
SQL & ER

CS 3410 DB

Introduction and Background

• In the modern world, corporations find themselves faced with a
common problem: the lack of efficiency with record keeping. This,
amongst other reasons, is why we are here today to introduce to you
the language of data known as SQL.

• SQL originated in the 1970’s when Dr. Edgar F. Codd created the relational
model of database management.

• A special characteristic of SQL is that it is a 4th generation language meaning
it falls more closely in line with that of the English language and therefore is
more easily understood.

• The first ANSI SQL language standards were published in 1986 and have been
consistently updated since (the most notable of these changes being the one
featured in 1992)

How has SQL changed over the years?

• In 1992 there was a significant change featuring a structural overhaul which
would now entail 3 levels: Entry, Intermediate, and Expert

• SQL now has 4 major components which enable its function:
-Query Dispatcher
-Optimization Engines
-Classic Query Engines
SQL Query Engine

Through the use of these components, a user can interact with the system by
using commands which SQL specifies. This includes but is not limited to CREATE,
DELETE, DROP, SELECT, and INSERT.

History of SQL

- SQL stands for Structured Query Language, and it is a non-procedural language used in an RDBMS.
- It is based on relational algebra and calculus expressions that can evaluate truth on and over relations.
- SQL became a particularly popular choice within databases when Chamberlin and Boyce, the creators of SQL,

implemented relational operators into the language so as to compactly represent complex queries.
- SQL was also special in that it did not require the user to specify how to reach the data they wished to access

with their query.
- SQL’s unique capabilities: ease of use, high accessibility, and good readability allowed it to rise to common

use, and as it stands now, there are no good alternatives to SQL.
- SQL is considered the standard language for relational database’s by ANSI and ISO.

Unary Operators

- According to Ted Codd, a database is a set of relations that are often represented by tables that
contain rows and columns

- Unary operators act on a single instance of a relation (one table)
- Project, Select, and Rename are the most popular and useful unary operators to know
- Projection will give the user the specified column(s) that they wish to extract from the tables
- Selection will give the user the rows that satisfy conditions they set for the data within the

table
- Rename will allow the user to change the names of relations, entities, and attributes
- Composing these operators is possible, but it can cause errors if done incorrectly
- Examples follow on the next slide

Examples of Unary Operators

Projection query:

SELECT Name, Class

FROM Table

This query will extract the Name Column and
Class Column from the specified table named
Table. This is an example of projection because
we are obtaining desired columns and deleting
undesirable ones.

Selection query:
SELECT *
FROM Table
WHERE class = ‘Bio’

This query will select all of the columns in the table to
evaluate. After obtaining these columns, it will only return
the rows where the student’s class is Bio. This is selection
because we are extracting desired rows while removing
ones that do not meet our requirements.

Name ID Class

Cam 1414 Bio

Ak 2976 Lit

Binary Operators

- Oftentimes, databases will have multiple relation instances, multiple tables
- Chamberlin and Boyce also devised binary operators: join, union, intersect, and set difference
- Join will combine two relations based on a predicate (JOIN)
- Union will combine two relations that are compatible (UNION)
- Intersect will find and return the unique rows from each relation (INTERSECT)
- Set difference will return the unique rows in only the first relation (MINUS)
- It is important to remember that an error can be thrown if the queried relations are not

compatible
- If relation 1 has a name and class while relation 2 has a name and ID, attempting to union or set

difference the two relations will throw an error

Examples of Binary Operators

Example of UNION

SELECT Name
FROM TableOne
UNION
SELECT Name
FROM TableTwo
This query will first get the Name column from each
of the tables. Afterwards, it will join the Name
columns of the two tables to get the resulting table.
Note that Name is the only column that will be
affected by the union operator, so the queried
relations compatible.

Example of Set Difference
SELECT Name
FROM TableOne
MINUS
SELECT Name
FROM TableTwo
This query will minus the Name columns of the two
tables to ge t the resulting table . Note tha t Name is the
only column tha t will be a ffected by the union opera tor,
so the queried re la tions a re compatible .

