
   

 
 

ENGR 2323 Digital Design Lab 
State Machine Design using VHDL 

 
VHDL Designs 
A VHDL design consists of two parts: the entity and the architecture. The entity specifies the 
interface of the design and the architecture specifies the operation of the design. 
 
Structural architectures are similar to a circuit schematic in how design is described; the 
operation is described in terms of components and the interconnections between the 
components. Behavioral architectures are similar to a high-level program implementation of an 
algorithm; the operation is described in terms of the algorithm performed. 
 
Behavioral architectures can be used to describe sequential circuit operation in terms of the 
states, state transitions, and outputs. The architecture for a sequential circuit can come from 
the state transition table or state diagram. The architecture for more complex designs can 
come from a register transfer language description of the design. 
 
VHDL Process Statements 
A process statement is executed concurrently with other concurrent statements. The 
statements inside of a process statement are executed sequentially like in a typical high-level 
programming language. 
 
The general format of an architecture using a process statement is shown in Figure 1. 
 
ARCHITECTURE behavior of design IS 

signal declarations 

BEGIN 

 PROCESS (process sensitivity list) 

 BEGIN 

  sequential statement 

  sequential statement 

  etc. 

 END PROCESS; 

 

 concurrent statement 

 concurrent statement 

etc. 

 

END behavior; 

Figure 1. Architecture using Process 
 
The sensitivity list of the process must contain all signals that if changed the process needs to 
respond to. The process starts execution when an event (signal value change) for one of the 
signals in the sensitivity list occurs. The process statements are executed sequentially in order. 
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When the last statement is executed, the process is finished, and any signal assignment is 
performed. The process is not executed again until another event occurs for a signal in the 
sensitivity list. 
 
For synchronous sequential circuits, the event starting a process is typically a change in the 
synchronizing signal (clock). 
 
State Memory 
For synchronous sequential circuits, flip-flops or registers based on flip-flops are used for the 
state memory. For asynchronous sequential circuits, latches are used for the state memory. 
State memory can be inferred in VHDL by using a conditional statement that does not specify all 
the possible cases (if statement with no else portion). The value of the signal when not 
specified in this case is interpreted as a hold of the last value. The VHDL segment of Figure 2 
illustrates this for the state transitions of a synchronous sequential circuit with asynchronous 
reset. 
 

Figure 2. VHDL Segment Illustrating State Memory 
 
The sensitivity list of the process contains the CLOCK and RESETN signals. The state memory 
should only change if the state machine is reset (any time) or on the active portion of the clock 
(rising edge). Notice that the behavior of the circuit is not specified for cases where the RESETN 
is high and the CLOCK is not a rising edge. The VHDL compiler infers a hold and for these cases 
the STATE will hold its value (STATE <= STATE). 
 

PROCESS(CLOCK, RESETN) 

BEGIN 

   IF RESETN = '0' THEN 

      STATE <= STATE0; 

   ELSIF RISING_EDGE(CLOCK) THEN 

      CASE STATE IS 

         WHEN STATE0 => 

            IF X = '0' THEN 

               STATE <= STATE0; 

    ELSE 

   STATE <= STATE1; 

        END IF; 

     WHEN STATE1 => 

       IF X = '0' THEN 

      STATE <= STATE0; 

   ELSE 

      STATE <= STATE1; 

   END IF;    

       END CASE; 

   END IF; 

END PROCESS; 
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Sequential Circuit Design using VHDL 
Following is a VHDL design of a modulo 4 counter (2-bit counter). The counter will count up (00, 
01, 10, 11, 00, …) when the control is activated and hold at the current count when control is 
deactivated. This is the same design that was realized using a schematic design for lab 5. The 
state diagram and state transition table for the modulo-4 counter are provided in Figures 3 and 
4. Since this will be designed using a behavioral architecture, the next state and output 
equations are not needed. For a structural architecture, the next state and output equations 
would be needed. 
 

