[bookmark: _Toc98151744]Chapter 4: Boolean Expressions and Combinational Circuits
In this chapter, we learn how to express Boolean equation with combinational circuits, circuit schematics rules for combinational circuits, and one of the multiple-output circuits – priority circuit. By understanding the meanings of Contention X (don’t care) and floating Z, we can apply the rules of Karnaugh maps for simplifying Boolean equations.

[bookmark: _Toc98151745]Objectives

By the end of this chapter you should be able to:
· Express Boolean equation with combinational circuits.
· Recognize circuit schematics rules for combinational circuits.
· Recall multiple-output circuits – priority circuit.
· Demonstrate the meanings of Contention X (don’t care) and floating Z.
· Summarize the rules of Karnaugh maps.
· Apply Karnaugh maps for simplifying Boolean equations.

[bookmark: _Toc98151746]4.1 Circuit Schematics Rules

Digital systems are constructed by using logic gates which are abstract representations of real devices. We can represent the Boolean algebra with two-level logic, ANDs followed by Ors. For example, we have a Boolean equation: [image: Y equals top enclose A times top enclose B times top enclose C plus A times top enclose B times top enclose C blank plus A times B times top enclose C]. This equation can be designed with logic gates, as shown in the following figure:
[image: ]
Fig.  4‑1. From Logic to Gates

In Fig. 4-1, There are three AND gates. These AND gates have the following inputs,
· AND_1: A complement, B complement, C complement
· AND_2: A, B complement, C complement
· AND_3: A, B, C complement
The outputs of the three AND gates feed into OR gate. The OR gate produces the output Y.
There are some rules for circuit schematics. Wires always connect at a T junction, as shown in Fig. 4-2. A dot where wires cross indicates a connection between the wires. Wires crossing without a dot make no connection.
[image: ]
Fig.  4‑2. Circuit Schematics Rules

The following figures show that there are T junctions between the wires. That means the wires are connected.
[image: ]
Fig.  4‑3. Some examples of Junction
The following figures show that there is no T junction between the wires. That means the wires are not connected.
[image: ]
Fig.  4‑4. Some examples of No Junction

The following figure, Fig. 4-5, designed a Boolean equation. There are five AND gates. These AND gates have the following inputs, 
· AND_1: A complement, D
· AND_2: B, D
· AND_3: A, C complement, D
· AND_4: A, B complement, C
· AND_5: A, B, C, D
The outputs of four AND gates (AND_1, AND_3, AND_4, AND_5) feed into OR gate. The OR gate produces the output Y. We can express the corresponding Boolean equation as follows: [image: Y equals top enclose A times D plus A times top enclose C times D plus A times top enclose B times D plus A times B times C times D].
[image: ]
Fig.  4‑5. Some examples of Boolean equation

[bookmark: _Toc98151747]Multiple-Output Circuits

Circuits that we have previously discussed have only one output. Here we will discuss how multiple output systems are analyzed. A priority encoder is a circuit or algorithm that compresses multiple binary inputs into a smaller number of outputs. The priority circuit produces an output asserted corresponding to the most significant TRUE input. The following figure shows the truth table and the hardware design of the priority circuit.
[image: ]
Fig.  4‑6. Truth Table and Hardware Design of Priority Circuit

The priority circuit has:
·  Input A3 directly connected to Y3.
· AND_1 gate produces the output Y2 with two inputs, i.e. A3 complement and A2.
· AND_2 gate produces the output Y1 with three inputs, i.e. A3 complement, A2 complement, and A1.
· AND_3 gate produces the output Y0 with four inputs, i.e. A3 complement, A2 complement, A1 complement and A0.
Where the bubble symbol represents a complement. The above truth table can be simplified as the following table. 

