[bookmark: _Toc98151830]Chapter 11: Pipeline
In this chapter, we introduce microarchitecture, which is the connection between logic and architecture. Microarchitecture is the specific arrangement of registers, ALUs, finite state machines, memories, and other logic building blocks needed to implement an architecture. We also define instruction pipelining, hazards, pipelined datapath, and pipelined control.

[bookmark: _Toc98151831]Objectives

By the end of this chapter you should be able to:
· Identify five stages in MIPS pipeline
· Recognize structure hazards, data hazard, and control hazard
· Demonstrate knowledge of pipelined datapath
· Clarify pipeline usage in a single-clock cycle
· Clarify pipeline operation in multi-cycle pipeline diagram

[bookmark: _Toc98151832]11.1 Instruction Pipelining

[bookmark: _Toc98151833]R-Type Instruction

The instruction is fetched from memory, and the PC is incremented by 4 in the instruction fetch (IF) stage, as shown in Fig. 11-1. The fetched instruction is used by other parts of the datapath. Program Counter (PC) always holds the next memory address to be fetched, where PC is a byte address, not bit address. PC value is updated by adding 4 to the previous PC value.
[image:]
Fig. 11‑1. Instruction Fetch Stage of R-Type Instruction
Fig. 11-2 shows the instruction decode (ID) stage of R-Type Instruction. The two elements needed to implement R-format ALU operations are the register file and the ALU. The register file contains all the registers and has two read ports and one write port. The register file always outputs the contents of the registers corresponding to the Read register inputs on the outputs; no other control inputs are needed. The inputs (RS and RT) carrying the register number to the register file are all 5-bit wide, whereas the lines carrying data values are 32-bit wide. The operation to be performed by the ALU is controlled with the ALU operation signal, which will be 4-bit wide.
[image:]
Fig. 11‑2. Instruction Decode Stage of R-Type Instruction
The arithmetic operations are executed in the execute (EX) stage, as shown in Fig. 11-3. Two 32-bit wide inputs from register files are fed into ALU to execute logic operations.

[image:]
Fig. 11‑3. Execute Stage of R-Type Instruction
There is nothing happening in memory access stage in R-type instruction.
In the write back (WB) stage of Fig. 11-4, the result from the ALU is written into the register file using bits 15:11 of the instruction to select the destination register.
[image:]
Fig. 11‑4. Write Back Stage of R-Type Instruction

[bookmark: _Toc98151834]Load Instruction

In load instruction of Fig. 11-5, the instruction is fetched from memory, and PC value is increased by 4, which is the same as R-type instruction.
[image:]
Fig. 11‑5. Instruction Fetch Stage of Load Instruction
The fetched instruction is used by other parts of the datapath. Program Counter (PC) always holds the next memory address to be fetched, where PC is a byte address, not bit address. PC value is updated by adding 4 to the previous PC value.
Fig. 11-6 shows the ID stage of Load instruction. In this stage the instruction field value [25 – 21] is fed into the register files and produces Read data 1 (32 bits), whereas the instruction field value [15 – 0] is fed into sign-extend function and produces a 32-bit constant/address value.
[image:]
Fig. 11‑6. Instruction Decode Stage of Load Instruction

The memory address is calculated with two 32-bit values in the execute stage of Fig. 11-7.

[image:]
Fig. 11‑7. Execute Stage of Load Instruction

[image:]
Fig. 11‑8. Memory Access Stage of Load Instruction
Fig. 11-8 shows the memory access stage of Load instruction. In this stage, the control bit for MemWrite is set to 1. Data memory contents designated by the address input are replaced by the value on the Write data input.
As shown in the following figure, the control bit for MemtoReg is set to 1 in the write back stage. The value fed to the register Write data input comes from the data memory.