Name ID Class

Cam 1414 Bio

Ak 2976 Lit

Name Range Class

Shin 99 Bio

Navi 180 Lit

SQL Triggers

In 2004, SQL released the update 5.0.2 which introduced triggers among
other features.

Triggers were designed to make queries much more powerful. With a trigger,
one can set a condition that needs to be met in order to perform certain
actions.

Instead of writing the same query for each instance, SQL how has listeners to
watch out for certain criteria.

PHP

It was initially released in 1994 and has since been expanded upon and is
now the most popular scripting language for MySQL databases.

Its relevance comes from being able to write scripts within the database to
run queries.

This eases the overhead on the front end making the entire service more
efficient.

PL/SQL

PL/SQL is another scripting language released in 1989 by Oracle.

Specifically designed with SQL in mind, PL/SQL provides an incredibly
straightforward way to incorporate automation in your database.

Moving automation and triggers onto the database leaves less work for the
front end of the service as less information needs to travel back and forth
from client to server thus reducing network traffic.

PL/SQL Cont.

PL/SQL is designed to be written in
blocks.

In this example we see a simple way to
incorporate an SQL statement in a
PL/SQL block.

PL/SQL also has its own built-in
functions like DBMS_OUTPUT that do
not require SQL to write.

Database Management Systems

• The most popular DB management systems today are:
• Oracle – Ranked the highest out of the ones listed due to its portability and

funcationality
• Microsoft SQL - Relational DB management system developed by microsfoft

(useful for those involved in the Microsoft stack)
• MySQL – Another Relational DB management system which is open source

and made by Allan Larsson
• MongoDB – A document-oriented DB program

Defining a Database: Data Definition Language

• There are 4 major categories which are used to define a database:
• Data Definition Language – This is what’s used to define the data, database

objects and schema within the database. This is done through the use of
command such as CREATE, DROP, ALTER, TRUNCATE, COMMENT, and
RENAME. The main utility for these commands would be fore large generic
changes to your DB, or for startup of your DB.

• As you can see belore we added a salary column by using the “ALTER TABLE
Employee” and

“ADD Salary” commands.
EmployeeName EmployeeID Position

John 123 Engineer

Jeff 456 Accountant

Jason 789 QA

EmployeeName EmployeeID Position Salary

John 123 Engineer

Jeff 456 Accountant

Jason 789 QA

Data Query Language and Data Control Language

• DQL - This category of language is actually used to perform manipulations to the
data within schemas rather than the schemas themselves as mentioned above.
The primary example of a DQL is the select command which selects a set of data
which you want to perform your operation on and does this by retrieving the
data from the database (Varshini, D., 2019, August 26)

• DML - This category is mostly just concerning the rights and permissions of other
users on the network database and has commands which manage these things.
These commands such as GRANT and REVOKE simply grant or revoke
permissions to a specified user on the database system. This is important for
both data security and data integrity. It ensures that data can only be seen by
people who must see it, and it also ensures data cannot be changed by someone
who does not have an understanding of what is happening in the database.
Otherwise, information can be incorrect or even leaked.

Data Manipulation Language

• This is different from DQL because DQL only takes into consideration
data from the schema object. It is also worth noting that this
category includes most of the commonly used SQL statements such
as INSERT, DELETE, and UPDATE which each has a pretty intuitive
utility corresponding to its name. These allow users to actually
modify data in small increments, rather than make sweeping changes
that would be seen in DDL.

• Example:

Employee
Name

Employee
ID

Position Salary After Commands:

INSERT INTO
Employee(EmployeeNa
me,EmployeeID,Positio
n,Salary)

VALUES (“Jonah”, 159,
Janitor, 1000000)

EmployeeNa
me

EmployeeID Position Salary

Jonah 159 Janitor 1000000

5.3 Write Single Table Queries Using SQL

• Query – A call for a specific set, group or combination of data. To
query in a database one must use a language that the database
understands.

• Table – Objects within a database that include some, or all, of the
data from the database. Data is organized into rows and columns.

• Rows – Represent unique item
• Columns – Represent different attributes the item contains

5.3 Student Table

StudentName StudentID ClassID Grade

John 123 987 90

Jeff 456 654 83

Jason 789 321 97

Student (Kashefi 2020)

5.3 Continued

• The example table labeled Students illustrates the use of rows and
columns. The first column holds the student’s name which will be
used to represent unique items in the rows.