Table 4‑1. Truth Table of Priority Circuit with Don’t Cares (X)
	A3
	A2
	A1
	A0
	Y3
	Y2
	Y1
	Y0

	0
	0
	0
	0
	0
	0
	0
	0

	0
	0
	0
	1
	0
	0
	0
	1

	0
	0
	1
	X
	0
	0
	1
	0

	0
	1
	X
	X
	0
	1
	0
	0

	1
	X
	X
	X
	1
	0
	0
	0



Let’s look at the case when the output Y1 is TRUE. A3 and A2 didn’t assert, meaning that both A3 and A2 are FALSE. In this case, A1 has a priority among the input values. Once A1 asserts TRUE, the input A0 doesn’t matter whether it is TRUE or FALSE. Only Y1 is TRUE and the other outputs are all FALSE.
Let’s look at the case when the output Y2 is TRUE. A3 didn’t assert, meaning that A3 is FALSE. In this case, A2 has a priority among the input values. Once A2 asserts TRUE, the two inputs A0 and A1 don’t matter whether they are TRUE or FALSE. Only Y2 is TRUE and the other outputs are all FALSE.
In the last case where the output Y3 is TRUE, A3 has a priority among the input values. Once A3 asserts TRUE, the other inputs A0, A1 and A2 don’t matter whether they are TRUE or FALSE. Only Y3 is TRUE and the other outputs are all FALSE. Here, a don’t-care term (X) for a function is an input-sequence (a series of bits) for which the function output does not matter. 
With the contention X, circuit tries to drive an output to 1 and 0.  The actual value of the contention could be 0, 1, or in forbidden zone. That might change with voltage, temperature, time and noise. The contention often causes excessive power dissipation. However, the contention usually indicates a bug. The symbol, X, is used for “don’t care” and contention. With this don’t care, we can find out some way to simplify the Boolean equation when we design the digital circuits.
The floating Z, high impedance, is driven neither HIGH nor LOW. The floating Z might be 0, 1 or somewhere in between. The tristate buffer is one of example of this floating Z which has three possible output states: HIGH (1), LOW (0) and floating (Z).
The output Y determined by both the input A and the enable E. 
· If enable E = 0, then the tristate buffer outputs floating Z regardless of the value of input A.
· If enable E = 1, then the tristate buffer outputs the same as the value of input A.
[image: ]
Fig.  4‑7. Tristate Buffer

The floating nodes are used in tristate busses, where many different drivers use the shared bus with processor, video, Ethernet, memory, etc. 

[bookmark: _Toc98151748]4.2 Karnaugh Maps (K-Maps)

The Karnaugh map (K-map) is a graphical method of simplifying Boolean algebra expressions, where the Boolean expressions can be minimized by combining terms. 
Let’s look at a truth table, where the output Y is TRUE if only if the two inputs are A = 0 and B = 1, or A = 1 and B = 1. 
	A
	B
	Y

	0
	0
	0

	0
	1
	1

	1
	0
	0

	1
	1
	1



The above table can be expressed in the K-map as the following figure, where each value of the squares is corresponding to the value of Y: 
· If A = 0 and B = 0, Y = 0 (i.e., [image: Y equals top enclose A top enclose B]). 
· If A = 0 and B = 1, Y = 1 (i.e., [image: Y equals top enclose A B]).
· If A = 1 and B = 0, Y = 0 (i.e., [image: Y equals A top enclose B]).
· If A = 1 and B = 1, Y = 0 (i.e., [image: Y equals A B]).

[image: ]
Fig.  4‑8. K-Map Representation

In order to simplify the Boolean expression with K-map, we can circle 1’s in adjacent squares, where the most left column and the first row represent the input variables, inputs A and B.
In the following figure, the circle is located in the rightest column, whose literal corresponds to the input B. Let’s look closely at the circle to draw the corresponding literal. The circle takes two rows ([image: A], [image: top enclose A]), i.e. one for the input [image: A] and another for the input [image: top enclose A]. These two literals, [image: A] and [image: top enclose A], are cancelled each. We can only write the literal B, [image: Y equals B] that simplify the Boolean equation. 
[image: ]
Fig.  4‑9. K-Map Representation with a Circle