One (01)

01

Zero (00)

00

Two (10)

10

Three (11)

11

CE = 1 CE = 1

CE = 1CE = 1

CE = 0

CE = 0

CE = 0
CE = 0

 
Figure 3. State Diagram of Modulo 4 Counter (2-bit counter) 
 

Q1 Q0 CE F1 F0 Q1+ Q0+ 

0  0  0 0 0 0 0 

0  0  1 0 0 0 1 

0  1  0 0 1 0 1 

0  1  1 0 1 1 0 

1  0  0 1 0 1 0 

1  0  1 1 0 1 1 

1  1  0 1 1 1 1 

1  1  1 1 1 0 0 

Figure 4. State Transition Table of Modulo 4 Counter (2-bit counter) 
 
The entity of the VHDL design for the modulo 4 counter is given in Figure 5 and the architecture 
is given in Figure 7. 
 
The counter inputs are the clock (CLOCK), reset (RESETN), and count enable (CE). The counter 
output is a 2-bit signal corresponding to the count value (F). 
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Figure 5. Module 4 Counter Entity 
 
The architecture consists of a signal STATE of the user defined type STATETYPE used to specify 
the current and next state; a PROCESS statement specifying the next state behavior, and a 
WHEN ELSE statement specifying the output as a function of the state.  Remember that 
statements in the process are executed sequentially and the process statement is executed 
concurrently with the output logic statement.  
 
The sensitivity list of the process contains the CLOCK and RESETN signals but not the CE signal. 
State transitions should only occur if the asynchronous reset is activated or on a rising edge of 
the clock. This architecture is not using explicit state variables, Q1 and Q0, but there are times 
where explicit state assignment would be desirable. The example in Appendix A uses explicit 
state assignment. An alternative to using the RISING_EDGE function to detect the rising edge of 
the clock is to check that both CLOCK’EVENT and CLOCK = ‘1’ are true. 
 
The functional simulation for the design is given in Figure 6. 
 

 
Figure 6. Module 4 Counter Functional Simulation 
 
To verify the operation of the counter, for each count the counter holds the count (CE = 0) and 
then the counter counts up by one (CE = 1). This is repeated for all four states verifying the 
operation for all the state transitions. The simulation also shows the normal counting operation 
by having the count enabled enough clock cycles to count through the full sequence and roll 
over. 
 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

 

ENTITY counter IS 

PORT(CLOCK, RESETN, CE : IN STD_LOGIC; 

       F : OUT STD_LOGIC_VECTOR(1 DOWNTO 0)); 

END counter; 
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Figure 7. Module 4 Counter Architecture 
 
References 
None 

ARCHITECTURE behavior of counter IS 

TYPE STATETYPE IS (COUNT0, COUNT1, COUNT2, COUNT3); 

SIGNAL STATE : STATETYPE; 

BEGIN 

   -- next state logic 

   PROCESS(CLOCK, RESETN) 

   BEGIN 

      IF RESETN = '0' THEN 

         STATE <= COUNT0; 

      ELSIF RISING_EDGE(CLOCK) THEN 

         CASE STATE IS 

            WHEN COUNT0 => 

               IF CE = '1' THEN 

                  STATE <= COUNT1; 

   ELSE 

      STATE <= COUNT0; 

   END IF; 

    WHEN COUNT1 => 

   IF CE = '1' THEN 

      STATE <= COUNT2; 

   ELSE 

      STATE <= COUNT1; 

   END IF;    

    WHEN COUNT2 => 

   IF CE = '1' THEN 

      STATE <= COUNT3; 

   ELSE 

      STATE <= COUNT2; 

   END IF;        

    WHEN COUNT3 => 

   IF CE = '1' THEN 

      STATE <= COUNT0; 

   ELSE 

      STATE <= COUNT3; 

   END IF;      

         END CASE; 

      END IF; 

   END PROCESS; 

       

   -- output logic 

   F  <= "00" WHEN STATE = COUNT0 ELSE 

  "01" WHEN STATE = COUNT1 ELSE 

  "10" WHEN STATE = COUNT2 ELSE 

  "11" WHEN state = COUNT3 ELSE 

  "00"; 

 

END behavior; 
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Appendix A, Design of a 2-bit Up and Down Counter  
The state diagram for a 2-bit up and down counter is given in Figure 8 and the state transition 
table for the counter is given in Figure 9. The counter counts up through the 2-bit sequence 
when CE = 1 and UDN = 1 and counts down when CE = 1 and UDN = 0. When not enabled, the 
counter holds the current count. 
 
