
C\ countO (00) />
F= 00 count2 (10)

CE=1
UDN =0
CE=1
U UDN =1
CE=0,
UDN =X

Figure 8. State Diagram for 2-bit Up and Down Counter

The next state and output expressions are not needed for a behavior design. The VHDL

description for a behavior sequential circuit can come from the state diagram or state transition
table.

The entity of the VHDL design for the 2-bit up and down counter is given in Figure 10. A portion
of the architecture showing the process for the state transitions from countO is given in Figure

11, and the state assignment and output logic are given in Figure 12. The full design is given in
Appendix B.

Count Q1 Q0 CE UDN F1 FO Q1+ QO+
countO 0000O 00 00
0001 00 00
0010 00 11
0011 00 01
countl 0100 01 01
0101 01 01
0110 01 00
0111 01 10
count2 1000 10 10
1001 10 10
1010 10 01
1011 10 11
count3 1100 11 11
1101 11 11
1110 11 10
1111 11 00

Figure 9. State Transition Table for 2-bit Up and Down Counter

The entity has the state as an output for testing purposes. Typically, the state is not an output
of a sequential circuit.

The CE and UDN inputs are concatenated into a 2-bit signal to allow for next state selection
based on both inputs using a CASE statement. The reset is asynchronous and does not
depending upon the clock signal. Note in the conditional statements in the process, that single
guotes are used to specify a 1-bit constant and double quotes are used to specify a multiple bit
constant.

LIBRARY ieee;
USE ieee.std logic 1164.all;

ENTITY counterupdown IS
PORT (CLOCK, RESETN : IN STD LOGIC;
CE, UDN : IN STD LOGIC;
Q : OUT STD LOGIC VECTOR(1 DOWNTO O);
F : OUT STD LOGIC VECTOR (1 DOWNTO 0)) ;
END counterupdown;

Figure 10. Entity for 2-bit Up and Down Counter

ARCHITECTURE behavior of counterupdown IS

TYPE STATETYPE IS (COUNTO, COUNT1l, COUNTZ2, COUNT3);
SIGNAL STATE : STATETYPE;

SIGNAL CE UDN : STD LOGIC VECTOR(1 DOWNTO O);

BEGIN
-—- concatenate the CE and UDN signals
CE UDN <= CE & UDN;

-- next state logic
PROCESS (CLOCK, RESETN)
BEGIN
IF RESETN = '0' THEN
STATE <= COUNTO;
ELSIF RISING EDGE (CLOCK) THEN
CASE STATE IS
WHEN COUNTO =>
CASE CE UDN IS
WHEN "00" => STATE <= COUNTO;
WHEN "O01" => STATE <= COUNTO;
WHEN "10" => STATE <= COUNT3;
WHEN "11" => STATE <= COUNT1;
END CASE;

Figure 11. Architecture for 2-bit Up and Down Counter

A case statement is used to specify the state transitions since there are four state transitions
from each state. In the modulo 4 counter example prior, the state transitions were specified
using an if statement since there were only two transitions from each state.

-— output logic

F <= "00" WHEN STATE = COUNTO ELSE
"01l" WHEN STATE = COUNT1 ELSE
"10" WHEN STATE = COUNTZ2 ELSE
"11" WHEN state COUNT3 ELSE
"OO";

-—- state assignments
Q <= "00" WHEN STATE = COUNTQO ELSE
"01l"™ WHEN STATE = COUNT1 ELSE
"10" WHEN STATE = COUNT2 ELSE
"11" WHEN state = COUNT3 ELSE
I|OOI|;
END behavior;

Figure 12. Architecture for 2-bit Up and Down Counter

The state assignment and output logic are defined outside the process and are updated in
parallel with state transitions in the process.

The functional simulation of the 2-bit Up and Down Counter is given in Figure 13. The
simulation does not fully verify the operation of the counter as all of the count holds have not
been tested.

(h Simulation Waveform Editor - C:/Users/tmurphy/Desktop/engr2323counterupdown//counterupdown - counterupdown - [counterupdown_2022092... — O X

File Edit WView Simulation Help
RlQ 30t Z)0E 8 EEEE 22

Master Time Bar: 1 * | Pointer: |554.53 ns | Interval: |554.53 ns | Start: | | End: | |

.og
i

Value at 0 ps ‘IDDiOns 200i0n5 BDDiOns 400i0n5 SDDiOns EODiOns ?DOiOns 800.0 ns
Mame 0ps 0ps
B CLOCK EBO
W RESETN BO
B cE BO
& UDN BO |
& ’a B 00 00 HEB R EE TS S ¥ oo X ¥ 10 Ko1K 00
B 0 F B 00 00 HEBD &R S D S W oo X1 104 o1k 00
£ >

Snap to Transition 0% 00:00:00

Figure 13. Functional Simulation for 2-bit Up and Down Counter

Appendix B, VHDL for 2-bit Up and Down Counter

LIBRARY ieee;

USE ieee.std logic 1164.all;

ENTITY counterupdown IS

PORT (CLOCK, RESETN : IN STD LOGIC;

CE, UDN : IN STD LOGIC;

Q : OUT STD LOGIC VECTOR(1l DOWNTO O)
F : OUT STD LOGIC VECTOR (1 DOWNTO O0)

END counterupdown;

)

14

ARCHITECTURE behavior of counterupdown IS

TYPE STATETYPE IS (COUNTO,

SIGNAL STATE : STATETYPE;

COUNTI1,

COUNTZ2, COUNT3) ;

SIGNAL CE UDN : STD LOGIC VECTOR(1l DOWNTO O);

BEGIN

-—- concatenate the CE and UDN signals

CE UDN <= CE & UDN;

-- next state logic
PROCESS (CLOCK, RESETN)
BEGIN

IF RESETN = 'O' THEN

STATE <= COUNTO;

ELSTIF RISING EDGE (CLOCK)

CASE STATE IS
WHEN COUNTO =>

CASE CE_UDN

WHEN "00"
WHEN "0O1"
WHEN "10"
WHEN "11"
END CASE;

WHEN COUNT1 =>
CASE CE_UDN

WHEN "00"
WHEN "01"
WHEN "10"
WHEN "11"
END CASE;
WHEN COUNT2 =>
CASE CE_UDN
WHEN "00"
WHEN "01"
WHEN "10"
WHEN "11"

STATE
STATE
STATE
STATE

STATE
STATE
STATE
STATE

STATE
STATE
STATE
STATE

10

THEN

= COUNTO;
= COUNTO;
= COUNT3;
= COUNT1;

= COUNTI1;
= COUNT1;
= COUNTO;
= COUNTZ;

= COUNT2;
= COUNT2;
= COUNT1;
= COUNT3;

END CASE;
WHEN COUNT3 =>

CASE CE UDN IS
WHEN "00"™ => STATE <= COUNT3;
WHEN "Q01"™ => STATE <= COUNT3;
WHEN "10"™ => STATE <= COUNTZ;
WHEN "11"™ => STATE <= COUNTO;

END CASE;

END CASE;
END TIF;
END PROCESS;

-— output logic

F <= "00" WHEN STATE = COUNTO ELSE
"01l"™ WHEN STATE COUNT1 ELSE
"10" WHEN STATE = COUNT2 ELSE
"11" WHEN state COUNT3 ELSE
"OO";

-— state assignments
Q <= "Q00" WHEN STATE = COUNTQO ELSE
"01l" WHEN STATE = COUNT1l ELSE
"10" WHEN STATE COUNTZ2 ELSE
"11" WHEN state COUNT3 ELSE
"OO";
END behavior;

Last modified Thursday, September 22, 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

11

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