The following figure shows that the circles must span a power of 2. 
[image: ]
Fig.  4‑10. K-Map Representation with a Circle
Fig. 4-10 has two red circles, one located at the rightest column and another located at the last row. The first circle takes a single column ([image: B]) and two rows ([image: A], [image: top enclose A]), where [image: A] and [image: top enclose A] are cancelled each other. We can draw only the literal [image: B] from this circle. The latter circle takes a single row ([image: A]) and two columns ([image: B], [image: top enclose B]), where [image: B] and [image: top enclose B] are cancelled each other. We can draw only the literal [image: A] from the circle. These two literals are Ored, so we can draw the corresponding Boolean equation:  [image: Y equals A plus B] from Fig. 4-10.
The 3-input K-Map can be drawn in the following figure:
[image: ]
Fig.  4‑11. 3-Input K-Map Representation

In this K-map, the first row and the most left column represent the input variables.
· First row: inputs A and B
· Most-left column: input C
In the first row, we can identify four different combinations of two inputs; AB=00, AB=01, AB=11, and AB=10, where only one-bit change in value from one adjacent column to the next column is allowed.
Let’s see how to use this 3-input K-Map to simplify the Boolean equation. The following truth table can be mapped to K-map, as shown in Fig. 4-12.
[image: ]
Fig.  4‑12. 3-Input K-Map Representation with Circles
In the K-map of Fig. 4-12, we can identify only 3 squares filled with ‘1’ bit; mapping to [image: top enclose A B top enclose C] , [image: top enclose A B C], and  [image: A B C]. We can circle 1’s in adjacent squares, and have two red circles; one located at the second column of the squares and another located at the last row of the squares. The first circle takes a single column ([image: top enclose A B]) and two rows ([image: C], [image: top enclose C]), where [image: C] and [image: top enclose C] are cancelled each other. We can draw the literal [image: top enclose A B] from the circle. The latter circle takes a single row ([image: C]) and two columns ([image: top enclose A B], [image: A B]), where [image: A] and [image: top enclose A]  are cancelled each other, leaving only the literal [image: B]. We can draw the literals [image: B C] from the circle. These two implicants (product of literals) are Ored, so we can draw the corresponding Boolean equation:  [image: Y equals top enclose A B plus B C] from Fig. 4-12. 
When we draw a circle in the K-map, we need to draw a circle as big as possible so that the corresponding implicant can be minimized. We called a prime implicant whose implicant corresponding to the largest circle in a K-map.
There are some rules when we draw a circle in a K-map:
· Every 1 must be circled at least once. 
· Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction.
· Each circle must be as large as possible.
· A circle may wrap around the edges.
· A “don’t care” (X) is circled only if it helps minimize the equation.

Let’s look at another example of 3-input K-map in Fig. 4-13.
[image: ]
Fig.  4‑13. 3-Input K-Map Representation with wrap around edges
In Fig. 4-13, we have the two circles, one for the column [image: A B] and another for the bottom edges of the squares. The first circle takes a single column ([image: A B]) and two rows ([image: C], [image: top enclose C]), where [image: C] and [image: top enclose C] are cancelled each other. We can draw the literals [image: A B] from the circle. The latter circle takes a single row ([image: C]) and two columns ([image: top enclose A top enclose B], [image: A top enclose B]), where [image: A] and [image: top enclose A]  are cancelled each other, leaving only the literal [image: top enclose B]. We can draw the literals [image: top enclose B C] from the circle. These two implicants (product of literals) are Ored, so we can draw the corresponding Boolean equation:  [image: Y equals A B plus top enclose B C] from Fig. 4-13.
The following table shows a 4-input truth table. From the truth table, we can fill out K-map. In the K-map, the first row and the most left column represent the input variables.
· First row: inputs A and B have four different combinations AB=00, AB=01, AB=11, and AB=10, where only one-bit change in value from one adjacent column to the next column is allowed.
· Most-left column: inputs C and D have four different combinations CD=00, CD=01, CD=11, and CD=10, where only one-bit change in value from one adjacent column to the next column is allowed.
[image: ]
Fig.  4‑14. 4-Input K-Map Representation