The state names and codings are: count0 Q = 00, count1 Q = 01, count2 Q = 10, and count3 Q = 
11. The output is the count, F = Q. 
 

count1 (01)
F = 01

count0 (00)
F = 00

count2 (10)
F = 10

count3 (11)
F = 11

CE = 1, 
UDN = 1

CE = 0, 
UDN = X

CE = 0, 
UDN = X

CE = 0, 
UDN = X

CE = 0, 
UDN = X

CE = 1, 
UDN = 1

CE = 1, 
UDN = 1

CE = 1, 
UDN = 1

CE = 1, 
UDN = 0

CE = 1, 
UDN = 0

CE = 1, 
UDN = 0

CE = 1, 
UDN = 0

 
Figure 8. State Diagram for 2-bit Up and Down Counter 
 
The next state and output expressions are not needed for a behavior design. The VHDL 
description for a behavior sequential circuit can come from the state diagram or state transition 
table. 
 
The entity of the VHDL design for the 2-bit up and down counter is given in Figure 10. A portion 
of the architecture showing the process for the state transitions from count0 is given in Figure 
11, and the state assignment and output logic are given in Figure 12. The full design is given in 
Appendix B. 
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Count Q1 Q0 CE UDN F1  F0 Q1+ Q0+ 

count0 0  0  0  0 0 0 0 0 

 0  0  0  1 0 0 0 0 

 0  0  1  0 0 0 1 1 

 0  0  1  1 0 0 0 1 

count1 0  1  0  0 0 1 0 1 

 0  1  0  1 0 1 0 1 

 0  1  1  0 0 1 0 0 

 0  1  1  1 0 1 1 0 

count2 1  0  0  0 1 0 1 0 

 1  0  0  1 1 0 1 0 

 1  0  1  0 1 0 0 1 

 1  0  1  1 1 0 1 1 

count3 1  1  0  0 1 1 1 1 

 1  1  0  1 1 1 1 1 

 1  1  1  0 1 1 1 0 

 1  1  1  1 1 1 0 0 

Figure 9. State Transition Table for 2-bit Up and Down Counter  
 
The entity has the state as an output for testing purposes. Typically, the state is not an output 
of a sequential circuit. 
 
The CE and UDN inputs are concatenated into a 2-bit signal to allow for next state selection 
based on both inputs using a CASE statement. The reset is asynchronous and does not 
depending upon the clock signal. Note in the conditional statements in the process, that single 
quotes are used to specify a 1-bit constant and double quotes are used to specify a multiple bit 
constant. 
 

Figure 10. Entity for 2-bit Up and Down Counter 
 
 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

 

ENTITY counterupdown IS 

PORT(CLOCK, RESETN : IN STD_LOGIC; 

 CE, UDN  : IN STD_LOGIC; 

 Q : OUT STD_LOGIC_VECTOR(1 DOWNTO 0); 

    F : OUT STD_LOGIC_VECTOR(1 DOWNTO 0)); 

END counterupdown; 
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Figure 11. Architecture for 2-bit Up and Down Counter 
 
 A case statement is used to specify the state transitions since there are four state transitions 
from each state. In the modulo 4 counter example prior, the state transitions were specified 
using an if statement since there were only two transitions from each state. 
 

Figure 12. Architecture for 2-bit Up and Down Counter 
 

ARCHITECTURE behavior of counterupdown IS 

TYPE STATETYPE IS (COUNT0, COUNT1, COUNT2, COUNT3); 

SIGNAL STATE : STATETYPE; 

SIGNAL CE_UDN : STD_LOGIC_VECTOR(1 DOWNTO 0); 

 

BEGIN 

   -- concatenate the CE and UDN signals 

   CE_UDN <= CE & UDN; 

 

 -- next state logic 

 PROCESS(CLOCK, RESETN) 

        BEGIN 

           IF RESETN = '0' THEN 

              STATE <= COUNT0; 

           ELSIF RISING_EDGE(CLOCK) THEN 

              CASE STATE IS 

                 WHEN COUNT0 => 

                    CASE CE_UDN IS 

                       WHEN "00" => STATE <= COUNT0; 

