
Physical DB Design and DB Security

CS 3410 DB

Introduction
● Physical database design is the process of transforming logical data

models into physical data models.
● Conceptual data modeling is a map of concepts and their

relationships used for databases.
● The relational model is one of the most commonly used models in

contemporary database applications.
● The principles of logical database design for the relational model

apply to many other logical models as well.

Background
● The first database was developed in the 1960s when

computers were mostly used for private organizations.
● The two most popular data models during the 1960s were

the CODASYL (Conference/Committee on Data Systems
Languages) and IMS (Information Management System).

● These database systems began to change during the 1970s
when E.F Codd published a paper on his revolutionary
ideas about the relational model/database.

Background Continued…
● The ER(Entity-Relationship) Diagram was developed in 1976. By

P. Chen. The ER module allows developers to focus less on the
logic table structure and more on research data application.

● In 1980, SQL(Structured Query Language) became the standard
query language among databases.

● Before 1980, Government organizations were the first ones to
invest heavily into security of data.

● Today, research is still being conducted on database security
and continues to evolve year to year.

Logical Design vs Physical Design
● The logical design is made up of several characteristics

such as: Entity, Relationship, Attribute(s), and a Unique
Identifier.

● The physical design consists of a table, foreign key,
column(s), and a primary key.

[4.2.1] Physical Database Design Process

● The design of a physical database design is heavily influenced on integrity and
performance.

● According to Adrienne Watt, database design starts with a conceptual data
model and produces a specification of a logical schema.

● The database design process is initialized from the logical data model that will
be used in the database design and can be represented as an E-R(Entity-
Relationship) diagram.

● Physical database design is concerned with the design of fields. A field is the
smallest unit of application data recognized by system software.

[4.2.2] Data Partitioning
● Partitioning is a concept in databases in which very large tables and data

are partitioned into smaller, individual tables, and queries.
● Horizontal partitioning is the classification of the rows based on

common characteristics into several, separate tables.
● In range partitioning, each partitioned portion is characterized by a

range of values for one or multiple columns such as IDs, or dates.
● Hash partitioning is the spreading of data in even partitions

autonomous of the key value.
● List partitioning is a technique where a list of distinct values is defined

as the partitioning key in the characterization for each partition

Pros of Data Partitioning
• Partitioning is practical and helps manage the table because

partitioning helps identify the area where maintenance is needed and
saves storage space.

• Partitioning is also secure as only the relevant and necessary data can
be specifically chosen and accessed by the user.

• Backing up and securing files is easier due to their smaller size and if
one file is corrupted, the other is still accessible.

• Partitioning also helps with balancing the load. The partitioned files can
be designated to different storage locations which reduces conflict and
maximizes performance.

8

Cons of Data Partitioning

● Partitioning is inconsistent with the access speed.
Due to all partitions not being identical, the access
speeds tend to differ.

● Due to the complex nature of partitions, the code
required to program will need to be more complex,
and challenging.

● Partition takes up excess storage space and time.

[4.3.1] Describe three types of file organization

File Organization
● According to (Venkataraman, R., Topi, H. 2011) a “file organization is a

technique for arranging the records of a file on secondary storage devices.”
● With modern relational DBMS it is not necessary to design file organizations,

but you are to be allowed to select an organization and its parameters for a
table or physical file.

● In choosing a file organization for a particular file in a database consider seven
important factors: Fast data retrieval, high throughput for processing data
input and maintenance transactions, Efficient use of storage space, Protection
from failures or data loss, minimizing need for reorganization, accommodating
growth and security from unauthorized use

Sequential & Indexed File Organization

● Sequential File Organization
● In a sequential file organization, the records in the file are stored in sequence

according to a primary key value.
● To locate a particular record, a program must normally scan the file from the

beginning until the desired record is located. A common example of a sequential
file is the alphabetical list of persons in the white pages of a telephone
directory.

● A comparison of the capabilities of sequential files with the other two types of
files can be seen in figure 1.3. “Because of their inflexibility, sequential files are
not used in a database but may be used for files that back up data from a
database.” (Venkataraman, R., Topi, H. 2011)

Indexed File Organization
● The records are stored either sequentially or not sequential, and an index is

created that allows the application software to locate individuals. “A card catalog
in a library, an index is a table that is used to determine in a file the location of
records that satisfy some condition.”(Venkataraman, R., Topi, H. 2011) Each index
entry matches a key value with one or more records.