• The columns in each row contain unique information specific to that
row. This makes each row unique with its own unique data.

• We use SQL commands to query the table such as SELECT and FROM
commands.

• SELECT allows us to choose the columns we will be querying from.
• FROM allows us to choose which table to query.

5.3 Commands

• SELECT * FROM Student, allows entire table to be asked to be
queried. The asterisk is shorthand way to ask for every column.

• SELECT StudentName, Grade FROM Student, This will tell us the
name and grade for every student.

• SELECT StudentName, Grade FROM Student WHERE Grade < 95,
WHERE will only return a row if the information in one of the
specific columns fits a specific condition of the query.

5.4 Establish Referential Integrity using SQL

• Referential integrity - The accuracy and consistency of data in a
relationship. Referential integrity requires that a foreign key
references a primary key.

• Primary key - The key or specific column in a parent table
• Foreign key - The key in a child table that references the primary key

5.4 Child and Parent Tables

Department

Employee ID Department

6789 Marketing

5632 R&D

Employee

Employee ID Age Salary

6789 25 56000

5632 29 83000

Parent Table

Child Table

5.4 Continued

• Primary key is Employee ID and it is referenced in the Child table,
making it a foreign key in this table.

• As a result of this relationship a user will be prevented from:
• Adding information in the child table if the same information is not

also in the parent table
• Changing data in the primary table that result in parentless keys in

the child table(orphaned)
• Deleting records from the parent table if they exist in the child table.

5.4 Conclusion

• A lack of Referential integrity can result in records being lost and/or
inaccurate or confusing.

• Therefore it is imperative to have Referential integrity or else this lack
of can have negative repercussions for those that use database
systems.

Resources

• Raza, M. (2018, August 29). What is a DBMS? Database Management
Systems Explained. Retrieved from
https://www.bmc.com/blogs/dbms-database-management-systems/

Introduction
● Physical database design is the process of transforming logical data

models into physical data models.
● Conceptual data modeling is a map of concepts and their

relationships used for databases.
● The relational model is one of the most commonly used models in

contemporary database applications.
● The principles of logical database design for the relational model

apply to many other logical models as well.

Background
● The first database was developed in the 1960s when

computers were mostly used for private organizations.
● The two most popular data models during the 1960s were

the CODASYL (Conference/Committee on Data Systems
Languages) and IMS (Information Management System).

● These database systems began to change during the 1970s
when E.F Codd published a paper on his revolutionary
ideas about the relational model/database.

Background Continued…
● The ER(Entity-Relationship) Diagram was developed in 1976. By

P. Chen. The ER module allows developers to focus less on the
logic table structure and more on research data application.

● In 1980, SQL(Structured Query Language) became the standard
query language among databases.

● Before 1980, Government organizations were the first ones to
invest heavily into security of data.

● Today, research is still being conducted on database security
and continues to evolve year to year.

Logical Design vs Physical Design
● The logical design is made up of several characteristics

such as: Entity, Relationship, Attribute(s), and a Unique
Identifier.

● The physical design consists of a table, foreign key,
column(s), and a primary key.

[4.2.1] Physical Database Design Process

● The design of a physical database design is heavily influenced on integrity and
performance.

● According to Adrienne Watt, database design starts with a conceptual data
model and produces a specification of a logical schema.

● The database design process is initialized from the logical data model that will
be used in the database design and can be represented as an E-R(Entity-
Relationship) diagram.

● Physical database design is concerned with the design of fields. A field is the
smallest unit of application data recognized by system software.

[4.2.2] Data Partitioning
● Partitioning is a concept in databases in which very large tables and data

are partitioned into smaller, individual tables, and queries.
● Horizontal partitioning is the classification of the rows based on

common characteristics into several, separate tables.
● In range partitioning, each partitioned portion is characterized by a

range of values for one or multiple columns such as IDs, or dates.
● Hash partitioning is the spreading of data in even partitions

autonomous of the key value.
● List partitioning is a technique where a list of distinct values is defined

as the partitioning key in the characterization for each partition

Pros of Data Partitioning
• Partitioning is practical and helps manage the table because

partitioning helps identify the area where maintenance is needed and
saves storage space.