                       WHEN "01" => STATE <= COUNT0; 

                       WHEN "10" => STATE <= COUNT3; 

                       WHEN "11" => STATE <= COUNT1; 

                    END CASE; 

   -- output logic 

   F  <= "00" WHEN STATE = COUNT0 ELSE 

  "01" WHEN STATE = COUNT1 ELSE 

  "10" WHEN STATE = COUNT2 ELSE 

  "11" WHEN state = COUNT3 ELSE 

  "00"; 

 

   -- state assignments 

   Q  <= "00" WHEN STATE = COUNT0 ELSE 

  "01" WHEN STATE = COUNT1 ELSE 

  "10" WHEN STATE = COUNT2 ELSE 

  "11" WHEN state = COUNT3 ELSE 

  "00"; 

END behavior; 
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The state assignment and output logic are defined outside the process and are updated in 
parallel with state transitions in the process. 
 
The functional simulation of the 2-bit Up and Down Counter is given in Figure 13. The 
simulation does not fully verify the operation of the counter as all of the count holds have not 
been tested. 
 

 
Figure 13. Functional Simulation for 2-bit Up and Down Counter 
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Appendix B, VHDL for 2-bit Up and Down Counter 
LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

 

ENTITY counterupdown IS 

PORT(CLOCK, RESETN : IN STD_LOGIC; 

CE, UDN  : IN STD_LOGIC; 

Q : OUT STD_LOGIC_VECTOR(1 DOWNTO 0); 

F : OUT STD_LOGIC_VECTOR(1 DOWNTO 0)); 

END counterupdown; 

 

ARCHITECTURE behavior of counterupdown IS 

TYPE STATETYPE IS (COUNT0, COUNT1, COUNT2, COUNT3); 

SIGNAL STATE : STATETYPE; 

SIGNAL CE_UDN : STD_LOGIC_VECTOR(1 DOWNTO 0); 

 

BEGIN 

-- concatenate the CE and UDN signals 

CE_UDN <= CE & UDN; 

 

-- next state logic 

PROCESS(CLOCK, RESETN) 

BEGIN 

IF RESETN = '0' THEN 

STATE <= COUNT0; 

ELSIF RISING_EDGE(CLOCK) THEN 

CASE STATE IS 

WHEN COUNT0 => 

CASE CE_UDN IS 

WHEN "00" => STATE <= COUNT0; 

WHEN "01" => STATE <= COUNT0; 

WHEN "10" => STATE <= COUNT3; 

WHEN "11" => STATE <= COUNT1; 

END CASE; 

WHEN COUNT1 => 

CASE CE_UDN IS 

WHEN "00" => STATE <= COUNT1; 

WHEN "01" => STATE <= COUNT1; 

WHEN "10" => STATE <= COUNT0; 

WHEN "11" => STATE <= COUNT2; 

END CASE;    

WHEN COUNT2 => 

CASE CE_UDN IS 

WHEN "00" => STATE <= COUNT2; 

WHEN "01" => STATE <= COUNT2; 

WHEN "10" => STATE <= COUNT1; 

WHEN "11" => STATE <= COUNT3; 
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END CASE;        

WHEN COUNT3 => 

CASE CE_UDN IS 

WHEN "00" => STATE <= COUNT3; 

WHEN "01" => STATE <= COUNT3; 

WHEN "10" => STATE <= COUNT2; 

WHEN "11" => STATE <= COUNT0; 

END CASE;      

END CASE; 

END IF; 

END PROCESS; 

       

-- output logic 

F  <= "00" WHEN STATE = COUNT0 ELSE 

"01" WHEN STATE = COUNT1 ELSE 

"10" WHEN STATE = COUNT2 ELSE 

"11" WHEN state = COUNT3 ELSE 

"00"; 

 

-- state assignments 

Q  <= "00" WHEN STATE = COUNT0 ELSE 

"01" WHEN STATE = COUNT1 ELSE 

"10" WHEN STATE = COUNT2 ELSE 

"11" WHEN state = COUNT3 ELSE 

"00";  

END behavior; 
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