[image:]
Fig. 11‑9. Write Back Stage of Load Instruction

[bookmark: _Toc98151835]Performance Issues

Historically early computers with very simple instruction sets did use this implementation technique. Pipelining improves efficiency by executing multiple instruction simultaneously.
The longest delay determines clock period in the pipeline. In the MIPS instruction sets, the load instruction is the critical path because it includes the following stage:
· Instruction memory (IF) register file (ID) ALU (EX) data memory (MEM) register file (WB)
It is not feasible to vary period for different instructions, because that violates design principle, making the common case fast. We can improve performance by pipelining, meaning that each instruction is executed in a different stage simultaneously in the processor.
With pipeline, we can overlap the execution. It is the similar concept to improve the performance with parallelism. The laundry analogy exemplified this parallelism. Ann, Brian, Cathy, and Don each have dirty clothes to be washed, dried, folded, and put away. Assume there are total four laundries and four steps for each laundry, i.e. washer, dryer, folding clothes, and clothes closet. Each step needed 30 minutes to complete. A sequential laundry takes 8 hours for 4 loads of wash, i.e. 4 loads 2 hours, whereas a pipelined laundry takes just 3.5 hours, i.e. 1.5 hours + 30 minutes 4).
MIPS pipeline has five stages, one step per stage:
· IF: Instruction fetch from memory
· ID: Instruction decode & register read
· EX: Execute operation or calculate address
· MEM: Access memory operand
· WB: Write result back to register
Let’s assume that the time for stages is as follows:
· 100 ps for register read or write
· 200 ps for other stages
In the following table, we can compare the total time of the pipelined datapath with a single-cycle datapath:

Table 11‑1. Pipelined DataPath
	Instruction
	Instruction fetch
	Register
read
	ALU op
	Memory
access
	Register
Write
	Total
Time

	lw
	200 ps
	100 ps
	200 ps
	200 ps
	100 ps
	800 ps

	sw
	200 ps
	100 ps
	200 ps
	200 ps
	
	700 ps

	R-format
	200 ps
	100 ps
	200 ps
	
	100 ps
	600 ps

	beg
	200 ps
	100 ps
	200 ps
	
	
	500 ps

The load instruction includes all the pipeline stage so that the total time of the pipelined datapath is 800 ps, whereas the R-type instruction has a total time of 700 ps because it doesn’t include the memory access stage.
[image:]
Fig. 11‑10. Nonpipelined Execution of Three Load Word Instruction
[image:]
Fig. 11‑11. Pipelined Execution of Three Load Word Instruction

Figs. 11-10 and 11-11 compare nonpipelined and pipelined execution of three load word instructions. In the nonpipelined execution, a single-cycle is 800ps, thus the total time to execute three load instructions is 3 × 800 ps or 2400 ps in the nonpipelined design. On the other hand, in the pipelined execution, a clock cycle is 200 ps, and the pipelined execution clock cycle must have the worst-case clock cycle of 200 ps, even though some stages take only 100 ps. The total time to execute three load instructions is 200 ps 5 + 200 ps 2 or 1400 ps. Notice that the pipelined execution time (1400 ps) is faster than the nonpipelined execution time (2400 ls).
What would happen if we added 1,000,000 instructions in the pipelined and non-pipelined process in the above examples?
For the pipelined process, each instruction adds 200 ps to the total execution time. The total time will be as follows:
· 1,000,000 × 200 ps + 1400 ps = 200,001,400 ps
For the nonpipelined process, each instruction adds 800 ps to the total execution time. The total time will be as follows:
· 1,000,000 × 800 ps + 2400 ps = 800,002,400 ps
The ratio of total execution times for real programs on nonpipelined to pipelined processors will be like
[image: fraction numerator 800 , 002 , 400 blank p s over denominator 200 , 002 , 400 blank p s end fraction approximately equal to fraction numerator 800 blank p s over denominator 200 blank p s end fraction equals 4.00]
If all stages are balanced, i.e., all stage take the same time, the total time of the pipelined process can be faster (number of stages) than the total time of the nonpipelined process. If all stages are not balanced, speedup is less. Note that this speedup is due to the increased throughput. The time for each instruction (latency) doesn’t decrease.
[image:]
Fig. 11‑12. MIPS Pipelined Datapath

As shown in the above figure, MIPS Pipelined Datapath has IF (Instruction fetch), ID (Instruction decode/register file read), EX (Execute/address calculation), MEM (Memory access), and WB (Write back). Each step of the instruction can be mapped onto the datapath from left to right.
The update of the PC and the write-back step sends either the ALU result or the data from memory to the left to be written into the register file.

[bookmark: _Toc98151836]11.2 Pipelined Datapath

The pipelined datapath needs registers between stages. The pipeline registers separate each pipeline stage, as shown in the following figure.