Let’s see how to use this 4-input K-Map to simplify the Boolean equation. We can draw four circles in the above figure using the rules. The first circle① takes two columns ([image: top enclose A top enclose B], [image: top enclose A B]) and two rows ([image: C D], [image: C top enclose D]), where [image: B] and [image: top enclose B] are cancelled each other, and [image: D] and [image: top enclose D] are cancelled in the same manner. We can draw the literals [image: top enclose A C] from the circle. The second circle② takes a single column ([image: top enclose A B]) and two rows ([image: top enclose C D], [image: C D]), where [image: C] and [image: top enclose C] are cancelled each other. We can draw the literals [image: top enclose A B D] from the circle. The third circle③ takes a single column ([image: A top enclose B]) and two rows ([image: top enclose C top enclose D], [image: top enclose C D]), where [image: D] and [image: top enclose D] are cancelled each other. We can draw the literals [image: A top enclose B top enclose C] from the circle. The last circle④ is located around the corner of edges and takes two columns ([image: top enclose A top enclose B], [image: A top enclose B]) and two rows ([image: top enclose C top enclose D], [image: C top enclose D]), where [image: A] and [image: top enclose A] are cancelled each other, and [image: C] and [image: top enclose C] are cancelled in the same manner. We can draw the literals [image: top enclose B top enclose D] from the circle. These four implicants (product of literals) are Ored, so we can draw the corresponding Boolean equation:  [image: Y equals top enclose A C plus top enclose A B D plus A top enclose B top enclose C plus top enclose B top enclose D] from Fig. 4-14. 

Fig. 4-15 shows an example of 4-input K-map with “don’t cares (X)”. We need to circle every ‘1’ bit at least once. We can also circle “don’t cares (X)” if they help minimize the equation by making the circle as large as possible. If the don’t care (X) doesn’t help to maximize the circle, it can be considered as a ‘0’ bit. The first circle① takes two columns ([image: A B], [image: A top enclose B]) and four rows ([image: top enclose C top enclose D], [image: top enclose C D], [image: C D], [image: C top enclose D]), where all the literals are cancelled each other ([image: B] and [image: top enclose B], [image: C] and [image: top enclose C], and [image: D] and [image: top enclose D]) except the literal [image: A]. We can draw the literal [image: A] from the circle. The second circle② takes four columns ([image: top enclose A top enclose B], [image: top enclose A B], [image: A B], [image: A top enclose B]), two rows ([image: C D], [image: C top enclose D]), where all the literals are cancelled each other ([image: A] and [image: top enclose A], [image: B] and [image: top enclose B], and [image: D] and [image: top enclose D]) except the literal [image: C]. We can draw the literal [image: C] from the second. The last circle③ is located around the corner of edges and takes two columns ([image: top enclose A B end enclose], [image: A top enclose B]) and two rows ([image: top enclose C D end enclose], [image: C top enclose D]), where [image: A] and [image: top enclose A] are cancelled each other, and [image: C] and [image: top enclose C] are cancelled in the same manner. We can draw the literals [image: top enclose B D end enclose] from the circle. These three implicants (product of literals) are Ored, so we can draw the corresponding Boolean equation:  [image: Y equals A plus C plus top enclose B D end enclose] from Fig. 4-15.
[image: ]
Fig.  4‑15. 4-Input K-Map Representation with Don’t Cares

[bookmark: _Toc98151749]Exercise

Simply the Boolean equation with K-map:

[image: ]
Answer: You can get the following equation: [image: Y equals C top enclose D plus top enclose B D end enclose]



[bookmark: _Toc98151750]4.3 Combinational Circuits

Combinational Circuits are circuits made up of different types of logic gates and produce outputs by combining the values of the inputs at any given time. The circuits do not make use of any memory or storage device. 
[image: ]
Fig.  4‑16. Combinational Circuit Description
For n input variables, there are 2n possible binary input combinations, and for each binary combination of the input variables, there is one possible output.
The combinational circuit is like a black box but it can be described with the truth table, which gives one possible output for each binary combination of the input variables. We will take a look at some popular combinational circuits throughout this section.

