
   

 
 

ENGR 2323 Digital Design Lab 
Introduction to VHDL  

 
VHDL 
Hardware description languages (HDL) allow for the design, documentation, synthesis, and 
verification of complex digital designs. Hardware description languages are high-level languages 
resembling programming languages that allow one to specify a circuit design in a form that 
resembles a computer program. Hardware description languages allow the designer to describe 
a design at various levels of abstraction from high-level behavioral descriptions to low-level 
using primitive components. HDLs are geared to describing hardware structures and the 
hardware structure’s behavior and they differ from conventional high-level programming 
languages in that they support parallel (concurrent) operation. 
 
VHDL stands for VHSIC HDL, where VHSIC stands for very high-speed integrated circuit and HDL 
stands for hardware description language. VHDL is non-proprietary and an IEEE standard (IEEE 
1076 – 2019).  Verilog is another commonly used digital circuit HDL, but we will focus on VHDL 
in this course. 
 
VHDL Designs 
HDLs are typically used with CAD tools such as Quartus that take the HDL design and synthesize 
the hardware (convert description to primitive components and necessary connections) similar 
to how a compiler takes a high-level program and generates a machine language program. 
Designs can be specified using waveforms, schematics, or HDLs. We have used the Quartus 
schematic (block diagram) editor for both combinational and sequential circuit design. HDLs can 
be a better design choice for more complex circuits. 
 
A VHDL design consists of two parts: the interface (entity) and the implementation 
(architecture). The interface specifies the inputs and outputs, in other words the interface 
specifies what the circuit looks like to user from outside. The implementation specifies the 
operation of the circuit and is primarily important to the designer (not the user). The 
implementation for a circuit is not unique, for example a designer may use one architecture to 
test their logic but use another for the actual implementation and verify timing. 
 
Consider the digital circuit schematic of Figure 1 that realizes the Boolean expression 

F U V U V W=  +   . 
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Figure 1. Schematic Design 
 
The circuit inputs are U, V, and W (all single bit) and the circuit output is F (single bit). The VHDL 
entity of Figure 2a describes the interface and the architecture of Figure 2b shows a dataflow 
implementation.  
 

Figure 2a. VHDL Entity 
 

Figure 2b. VHDL Dataflow Architecture 
 
In Figures 2a and 2b, the words entity, is, port, in, out, end, architecture, begin, 

and, or, not are all VHDL reserved words. The symbols :, ;, and <= are VHDL symbols. The <= 

symbol is for signal assignment.  VHDL is case-insensitive and is a strongly typed language (no 
type conversion). Semicolons (;) indicate the end of a VHDL statement. Two dashes (--) indicate 
a comment. 
 
In Quartus projects, design modules can be schematic designs, HDL designs, or a mixture of 
both. The top-level design module must have the same name as the project. 
 
Entity 
The library statements in the VHDL code define the compiled design units that will be used in 
the design. These statements will almost always be included at the top of the VHDL code and 
give access to previously designed units known as packages. 
 
The use statement specifies which entities or packages to use out of the library. In the entity of 
Figure 2a, USE ieee.std_logic_1164.all; imports all of the std_logic_1164 package 

from the IEEE library. The std_logic_1164 package defines a 9-valued logic system, of which 
only 4 values can be used for synthesis of designs (1, 0, - (don’t care), Z (high impedance). 
 
The entity defines the interface of the module and the port list defines the signals accessible 
outside the module. The signals can either be input (in), output (out), or bidirectional (inout) 
and the signal type can either be std_logic (single bit signal) or std_logic_vector (bus). The 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

 

ENTITY ckt IS 

    PORT (U, V, W : IN STD_LOGIC; 

  F : OUT STD_LOGIC); 

END ckt; 

ARCHITECTURE dataflow OF ckt IS 

BEGIN 

    F <= (not U and V) or  (not U and not V and W); 

END dataflow; 
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width of the bus can be defined in either ascending or descending order (0 upto 3) or (3 downto 
0). 
 
Architecture 
The architecture defines the operation of the module. Multiple architectures can be defined for 
an entity and a configuration statement can be used to specify which architecture to use (we 
will not do this in this course).  
 
Statements in the architecture block are concurrent (not sequential as in most programming 
languages). The order in which they appear does not affect the outcome and all the operations 
are performed at the same time. VHDL does allow sequential statements to be used as part of a 
process. 
 
Designs cane be described using four styles of modeling: structural, dataflow, behavioral, and 
mixed. 
 
Structural Architectures 
Structural architectures describe the operation in terms of components and the 
interconnections between them. Structural architectures are similar to the circuit schematic 
that they model. 
 
Dataflow Architectures 
Dataflow architectures describe the operation using concurrent assignment statements. The 
assignment statements may be logic expressions or register transfer language (RTL) expressions 
describing how signals flow through the design 
 
Behavioral Architectures 
Behavioral architectures describe the operation in terms of the algorithm performed by the 
module. These architectures look similar to high level program implementations of algorithms. 
Behavioral architectures often use sequential assignment statements inside process 
statements. 
 