[image:]
Fig. 11‑13. Pipeline Registers
The pipeline registers are labeled by the stages that they separate; for example, the first is labeled IF/ID because it separates the instruction fetch and instruction decode stages. The registers must be wide enough to store all the data corresponding to the lines that go through them. For example, the IF/ID register must be 64 bits wide, because it must hold both the 32-bit instruction fetched from memory and the incremented 32-bit PC address. The pipeline operates cycle-by-cycle flow of instructions through the pipelined datapath. The single-clock-cycle pipeline diagram shows pipelined usage in a single cycle and highlight resources used in the pipeline, whereas the multi-clock-cycle diagram shows the graph of operation over time.
Let’s look at “single-clock-cycle” diagrams for load and store instructions.

[bookmark: _Toc98151837]Single-clock-cycle Pipeline Diagram

Fig. 11-14 shows the instruction being read from memory using the address in the PC and then being placed in the IF/ID pipeline register.
[image:]
Fig. 11‑14. Instruction Fetch Stage for Load and Store

The PC address is incremented by 4 and then written back into the PC to be ready for the next clock cycle. This incremented address is also saved in the IF/ID pipeline register in case it is needed later for an instruction, such as beq. The computer cannot know which type of instruction is being fetched, so it must prepare for any instruction, passing potentially needed information down the pipeline.
[image:]
Fig. 11‑15. Instruction Decode Stage for Load and Store

Fig. 11-15 shows the instruction portion of the IF/ID pipeline register supplying the 16-bit immediate field, which is sign-extended to 32 bits, and the register numbers to read the two registers. All three values are stored in the ID/EX pipeline register, along with the incremented PC address. We again transfer everything that might be needed by any instruction during a later clock cycle.
[image:]
Fig. 11‑16. Execute Stage for Load

Fig. 11-16 shows that the load instruction reads the contents of register 1 and the sign-extended immediate from the ID/EX pipeline register and adds them using the ALU. That sum is placed in the EX/MEM pipeline register.
Fig. 11-17 shows the load instruction reading the data memory using the address from the EX/MEM pipeline register and loading the data into the MEM/WB pipeline register.

[image:]
Fig. 11‑17. Memory Access Stage for Load

[image:]
Fig. 11‑18. Write Back Stage for Load
Fig. 11-18 shows the final step: reading the data from the MEM/WB pipeline register and writing it into the register file in the middle of the figure. When the processor executes WB stage of Load instruction, the write register number is not corresponding to the load instruction, because other instructions were executed for the ID stage.

[image:]
Fig. 11‑19. Corrected Datapath for Load

Fig. 11-19 shows the corrected datapath for Load instruction. The write register number now comes from the MEM/WB pipeline register along with the data. The register number is passed from the ID pipe stage until it reaches the MEM/WB pipeline register, adding five more bits to the last three pipeline registers. This new path is shown in Red color in the following figure:

[image:]
Fig. 11‑20. Execute Stage for Store

Fig. 11-20 shows the execute stage of Store instruction. Unlike the third stage of the load instruction, the second register value is loaded into the EX/MEM pipeline register to be used in the next stage. Although it wouldn’t hurt to always write this second register into the EX/MEM pipeline register, we write the second register only on a store instruction to make the pipeline easier to understand.

[image:]
Fig. 11‑21. Memory Access Stage for Store
Fig. 11-21 shows the memory access stage of Store instruction, where the data is written into data memory for the store. Note that the data comes from the EX/MEM pipeline register and that nothing is changed in the MEM/WB pipeline register.
Once the data is written in memory, there is nothing left for the store instruction to do, so nothing happens in the last (WB) stage.
[bookmark: _Toc98151838]Multi-Cycle Pipeline Diagram

Fig. 11-22 shows the multiple-clock-cycle pipeline diagram for five instructions. Time advances from left to right across the page in these diagrams, and instructions advance from the top to the bottom.
A representation of the pipeline stages is placed in each portion along the instruction axis, occupying the proper clock cycles. These stylized datapaths represent the five stages of our pipeline graphically. In the figure, IM represents the instruction memory and PC in the instruction fetch stage and DM represents data memory.

[image:]
Fig. 11‑22. Multi-Cycle Pipeline Resource Usage

Fig. 11-23 shows the more traditional version of the multiple-clock-cycle pipeline diagram. The previous figure shows the physical resources used at each stage, while This figure uses the name of each stage.