• Partitioning is also secure as only the relevant and necessary data can
be specifically chosen and accessed by the user.

• Backing up and securing files is easier due to their smaller size and if
one file is corrupted, the other is still accessible.

• Partitioning also helps with balancing the load. The partitioned files can
be designated to different storage locations which reduces conflict and
maximizes performance.

32

Cons of Data Partitioning

● Partitioning is inconsistent with the access speed.
Due to all partitions not being identical, the access
speeds tend to differ.

● Due to the complex nature of partitions, the code
required to program will need to be more complex,
and challenging.

● Partition takes up excess storage space and time.

[4.3.1] Describe three types of file organization

File Organization
● According to (Venkataraman, R., Topi, H. 2011) a “file organization is a

technique for arranging the records of a file on secondary storage devices.”
● With modern relational DBMS it is not necessary to design file organizations,

but you are to be allowed to select an organization and its parameters for a
table or physical file.

● In choosing a file organization for a particular file in a database consider seven
important factors: Fast data retrieval, high throughput for processing data
input and maintenance transactions, Efficient use of storage space, Protection
from failures or data loss, minimizing need for reorganization, accommodating
growth and security from unauthorized use

SQL and ER
• It is very important to remember that a database is a model of

a user’s view of the world. The only question is “How well
does it fit the mental models of the people who are going to
use the database system?”

• It is up to database administrators to create a SQL and Entity-
Relationship (E-R) platform and provide the needs to fit user
requirements.

• ER-Assistant provides relationships that are expressed using a
different notation. It is easy to use but the entity boxes cannot
be resized, leading to text length limitations.

• Eriwin uses solid vs. dashed lines for M:N relationships; this can only
be specified on “children” in a relationship.

• These features mean that nearly any E-R diagram created using Erwin
will be incorrect for this text. Figure_1 below illustrates the differences
between the notation used in the text and the notation used by Erwin.

Database Drawing such as Dia and Visio 2016 display names and roles of
relationships and do not distinguish between weak and strong entities (no
rounded corners). Connecting lines are solid:

Information Engineering (IE) began with the work of Clive data
modeling tools which is one of the most popular notations
for database design using with a crow's foot.

AGENT CAR1:1

AGENT_VEHICLE

Sequential & Indexed File Organization

● Sequential File Organization
● In a sequential file organization, the records in the file are stored in sequence

according to a primary key value.
● To locate a particular record, a program must normally scan the file from the

beginning until the desired record is located. A common example of a sequential
file is the alphabetical list of persons in the white pages of a telephone
directory.

● A comparison of the capabilities of sequential files with the other two types of
files can be seen in figure 1.3. “Because of their inflexibility, sequential files are
not used in a database but may be used for files that back up data from a
database.” (Venkataraman, R., Topi, H. 2011)

Indexed File Organization
● The records are stored either sequentially or not sequential, and an index is

created that allows the application software to locate individuals. “A card catalog
in a library, an index is a table that is used to determine in a file the location of
records that satisfy some condition.”(Venkataraman, R., Topi, H. 2011) Each index
entry matches a key value with one or more records.

● An index can point to unique records or to potentially more than one record.
According to (Venkataraman, R., Topi, H. 2011) “an index that allows each entry to
point to more than one record is called a secondary key index.” Secondary key
indexes are important for supporting many reporting requirements and for
providing rapid ad hoc data retrieval.

● An example would be an index on the ProductFinish column of a Product table.
Because indexes are extensively used with relational DBMSs, and the choice of
what index and how to store the index entries matters greatly in database
processing performance.

Hash File Organization
● To determine or compute the address of a record within a file is to a hash file

organization can be used and implemented as algorithm or function.
● A hash algorithm is an algorithm that takes an input of random size and proceeds to

transform the input such that the hash result is an output of fixed length.
● Once the output is determined or computed, the hash result is irreversible, meaning

that the algorithm can only process data in one-way.
● The use of hashing algorithms is commonly found in databases for practically any

website that requires a password to login to an account and is illustrated in Figure
1.4.