Mixed Architectures 
Mixed architectures use any combination of the above three styles to describe the operation. 
 
Full Adder Design 
Consider the design of a full adder. A full adder takes two one-bit numbers and a carry in and 
generates a one-bit sum and a carry out.  
 
The sum and carry out can be realized using the expressions  

inS  X Y  C=    

in inCo X Y X C Y C=  +  +   
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X Y Cin S Co 

0   0    0 0 0 

0   0    1 1 0 

0   1    0 1 0 

0   1    1 0 1 

1   0    0 1 0 

1   0    1 0 1 

1   1    0 0 1 

1   1    1 1 1 

Figure 3. Function Table for Full Adder 
 
Figure 4a shows the entity for the full adder design. There are three inputs X, U, and Cin. The 
inputs are each 1-bit of type standard logic. There are two outputs S and Cout, each 1-bit and of 
type standard logic. 
 

Figure 4a. fulladder Entity 
 
Figure 4b shows a dataflow architecture for the full adder. The operation is described using 
concurrent assignment statements corresponding to the Boolean expressions describing the 
design. 
 

Figure 4b. fulladder Dataflow Architecture 
 
Figure 5 shows a structural architecture for the full adder.  
 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

 

ENTITY fulladder IS 

PORT(X, Y, Cin : IN STD_LOGIC; 

 S, Cout : OUT STD_LOGIC); 

END fulladder; 

ARCHITECTURE dataflow of fulladder IS 

BEGIN 

 S <= X XOR Y XOR Cin; 

 Cout <= (X AND Y) OR (X AND Cin) OR (Y AND Cin); 

END dataflow; 
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Figure 5. fulladder Structural Architecture 
 
The structural design uses the AND_gate, OR_gate, and XOR_gate components. These were 
previously designed and compiled. The AND_gate component is shown in Figure 6. Signals are 
used for internal signals to make connections between components. These are like having a 
wire with the signal name. 
 

ARCHITECTURE structural of fulladder IS 

 

COMPONENT AND_gate 

PORT(A, B : IN STD_LOGIC; 

 Y : OUT STD_LOGIC); 

END COMPONENT; 

 

COMPONENT OR_gate 

PORT(A, B : IN STD_LOGIC; 

 Y : OUT STD_LOGIC); 

END COMPONENT; 

 

COMPONENT XOR_gate 

PORT(A, B : IN STD_LOGIC; 

 Y : OUT STD_LOGIC); 

END COMPONENT; 

 

SIGNAL V1 : STD_LOGIC; 

SIGNAL V2, V3, V4, V5 : STD_LOGIC; 

 

BEGIN 

-- S <= X XOR Y XOR Cin; 

gate1: XOR_gate PORT MAP(X, Y, V1); 

gate2: XOR_gate PORT MAP(V1, Cin, S); 

-- Cout <= (X AND Y) OR (X AND Cin) OR (Y AND Cin); 

gate3: AND_gate PORT MAP(X, Y, V2); 

gate4: AND_gate PORT MAP(X, Cin, V3); 

gate5: AND_gate PORT MAP(Y, Cin, V4); 

gate6: OR_gate PORT MAP(V2, V3, V5); 

gate7: OR_gate PORT MAP(V4, V5, Cout); 

 

END structural; 
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Figure 6. AND_gate Component 
 
The components are declared using the component statement and then instantiated each time 
the component is used. As part of instantiating the component, the component connections are 
specified using a port map. The signals are matched to the component entity by the order in the 
port map. Gate3 is an AND_gate component. The inputs of the gate are X (mapped to A of 
AND_gate) and Y (mapped to B of AND_gate) and the output is signal V1 (mapped to Y of the 
AND_gate). 
 
Behavioral Architecture and Process Statements 
Behavioral architectures often look nothing like how the design ends up being implemented 
and one is relying on the compiler to translate the design to a hardware implementation. 
Behavioral descriptions are often used to model complex designs that would be difficult to 
model using one of the other architectures such as a commercial microprocessor. Behavioral 
descriptions can also be used to evaluate a design and determine if functionally it is correct and 
later convert the design or portions of the design to a structural architecture. 
 
Behavioral architectures often use process statements. Statements in processes are executed 
sequentially but the signal assignments are all made at the end of the process. A process is a 
concurrent statement and can be thought of as a single operation. Processes are executed 
concurrently with other concurrent statements (signal assignment statements, other processes, 
etc.) in the architecture. 
 
Figures 7 and 8 show two behavioral architectures for the full adder design. The Figure 7 
description does not use a process and is describing the operation conditionally, similar to the 
way a function table specifies operation. 
 
 

LIBRARY IEEE; 

USE IEEE.STD_LOGIC_1164.All; 

 

ENTITY AND_gate IS 

PORT(A, B : IN STD_LOGIC; 

 Y : OUT STD_LOGIC); 

END AND_gate; 

 

ARCHITECTURE dataflow of AND_gate IS 

BEGIN 

 Y <= A AND B ; 

END dataflow; 



   

7 
 

Figure 7. fulladder Behavorial Architecture 
 
The Figure 8 description also describes the full adder operation conditionally but using a 
process statement. 
 