● An index can point to unique records or to potentially more than one record.
According to (Venkataraman, R., Topi, H. 2011) “an index that allows each entry to
point to more than one record is called a secondary key index.” Secondary key
indexes are important for supporting many reporting requirements and for
providing rapid ad hoc data retrieval.

● An example would be an index on the ProductFinish column of a Product table.
Because indexes are extensively used with relational DBMSs, and the choice of
what index and how to store the index entries matters greatly in database
processing performance.

Hash File Organization
● To determine or compute the address of a record within a file is to a hash file

organization can be used and implemented as algorithm or function.
● A hash algorithm is an algorithm that takes an input of random size and proceeds to

transform the input such that the hash result is an output of fixed length.
● Once the output is determined or computed, the hash result is irreversible, meaning

that the algorithm can only process data in one-way.
● The use of hashing algorithms is commonly found in databases for practically any

website that requires a password to login to an account and is illustrated in Figure
1.4.

Clustering File Organization:
● Defining a table to be in only one cluster reduces retrieval time for only those tables

stored in the same cluster.
● This technique of file organization is known as clustering files and is illustrated in

Figure 1.5.

Hash File Organization

Security
● Database files are stored in a proprietary format by the database which allows

for access controls over the files.
● A useful procedures to consider are backups to ensure that stored data may be

retrieved in the event that data may be compromised.
● Another technique employs the utilization of encryption to encrypt data

contained within files and allow for only programs with access to decrypt the
encrypted files to read them.

● Encryption involves two methods of encryption: symmetric encryption and
asymmetric encryption. Symmetric encryption makes use of a single key for all
parties communicating and is used for both encrypting data and decrypting data.

● Asymmetric encryption makes use of two keys for all parties communicating
where the first key is used for encryption and the second key is used for
decryption.

Comparison of File Organization

Figure 1.4. Hashing
Algorithm, by jscrambler,
2020,
https://blog.jscrambler.c
om/hashing-algorithms/.
Copyright 2020 by
jscrambler

https://blog.jscrambler.com/hashing-algorithms/

Comparison of
File Organization

Fig 1.3 Modern Database
Management 10th

edition.((Venkataraman, R.,
Topi, H. 2011))

Comparative Features of different File Organization

[4.4.1] Translate a database model
into efficient structures

● Database manipulations demand the location of a row
or a collection of rows that satisfies a condition.

● Searching for data can be quite the laborious task,
given the magnitude of a database. Hence, using
indexes can vastly increase the speed of the process
and reduce the time and work.

● The usage and definition of indexes are a crucial spoke
on the wheel of physical database design. Indexes are
defined as either a primary key, secondary key, or
both. It is ordinary to define an index for the primary
key of a table.

● The index is formed of two columns: one column for
the key and the other column for the address of the
record that consists of the key value. In the case of a
primary key, the index will only have one entry for
each key value.

●

Indexing in Databases, by
GeeksforGeeks, 2020,
https://www.geeksforgeeks.org/indexi
ng-in-databases-set-1/ Copyright
2020 by GeeksforGeeks.org

Using, Selecting, Creating & When to use Indexes
● Using and selecting Indexes
● Given the magnitude of a database, searching for data can be quite the laborious task. Hence, using indexes

can vastly increase the speed of the process and reduce the time and work. The usage and definition of
indexes are a crucial spoke on the wheel of physical database design. Indexes are defined as either a primary
key, secondary key, or both. It is ordinary to define an index for the primary key of a table. The index is formed
of two columns: one column for the key and the other column for the address of the record that consists of
the key value. In the case of a primary key, the index will only have one entry for each key value.

● Creating a unique index
● The syntax to create a unique key index in SQL is "CREATE [UNIQUE] INDEX index_name ON

table_name(column1, ... column_n);". The UNIQUE modifier specifies the values in the indexed columns.
Creating a non unique key index is equivalent to a secondary key index. The term UNIQUE isn't used to create
a secondary key index because values can be repeated.