Clustering File Organization:
● Defining a table to be in only one cluster reduces retrieval time for only those tables

stored in the same cluster.
● This technique of file organization is known as clustering files and is illustrated in

Figure 1.5.

Hash File Organization

Security
● Database files are stored in a proprietary format by the database which allows

for access controls over the files.
● A useful procedures to consider are backups to ensure that stored data may be

retrieved in the event that data may be compromised.
● Another technique employs the utilization of encryption to encrypt data

contained within files and allow for only programs with access to decrypt the
encrypted files to read them.

● Encryption involves two methods of encryption: symmetric encryption and
asymmetric encryption. Symmetric encryption makes use of a single key for all
parties communicating and is used for both encrypting data and decrypting data.

● Asymmetric encryption makes use of two keys for all parties communicating
where the first key is used for encryption and the second key is used for
decryption.

Comparison of File Organization

Figure 1.4. Hashing
Algorithm, by jscrambler,
2020,
https://blog.jscrambler.c
om/hashing-algorithms/.
Copyright 2020 by
jscrambler

https://blog.jscrambler.com/hashing-algorithms/

Comparison of
File Organization

Fig 1.3 Modern Database
Management 10th

edition.((Venkataraman, R.,
Topi, H. 2011))

Comparative Features of different File Organization

[4.4.1] Translate a database model
into efficient structures

● Database manipulations demand the location of a row
or a collection of rows that satisfies a condition.

● Searching for data can be quite the laborious task,
given the magnitude of a database. Hence, using
indexes can vastly increase the speed of the process
and reduce the time and work.

● The usage and definition of indexes are a crucial spoke
on the wheel of physical database design. Indexes are
defined as either a primary key, secondary key, or
both. It is ordinary to define an index for the primary
key of a table.

● The index is formed of two columns: one column for
the key and the other column for the address of the
record that consists of the key value. In the case of a
primary key, the index will only have one entry for
each key value.

●

Indexing in Databases, by
GeeksforGeeks, 2020,
https://www.geeksforgeeks.org/indexi
ng-in-databases-set-1/ Copyright
2020 by GeeksforGeeks.org

Using, Selecting, Creating & When to use Indexes
● Using and selecting Indexes
● Given the magnitude of a database, searching for data can be quite the laborious task. Hence, using indexes

can vastly increase the speed of the process and reduce the time and work. The usage and definition of
indexes are a crucial spoke on the wheel of physical database design. Indexes are defined as either a primary
key, secondary key, or both. It is ordinary to define an index for the primary key of a table. The index is formed
of two columns: one column for the key and the other column for the address of the record that consists of
the key value. In the case of a primary key, the index will only have one entry for each key value.

● Creating a unique index
● The syntax to create a unique key index in SQL is "CREATE [UNIQUE] INDEX index_name ON

table_name(column1, ... column_n);". The UNIQUE modifier specifies the values in the indexed columns.
Creating a non unique key index is equivalent to a secondary key index. The term UNIQUE isn't used to create
a secondary key index because values can be repeated.

● When to use indexes
● It is important to know when to use an index and which attributes to use when creating an index. Using

indexes come at the price of performance. Performance is compromised when using indexes due to the
overload for maintenance for insertions, deletions, and updating records. For this reason, indexes should be
utilized mainly for data retrieval. According to the book, “Indexes should be used judiciously for databases
that support transaction processing and other applications with heavy updating requirements, because the
indexes impose additional overhead” (Hoffer, Venkataraman, & Topi, 2011). Here are some rules or conditions
that suggest the use of indexes.

●

Rules & Conditions That Suggest The Use of Indexes

● 1. Indexes are a lot more efficient and practical for substantial tables.
● 2. Indexes are useful when there is a need to set out a unique index for the primary key.
● 3. Indexes are frequently used for columns that appear in WHERE modifiers of SQL commands.
● 4. Indexes should be used when for attributes referenced in ORDER BY and GROUP BY

statements.
● 5. Indexes are convenient when there is diversity in the values of an attribute. For Oracle's

standards, it is unproductive to use an index when an attribute has fewer than 30 values.
● 6. One point to keep in mind is to consider developing a compressed version of the values. Doing

this will ensure that the index isn't slower to process.
● 7. If the index is used for finding the location of where the record will be stored, make sure the

key of this index is a surrogate key to ensure the records will be fairly spread across the storage
space.