[bookmark: _Toc98151751]1-Bit Half Adders

A 1-bit half adder is used for adding together the two least significant digits in a binary sum. It has two inputs A and B, and two outputs, the sum S and the carryout Cout. The following table describe the 1-bit half adder. The sum is the output of exclusive OR gate, which has [image: S equals top enclose A B plus A top enclose B equals A circled plus B]. The Cout (carryout) is the output of AND gate, which has two inputs, A and B, i.e. [image: S equals A times B].

Table 4‑2. Truth Table of 1-bit Half Adder
	A
	B
	Cout
	S

	0
	0
	0
	0

	0
	1
	0
	1

	1
	0
	0
	1

	1
	1
	1
	0



For the above truth table, we can fill the box of Fig. 4-16 with a combinational circuit of 1-bit half adder in the following figure:
[image: ]
Fig.  4‑17. Combinational Circuit of 1-bit Half Adder

[bookmark: _Toc98151752]Multiplexer

A multiplexer (or Mux), also known as a data selector, is a device that selects one of N analog or digital inputs and forwards the selected input to a single output line. If the mux has the two inputs, it needs a  control input. If the mux has N inputs, it needs  [image: log subscript 2 N] control inputs. The following figure shows a 2-to-1 multiplexer which has two inputs (D0 and D1), one output (Y), and a control input (S). 
[image: ]
Fig.  4‑18. 2-to-1 Multiplexer

If the control input S is 0, the input D0 is forwarded to the output Y. If the control input S is 1, the input D1 is forwarded to the output Y. The following table describes the 2-to-1 multiplexer.

Table 4‑3. Truth Table of 2-to-1 Multiplexer
	S
	D1
	D0
	Y

	0
	0
	0
	0

	0
	0
	1
	1

	0
	1
	0
	0

	0
	1
	1
	1

	1
	0
	0
	0

	1
	0
	1
	0

	1
	1
	0
	1

	1
	1
	1
	1



We can simply draw the truth table as follows:
	S
	Y

	0
	D0

	1
	D1



The multiplexer can have more than two inputs. The 4-to-1 multiplexer has four inputs (D0, D1, D2, and D3), one output (Y), and two select inputs (S0 and S1), as shown in the following figure:
[image: ]
Fig.  4‑19. 4-to-1 Multiplexer

The multiplexer operates as follows:
· If the select inputs S1 S0 is 00, the input D0 is forwarded to the output Y. In this case, the other inputs D3, D2, and D1 don’t matter. Only the input D0 determines the output Y.
· If the select inputs S1 S0 is 01, the input D1 is forwarded to the output Y. In this case, the other inputs D3, D2, and D0 don’t matter. Only the input D1 determines the output Y.
· If the select inputs S1 S0 is 10, the input D2 is forwarded to the output Y. In this case, the other inputs D3, D1, and D0 don’t matter. Only the input D2 determines the output Y.
· If the select inputs S1 S0 is 11, the input D3 is forwarded to the output Y. In this case, the other inputs D2, D1, and D0 don’t matter. Only the input D3 determines the output Y.