● When to use indexes
● It is important to know when to use an index and which attributes to use when creating an index. Using

indexes come at the price of performance. Performance is compromised when using indexes due to the
overload for maintenance for insertions, deletions, and updating records. For this reason, indexes should be
utilized mainly for data retrieval. According to the book, “Indexes should be used judiciously for databases
that support transaction processing and other applications with heavy updating requirements, because the
indexes impose additional overhead” (Hoffer, Venkataraman, & Topi, 2011). Here are some rules or conditions
that suggest the use of indexes.

●

Rules & Conditions That Suggest The Use of Indexes

● 1. Indexes are a lot more efficient and practical for substantial tables.
● 2. Indexes are useful when there is a need to set out a unique index for the primary key.
● 3. Indexes are frequently used for columns that appear in WHERE modifiers of SQL commands.
● 4. Indexes should be used when for attributes referenced in ORDER BY and GROUP BY

statements.
● 5. Indexes are convenient when there is diversity in the values of an attribute. For Oracle's

standards, it is unproductive to use an index when an attribute has fewer than 30 values.
● 6. One point to keep in mind is to consider developing a compressed version of the values. Doing

this will ensure that the index isn't slower to process.
● 7. If the index is used for finding the location of where the record will be stored, make sure the

key of this index is a surrogate key to ensure the records will be fairly spread across the storage
space.

● 8. Make sure to check the limit of indexes on the DBMS because some systems do not allow for
more than 16 indexes.

● 9. Find a way to index attributes that have null values because rows with a null value won't be
referenced.

●

4.4.1 Designing a Database for optimal Query
Performance

● Database processing can include adding, deleting and modifying a database along with method of
retrieving data. The amount of work required to optimize query for performance heavily relies on DBMS.

● Architecture of modern computers has changed greatly over the years and the use of multiple processors
in database servers has become standard. Symmetric multiprocessor (SMP) is commonly used in database
servers to allow multiple processing. DBMS that use parallel query processing include planning on
breaking up a query that can be processed in parallely by different processors.

● “Suppose you have an Order table with several million rows for which query performance has been
slow. To ensure that subsequent scans of this table are performed in parallel, using at least three
processors, you would alter the structure of the table with the SQL command:”(Hoffer, Venkataraman, &
Topi, 2011)

● ALTER TABLE ORDER_T PARALLEL 3; (Hoffer, Venkataraman, & Topi, 2011)

● Schumacher reported, “on a test in which the time to perform a query was cut in half with parallel
processing compared to using a normal table scan. Because an index is a table, indexes can also be given
the parallel structure, so that scans of an index are also faster.” Schumacher also reported an example of
parallel processing reducing the time of creating an index from seven minutes to five seconds.(Hoffer,
Venkataraman, & Topi, 2011)

Designing a Database for optimal Query Performance
(continued...)
● Parallel processing not only improves the time of table scans but also can be used on joining tables,

grouping query results,sorting, deleting, updating, and insertion.
● Often the designer creating the query has information to better optimize the query that the query

module in the DBMS does not. In most relational DBMs the optimizer’s plan for processing the query
can be known by the designer before actually running the query. This is done through the command
EXPLAIN or EXPLAIN PLAIN which display all the information about the optimizer’s plans to process
the query.

● The query optimizer makes its decision on how to process the query by looking at data from each
table such as average row length or the number or rows. You can submit multiple EXPLAIN
commands with a query written in different ways to see if the optimizer predicts different
performance.

● That allows you to find the best performance and submit that for actual processing. With some
DBMs you can force the optimizer to take different steps or use resources other than what the
optimizer thinks is the best performance. The clause (/**/) can be used to overriders what the query
determines is the best way to process the query.

●

Extended Resources
Description & Links

● This is a video lecture from the University of Washington by Grey Hay, about the physical database design methodology. This
video goes into extreme detail about physical database design from the ground up and how the methodology is implemented.
https://www.youtube.com/watch?v=S98_8HalY5Q

●
This video talks about the oracle database security in a broad approach, mainly focused in Europe. The video discusses
important security topics from current database security laws, benefits, history, risks and many more topics.
https://www.youtube.com/watch?v=GXF3T4g2tJg

●
This video by Kimberly Tripp where she discusses why physical database design matters. Kimberly discusses the importance of
good design and also how poor design and can lead to major performance
issues. https://www.youtube.com/watch?v=H-jPsp2QlT0

●
Lightstone, S., Nadeau, T., & Teorey, T. J. (2007). Physical Database Design : The Database Professional’s Guide to Exploiting
Indexes, Views, Storage, and More. Morgan Kaufmann.