● 8. Make sure to check the limit of indexes on the DBMS because some systems do not allow for
more than 16 indexes.

● 9. Find a way to index attributes that have null values because rows with a null value won't be
referenced.

●

4.4.1 Designing a Database for optimal Query
Performance

● Database processing can include adding, deleting and modifying a database along with method of
retrieving data. The amount of work required to optimize query for performance heavily relies on DBMS.

● Architecture of modern computers has changed greatly over the years and the use of multiple processors
in database servers has become standard. Symmetric multiprocessor (SMP) is commonly used in database
servers to allow multiple processing. DBMS that use parallel query processing include planning on
breaking up a query that can be processed in parallely by different processors.

● “Suppose you have an Order table with several million rows for which query performance has been
slow. To ensure that subsequent scans of this table are performed in parallel, using at least three
processors, you would alter the structure of the table with the SQL command:”(Hoffer, Venkataraman, &
Topi, 2011)

● ALTER TABLE ORDER_T PARALLEL 3; (Hoffer, Venkataraman, & Topi, 2011)

● Schumacher reported, “on a test in which the time to perform a query was cut in half with parallel
processing compared to using a normal table scan. Because an index is a table, indexes can also be given
the parallel structure, so that scans of an index are also faster.” Schumacher also reported an example of
parallel processing reducing the time of creating an index from seven minutes to five seconds.(Hoffer,
Venkataraman, & Topi, 2011)

Designing a Database for optimal Query Performance
(continued...)
● Parallel processing not only improves the time of table scans but also can be used on joining tables,

grouping query results,sorting, deleting, updating, and insertion.
● Often the designer creating the query has information to better optimize the query that the query

module in the DBMS does not. In most relational DBMs the optimizer’s plan for processing the query
can be known by the designer before actually running the query. This is done through the command
EXPLAIN or EXPLAIN PLAIN which display all the information about the optimizer’s plans to process
the query.

● The query optimizer makes its decision on how to process the query by looking at data from each
table such as average row length or the number or rows. You can submit multiple EXPLAIN
commands with a query written in different ways to see if the optimizer predicts different
performance.

● That allows you to find the best performance and submit that for actual processing. With some
DBMs you can force the optimizer to take different steps or use resources other than what the
optimizer thinks is the best performance. The clause (/**/) can be used to overriders what the query
determines is the best way to process the query.

●

Extended Resources
Description & Links

● This is a video lecture from the University of Washington by Grey Hay, about the physical database design methodology. This
video goes into extreme detail about physical database design from the ground up and how the methodology is implemented.
https://www.youtube.com/watch?v=S98_8HalY5Q

●
This video talks about the oracle database security in a broad approach, mainly focused in Europe. The video discusses
important security topics from current database security laws, benefits, history, risks and many more topics.
https://www.youtube.com/watch?v=GXF3T4g2tJg

●
This video by Kimberly Tripp where she discusses why physical database design matters. Kimberly discusses the importance of
good design and also how poor design and can lead to major performance
issues. https://www.youtube.com/watch?v=H-jPsp2QlT0

●
Lightstone, S., Nadeau, T., & Teorey, T. J. (2007). Physical Database Design : The Database Professional’s Guide to Exploiting
Indexes, Views, Storage, and More. Morgan Kaufmann.

●
Erickson, J., & Siau, K. (2009). Advanced Principles for Improving Database Design, Systems Modeling and Software
Development. IGI Global.

●
Carmel-Gilfilen, C. (2013). Bridging security and good design: Understanding perceptions of expert and novice shoplifters.
Security Journal, 26(1), 80–105. https://doi.org/10.1057/sj.2011.34

●
Burtescu, E. (2009). Database Security - Attacks and Control Methods. Journal of Applied Quantitative Methods, 4(4), 449–454.