Accordingly, we can draw the truth table of 4-to-1 multiplexer as follows:
Table 4‑4. Truth Table of 4-to-1 Multiplexer
	S1
	S0
	D3
	D2
	D1
	D0
	Y

	0
	0
	X
	X
	X
	0
	0

	0
	0
	X
	X
	X
	1
	1

	0
	1
	X
	X
	0
	X
	0

	0
	1
	X
	X
	1
	X
	1

	1
	0
	X
	0
	X
	X
	0

	1
	0
	X
	1
	X
	X
	1

	1
	1
	0
	X
	X
	X
	0

	1
	1
	1
	X
	X
	X
	1



where ‘X’ represents the don’t care term. 

Fig. 4-20 shows how the 4-to-1 multiplexer operates when the two select inputs S1S0 = 00. The input sequence D0 = 11111111 is forwarded to the output Y. The other inputs don’t affect the sequence of the output Y.
[image: ]
Fig.  4‑20. 4-to-1 Multiplexer with S1S0 = 00

Fig. 4-21 shows how the 4-to-1 multiplexer operates when the two select inputs S1S0 = 01. The input sequence D1 = 00001111 is forwarded to the output Y. The other inputs don’t affect the sequence of the output Y.

[image: ]
Fig.  4‑21. 4-to-1 Multiplexer with S1S0 = 01

Fig. 4-22 shows how the 4-to-1 multiplexer operates when the two select inputs S1S0 = 10. The input sequence D2 = 11110000 is forwarded to the output Y. The other inputs don’t affect the sequence of the output Y.
[image: ]
Fig.  4‑22. 4-to-1 Multiplexer with S1S0 = 10

Fig. 4-23 shows how the 4-to-1 multiplexer operates when the two select inputs S1S0 = 11. The input sequence D3 = 10101010 is forwarded to the output Y. The other inputs don’t affect the sequence of the output Y.
[image: ]
Fig.  4‑23. 4-to-1 Multiplexer with S1S0 = 11
The following figure shows the 8-to-1 multiplexer which has eight inputs, D0 through D7. Since it has 8 inputs, [image: log subscript 2 8 equals 3] select bits (select inputs) required.
[image: ]
Fig.  4‑24. 8-to-1 Multiplexer

The output Y is determined by the three select inputs, i.e. S2, S1, and S0. The following table describes the operation of the 8-to-1 multiplexer.
Table 4‑5. Truth Table of 8-to-1 Multiplexer
	S2
	S1
	S0
	Y

	0
	0
	0
	D0

	0
	0
	1
	D1

	0
	1
	0
	D2

	0
	1
	1
	D3

	1
	0
	0
	D4

	1
	0
	1
	D5

	1
	1
	0
	D6

	1
	1
	1
	D7



[bookmark: _Toc98151753]Encoder

In general, encoders convert motion to an electrical signal that can be read by some type of control devices. One of very popular encoders you know is a keyboard. When you press a button of the keyboard, the keyboard coverts this motion to an 8-bit digital signal. Your computer can read the value you pressed. The encoder is an inverse operation of a decoder. If you have 2N inputs, the encoder produces a total of N outputs so that it generates the binary code corresponding to the input value.
The following figure shows a 4-to-2 encoder, where there are four inputs, i.e. D3, D2, D1, D0, and two outputs (binary code), i.e. B1 and B0. In the encoder, only one input is high or “1” and the other inputs are low or “0”. 
[image: ]
Fig.  4‑25. 4-to-2 Encoder

The encoder generates the binary code corresponding to the input value. For example, if the input D0 is high and the other inputs are low, the encoder generates the binary code B1 B0 = 00. If the input D3 is high and the other inputs are low, the encoder generates the binary code B1 B0 = 11. The following table describe the operation of the 4-to-2 encoder.