ARCHITECTURE behavior of fulladder IS 

BEGIN 

 PROCESS (X, Y, Cin) 

 BEGIN 

  IF X='0' AND Y='0' AND Cin='0' THEN 

   S <= '0'; 

   Co <= '0'; 

  ELSIF X='0' AND Y='0' AND Cin='1' THEN 

   S <= '1'; 

   Co <= '0'; 

  ELSIF X='0' AND Y='1' AND Cin='0' THEN 

   S <= '1'; 

   Co <= '0'; 

  ELSIF X='0' AND Y='1' AND Cin='1' THEN 

   S <= '0'; 

   Co <= '1'; 

  ELSIF X='1' AND Y='0' AND Cin='0' THEN 

   S <= '1'; 

   Co <= '0'; 

  ELSIF X='1' AND Y='0' AND Cin='1' THEN 

   S <= '0'; 

   Co <= '1'; 

  ELSIF X='1' AND Y='1' AND Cin='0' THEN 

   S <= '0'; 

   Co <= '1'; 

  ELSIF X='1' AND Y='1' AND Cin='1' THEN 

   S <= '1'; 

ARCHITECTURE behavior of fulladder IS 

BEGIN 

 S <= '1' WHEN X='0' AND Y='0' AND Cin='1' ELSE 

  '1' WHEN X='0' AND Y='1' AND Cin='0' ELSE 

  '1' WHEN X='1' AND Y='0' AND Cin='0' ELSE 

  '1' WHEN X='1' AND Y='1' AND Cin='1' ELSE 

  '0'; 

 

 Cout <= '1' WHEN X='0' AND Y='1' AND Cin='1' ELSE 

     '1' WHEN X='1' AND Y='0' AND Cin='1' ELSE 

     '1' WHEN X='1' AND Y='1' AND Cin='0' ELSE 

             '1' WHEN X='1' AND Y='1' AND Cin='1' ELSE 

             '0'; 

END behavior; 
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   Co <= '1'; 

  END IF; 

 END PROCESS; 

END behavior; 

Figure 8. fulladder Behavioral Architecture using Process 
 
The process starts execution when an event (signal change) for one of the signals in the 
sensitivity list occurs (in Figure 8, the sensitivity list is X, Y, Cin). The process statements are 
executed sequentially in order. When the last statement is executed the process is finished and 
any signal assignment is performed. The process is not executed again until another event 
occurs for a signal in the sensitivity list. 
 
Process statements can be used to describe combinational and sequential logic, but one must 
be careful using processes for combinational logic as the compiler often interprets latches 
between the inputs and outputs. The design of Figure 8 compiled using Quartus  generates 
warnings that latches have been inferred for the outputs. For the full adder to be properly 
synthesized, the process would need to be reworked to not infer latches for the outputs. 
 
Warning (10631): VHDL Process Statement warning at fulladder.vhd(35): inferring latch(es) for 
signal or variable "S", which holds its previous value in one or more paths through the process 
Warning (10631): VHDL Process Statement warning at fulladder.vhd(35): inferring latch(es) for 
signal or variable "Co", which holds its previous value in one or more paths through the process 
 
Info (10041): Inferred latch for "Co" at fulladder.vhd(35) 
Info (10041): Inferred latch for "S" at fulladder.vhd(35) 
 
Overview of VHDL Language 
VHDL Data Types 
VHDL Standard: 

• bit values: '0', '1' 

• boolean values: TRUE, FALSE 

• integer values: -(231) to +(231 - 1) {SUN Limit} 

• natural values: 0 to integer'high (subtype of integer) 

• positive values: 1 to integer'high (subtype of integer) 

• character values: ASCII characters (eg. 'A') 

• time values include units (eg. 10ns, 20us) 

• bit_vector array (natural range <>) of bit 
 
IEEE Standard 1164 (package ieee.std_logic_1164.all) 

• std_ulogic values: 'U','X','1','0','Z','W','H','L','-' 

• 'U' = uninitialized 

• 'X' = unknown 

• 'W' = weak 'X' 
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• 'Z' = floating 

• 'H'/'L' = weak '1'/'0' 

• '-' = don't care 

• std_logic resolved "std_ulogic" values 

• std_logic_vector array (natural range <>) of std_logic 
 
VHDL Statements and Operators 
VHDL concurrent statements include: 

• Signal assignments (direct assignment, when else, with select) 

• Process statement 

• Component instantiation 

• Generate statement 

• Block statement 
 
VHDL Sequential Statements include: 

• Signal assignment 

• Variable assignment 

• Conditional statements (if elsif else, case) 

• Loop statements (along with next and exit) 
 
VHDL Arithmetic and Logical Operators include: 

• Logical: and, or, nand, nor, xor, not (for boolean or bit ops) 

• Relational: =, /=, <, <=, >, >= 

• Arithmetic: +, -, *, /, mod, rem, **, abs 

• Concatenate: & 
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