●

https://www.youtube.com/watch?v=S98_8HalY5Q
https://www.youtube.com/watch?v=GXF3T4g2tJg
https://www.youtube.com/watch?v=H-jPsp2QlT0
https://doi.org/10.1057/sj.2011.34

References
● CloudGirl, & CloudGirl. (2017, March 26). Data Partitioning: Vertical Partitioning, Horizontal Partitioning, and Hybrid

Partitioning Project Update #3. Retrieved from http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-
partitioning/

● DigitalOcean. (2019, October 28). Understanding Database Sharding. Retrieved from
https://www.digitalocean.com/community/tutorials/understanding-database-sharding

● Database VLDB and Partitioning Guide. (2016, July 20). Retrieved from
https://docs.oracle.com/database/121/VLDBG/GUID-BE424ACC-F746-4CA8-973C-F578CF98FF10.htm#VLDBG00225

● Lesov, P. (2010). Database Security: A Historical Perspective. ArXiv, abs/1004.4022.
● Quick Base. (n.d.). A Timeline of Database History. Retrieved from https://www.quickbase.com/articles/timeline-of-

database-history
● Watt, Adrienne. (n.d.). Chapter 13 Database Development Process. Retrieved from

https://opentextbc.ca/dbdesign01/chapter/chapter-13-database-development-process/
● What is Entity Relationship Diagram? (ERD). (2020). Retrieved from https://www.visual-paradigm.com/guide/data-

modeling/what-is-entity-relationship-diagram/
● Hoffer, A. J., Venkataraman, R., Topi, H. (2011). Modern Database Management 10e[E-Reader Version]. Retrieved

from https://www.amazon.com/Modern-Database-Management-Jeffrey-Hoffer/dp/0136088392
● Burleson Consulting. (2014, April 23). Oracle parallel query tips. Retrieved March 28, 2020, from http://www.dba-

oracle.com/art_opq.htm
● Chung, C. (n.d.). Introduction to Hashing and its uses. 2BrightSparks.

https://www.2brightsparks.com/resources/articles/introduction-to-hashing-and-its-uses.html
●

https://docs.oracle.com/database/121/VLDBG/GUID-BE424ACC-F746-4CA8-973C-F578CF98FF10.htm#VLDBG00225
https://opentextbc.ca/dbdesign01/chapter/chapter-13-database-development-process/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://www.amazon.com/Modern-Database-Management-Jeffrey-Hoffer/dp/0136088392
http://www.dba-oracle.com/art_opq.htm

	Modudule_5�SQL & ER
	Introduction and Background
	How has SQL changed over the years?
	History of SQL
	Unary Operators
	Examples of Unary Operators
	Binary Operators
	Examples of Binary Operators
	SQL Triggers
	PHP
	PL/SQL

	PL/SQL Cont.
	Database Management Systems
	Defining a Database: Data Definition Language
	Data Query Language and Data Control Language
	Data Manipulation Language
	5.3 Write Single Table Queries Using SQL
	5.3 Student Table
	5.3 Continued
	5.3 Commands
	5.4 Establish Referential Integrity using SQL
	5.4 Child and Parent Tables
	5.4 Continued
	5.4 Conclusion
	Resources
	Introduction
	Background
	Background Continued…
	Logical Design vs Physical Design
	[4.2.1] Physical Database Design Process
	[4.2.2] Data Partitioning
	Pros of Data Partitioning
	Cons of Data Partitioning
	[4.3.1] Describe three types of file organization��
	SQL and ER�
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Sequential & Indexed File Organization
	Indexed File Organization
	Hash File Organization
	Hash File Organization
	Security
	Comparison of File Organization��
	Comparison of File Organization
	Comparative Features of different File Organization�
	[4.4.1] Translate a database model into efficient structures ��
	Using, Selecting, Creating & When to use Indexes��
	� Rules & Conditions That Suggest The Use of Indexes ��
	4.4.1 Designing a Database for optimal Query Performance��
	Designing a Database for optimal Query Performance (continued...)��
	Slide Number 55
	 Extended Resources� Description & Links ��
	References