●
Erickson, J., & Siau, K. (2009). Advanced Principles for Improving Database Design, Systems Modeling and Software
Development. IGI Global.

●
Carmel-Gilfilen, C. (2013). Bridging security and good design: Understanding perceptions of expert and novice shoplifters.
Security Journal, 26(1), 80–105. https://doi.org/10.1057/sj.2011.34

●
Burtescu, E. (2009). Database Security - Attacks and Control Methods. Journal of Applied Quantitative Methods, 4(4), 449–454.

●

https://www.youtube.com/watch?v=S98_8HalY5Q
https://www.youtube.com/watch?v=GXF3T4g2tJg
https://www.youtube.com/watch?v=H-jPsp2QlT0
https://doi.org/10.1057/sj.2011.34

References
● CloudGirl, & CloudGirl. (2017, March 26). Data Partitioning: Vertical Partitioning, Horizontal Partitioning, and Hybrid

Partitioning Project Update #3. Retrieved from http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-
partitioning/

● DigitalOcean. (2019, October 28). Understanding Database Sharding. Retrieved from
https://www.digitalocean.com/community/tutorials/understanding-database-sharding

● Database VLDB and Partitioning Guide. (2016, July 20). Retrieved from
https://docs.oracle.com/database/121/VLDBG/GUID-BE424ACC-F746-4CA8-973C-F578CF98FF10.htm#VLDBG00225

● Lesov, P. (2010). Database Security: A Historical Perspective. ArXiv, abs/1004.4022.
● Quick Base. (n.d.). A Timeline of Database History. Retrieved from https://www.quickbase.com/articles/timeline-of-

database-history
● Watt, Adrienne. (n.d.). Chapter 13 Database Development Process. Retrieved from

https://opentextbc.ca/dbdesign01/chapter/chapter-13-database-development-process/
● What is Entity Relationship Diagram? (ERD). (2020). Retrieved from https://www.visual-paradigm.com/guide/data-

modeling/what-is-entity-relationship-diagram/
● Hoffer, A. J., Venkataraman, R., Topi, H. (2011). Modern Database Management 10e[E-Reader Version]. Retrieved

from https://www.amazon.com/Modern-Database-Management-Jeffrey-Hoffer/dp/0136088392
● Burleson Consulting. (2014, April 23). Oracle parallel query tips. Retrieved March 28, 2020, from http://www.dba-

oracle.com/art_opq.htm
● Chung, C. (n.d.). Introduction to Hashing and its uses. 2BrightSparks.

https://www.2brightsparks.com/resources/articles/introduction-to-hashing-and-its-uses.html
●

https://docs.oracle.com/database/121/VLDBG/GUID-BE424ACC-F746-4CA8-973C-F578CF98FF10.htm#VLDBG00225
https://opentextbc.ca/dbdesign01/chapter/chapter-13-database-development-process/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://www.amazon.com/Modern-Database-Management-Jeffrey-Hoffer/dp/0136088392
http://www.dba-oracle.com/art_opq.htm

	Module_4�Physical DB Design and DB Security
	Introduction
	Background
	Background Continued…
	Logical Design vs Physical Design
	[4.2.1] Physical Database Design Process
	[4.2.2] Data Partitioning
	Pros of Data Partitioning
	Cons of Data Partitioning
	[4.3.1] Describe three types of file organization��
	Sequential & Indexed File Organization
	Indexed File Organization
	Hash File Organization
	Hash File Organization
	Security
	Comparison of File Organization��
	Comparison of File Organization
	Comparative Features of different File Organization�
	[4.4.1] Translate a database model into efficient structures ��
	Using, Selecting, Creating & When to use Indexes��
	� Rules & Conditions That Suggest The Use of Indexes ��
	4.4.1 Designing a Database for optimal Query Performance��
	Designing a Database for optimal Query Performance (continued...)��
	Slide Number 24
	 Extended Resources� Description & Links ��
	References