Table 4‑6. Truth Table of 4-to-2 Encoder
	Inputs
	Outputs

	D3
	D2
	D1
	D0
	B1
	B0

	0
	0
	0
	1
	0
	0

	0
	0
	1
	0
	0
	1

	0
	1
	0
	0
	1
	0

	1
	0
	0
	0
	1
	1



The following figure shows a 8-to-3 encoder, where there are eight inputs, i.e. D7 through D0, and three outputs (binary code), i.e. B2, B1 and B0. This encoder operates in a similar manner. Only one input is high or “1” and the other inputs are low or “0”.
[image: ]
Fig.  4‑26. 8-to-3 Encoder

The encoder generates the binary code corresponding to the input value. For example, if the input D7 is high and the other inputs are low, the encoder generates the binary code B2 B1 B0 = 111. If the input D4 is high and the other inputs are low, the encoder generates the binary code B2 B1 B0 = 100.
Table 4‑7. Truth Table of 8-to-3 Encoder
	Inputs
	Outputs

	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0
	B2
	B1
	B0

	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0

	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1

	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	0

	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1

	0
	0
	0
	1
	0
	0
	0
	0
	1
	0
	0

	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	1

	0
	1
	0
	0
	0
	0
	0
	0
	1
	1
	0

	1
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1



[bookmark: _Toc98151754]Binary Decoder

The binary decoder translates the binary value into the decimal value. Fig. 4-27 shows a block diagram of 2-bit binary decoder.
[image: ]
Fig.  4‑27. Block Diagram of 2-bit Binary Decoder

The 2-bit binary decoder has the two inputs, A and B, and four output, Y0, Y1, Y2, and Y3.  The following table shows the truth table of the decoder.
Table 4‑8. Truth Table of 2-bit Binary Decoder
	A
	B
	Y0
	Y1
	Y2
	Y3

	0
	0
	1
	0
	0
	0

	0
	1
	0
	1
	0
	0

	1
	0
	0
	0
	1
	0

	1
	1
	0
	0
	0
	1



The following figure shows 3-to-8 binary decoder, where there are three inputs (binary code), i.e. A2, A1, and A0, and eight outputs, i.e. Y7 through Y0.
[image: ]
Fig.  4‑28. 3-to-8 Decoder
The decoder converts the binary code into a decimal value (outputs), where only one output is high or “1” and the other outputs are low or “0”. The decoder generates a decimal value corresponding to the input binary code. For example, if the binary inputs are A2 A1 A0 = 110, only the output Y6 is HIGH, and the other outputs are all LOW. The following table describes the operation of the decoder.

Table 4‑9. Truth Table of 3-to-8 Decoder
	Inputs
	Outputs

	A2
	A1
	A0
	Y7
	Y6
	Y5
	Y4
	Y3
	Y2
	Y1
	Y0

	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1

	0
	0
	1
	0
	0
	0
	0
	0
	0
	1
	0

	0
	1
	0
	0
	0
	0
	0
	0
	1
	0
	0

	0
	1
	1
	0
	0
	0
	0
	1
	0
	0
	0

	1
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0

	1
	0
	1
	0
	0
	1
	0
	0
	0
	0
	0

	1
	1
	0
	0
	1
	0
	0
	0
	0
	0
	0

	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0



[bookmark: _Toc98151755]Priority Circuit

This chapter introduced the priority circuit in Section 4.1. This section describes the priority circuit in detail. Fig.  4-6 shows the truth table of the priority circuit. We will show how to design the circuit hardware from the truth table using K-map.
The following figure shows the block of the priority circuit. If the inputs A3 A2 A1 A0 are “0000”, the circuit produces the outputs Y3 Y2 Y1 Y0 = 0000.
[image: ]
Fig.  4‑29. Priority Circuit with inputs: A3 A2 A1 A0 = 0000

In the following figure, the inputs A3 A2 A1 A0 are “0001”. Only A0 asserts TRUE and the other input values are all FALSE. The circuit produces the outputs Y3 Y2 Y1 Y0 = 0001. 
[image: ]
Fig.  4‑30. Priority Circuit with inputs: A3 A2 A1 A0 = 0001

In the following figure, the inputs A3 A2 A1 A0 are “001X”, where the term ‘X’ represents ‘don’t care’. The higher priority inputs A3 and A2 didn’t assert. Since only A1 asserts TRUE, the lower priority input A0 doesn’t matter whether it is TRUE or FALSE. Only the output Y1 is TRUE and the other outputs are all FALSE.

[image: ]
Fig.  4‑31. Priority Circuit with inputs: A3 A2 A1 A0 = 001X

In the following figure, the inputs A3 A2 A1 A0 are “01XX”, where the term ‘X’ represents ‘don’t care’. The higher priority input A3 didn’t assert. Since the next higher priority A2 asserts TRUE, the lower priority inputs A1 and A0 don’t matter whether they are TRUE or FALSE. Only the output Y2 is TRUE and the other outputs are all FALSE.

[image: ]
Fig.  4‑32. Priority Circuit with inputs: A3 A2 A1 A0 = 01XX

In the following figure, the inputs A3 A2 A1 A0 are “1XXX”, where the term ‘X’ represents ‘don’t care’. The highest priority input A3 asserts TRUE. The lower priority inputs A2, A1 and A0 don’t matter whether they are TRUE or FALSE. Only the output Y3 is TRUE and the other outputs are all FALSE.

[image: ]
Fig.  4‑33. Priority Circuit with inputs: A3 A2 A1 A0 = 1XXX

We can summarize the operation of the priority circuit in the following table:

Table 4‑10. Summary of Priority Circuit Operation
	A3
	A2
	A1
	A0
	Y3
	Y2
	Y1
	Y0

	0
	0
	0
	0
	0
	0
	0
	0

	0
	0
	0
	1
	0
	0
	0
	1

	0
	0
	1
	
	0
	0
	1
	0

	0
	1
	
	
	0
	1
	0
	0

	1
	
	
	
	1
	0
	0
	0



where the symbol ‘X’ represents ‘don’t care”.
Let’s design the hardware from the truth table. The following figures show how to simplify the output Y3 with the input variables, A3, A2, A1, and A0. With the red circuit, we can simplify the Boolean equation and draw the corresponding equation: [image: Y subscript 3 equals A subscript 3].

[image: ]
Fig.  4‑34. Priority Circuit Design of Y3 using K-map

The following figures show how to simplify the output Y2 with the input variables, A3, A2, A1, and A0. With the red circuit, we can simplify the Boolean equation and draw the corresponding equation: [image: Y subscript 2 equals top enclose A subscript 3 end enclose A subscript 2].
[image: ]
Fig.  4‑35. Priority Circuit Design of Y2 using K-map

The following figures show how to simplify the output Y1 with the input variables, A3, A2, A1, and A0. With the red circuit, we can simplify the Boolean equation and draw the corresponding equation: [image: Y subscript 1 equals top enclose A subscript 3 end enclose top enclose A subscript 2 end enclose A subscript 1].

[image: ]
Fig.  4‑36. Priority Circuit Design of Y1 using K-map

The following figures show how to simplify the output Y0 with the input variables, A3, A2, A1, and A0. With the red circuit, we can simplify the Boolean equation and draw the corresponding equation: [image: Y subscript 0 equals top enclose A subscript 3 end enclose top enclose A subscript 2 end enclose top enclose A subscript 1 end enclose A subscript 0].

[image: ]Y0
A3A2
A1A0

Fig.  4‑37. Priority Circuit Design of Y0 using K-map

With the above figures, from Fig. 4-34 to Fig. 4-37, we can design the priority circuit as follows:
· Input A3 directly connected to Y3
· AND1 gate produces the output Y2 with two inputs, A3 complement and A2
· AND2 gate produces the output Y1 with three inputs, i.e. A3 complement, A2 complement, and A1
· AND3 gate produces the output Y0 with four inputs, i.e. A3 complement, A2 complement, A1 complement and A0

The following figure shows the priority circuit with logic gates.

[image: ]
Fig.  4‑38. Priority Circuit with Logic Gates

where the bubble symbol at the input side of AND gates represents a complement.
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