[image:]
Fig. 11‑23. Multi-Cycle Pipeline Resource Usage

[bookmark: _Toc98151839]Exercises

Assume that individual stages of the datapath have the following latencies:
	IF
	ID
	EX
	MEM
	WB

	260 ps
	360 ps
	170 ps
	310 ps
	220 ps

1) What is the clock cycle time in a pipelined and non-pipelined processor?
· Pipelined processor: Clock cycle time = 360 ps
· Non-pipelined processor: Clock cycle time = 260 + 360 + 170 + 310 + 220 = 1320 ps

2) What is the total latency of seven LW instructions in a pipelined and non-pipelined processor (assume no stalls or hazards)
· Pipelined processor: Total latency = 360 × 5 + 360 × 6 = 3960 ps
· Non-pipelined processor: Total latency = 1320 ps × 7= 9240 ps

[bookmark: _Toc98151840]11.3 Pipelined Controls

In the pipeline, there are lots of control signals. Depend on the control signals enabled or disabled, the components of the pipeline are executed to complete each stage. The following figure shows that what control signals are used for each stage:

[image:]
Fig. 11‑24. Simplified Pipelined Control

· IF: If PCSrc set to 0, the PC value increased by 4; otherwise, a specific address forwarded from a branch instruction.
· ID/register file read: the same thing happens at every clock cycle. No optional control lines.
· Execution/address calculation: the signals, i.e. RegDst, ALUOp, and ALUSrc, are set. Note that we now need the 6-bit funct field (function code) of the instruction in the EX stage as input to ALU control, so these bits must also be included in the ID/EX pipeline register.
· Memory access: the control lines, i.e. Branch, MemRead, and MemWrite are set.
· Write Back: two control lines, MemtoReg and RegWrite.

The effect of each control signal is summarized in the following table:

Table 11‑2. Effect of Each Control Signal
	Signal name
	Effect when reasserted
	Effect when asserted

	RegDst
	The register destination number for the Write register comes from the rt field (bits 20:16)
	The register destination number for the Write register comes from the rd field (bits 15:11)

	RegWrite
	None
	The register on the Write input is written with the value of the Write data input

	ALUSrc
	The second ALU operand comes from the second register file output (Read data 2)
	The second ALU operand is the sign-extended, lower 16 bits of the instruction

	PCSrc
	The PC is replaced by the output of the adder that computes the value of PC + 4
	The PC is replaced by the output of the adder that computes the branch target

	MemRead
	None
	Data memory contents designated by the address input are put on the Read data output

	MemWrite
	None
	Data memory contents designated by the address input are replaced by the value on the Write data input

	MemtoReg
	The value fed to the register Write data input comes from the ALU
	The value fed to the register Write date input comes from the data memory

The control signals are derived from the instruction, as shown in the following figure:
[image:]
Fig. 11‑25. Pipelined Control Signal

Since the control lines start with the EX stage, the control information, i.e. total nine control signals, can be created during ID stage. Four of the nine control lines are used in the EX stage, with the remaining five control lines passed on to the EX/MEM pipeline register extended to hold the control lines. Three are used during the MEM stage, and the last two are passed to MEM/WB pipeline register for use in the WB stage.

[bookmark: _Toc98151841]Example – Pipeline Control

Let’s look at some example what control signals are created in a given instruction and how these signals are used for each pipeline stage with the following instructions, where we assume that there are no hazard illustrations:

	lw	$10, 20($1)
sub	$11, $2, $3
and	$12, $4, $5
or	$13, $6, $7
add	$14, $8, $9

[image:]
Fig. 11‑26. Pipeline Control – Click 1
Fig. 11-26 shows that the LW instruction is fetched in the instruction memory of IF stage. At the end of the clock cycle, the LW instruction is in the IF/ID pipeline registers. Note that since there is no control signal created in this stage, all the control signals are set to 0.
[image:]
Fig. 11‑27. Pipeline Control – Click 2

Fig. 11-27 shows the second clock cycle, where the LW instruction moves to the ID stage, and sub instruction enters in the IF stage.
Note that the values of the instruction fields and the selected source registers are shown in the ID stage. Hence register $1 and the constant 20, the operands of LW, are written into the ID/EX pipeline register. The number 10, representing the destination register number of LW, is also placed in ID/EX. Bits 15–11 are 0, but we use the symbol X to show that a field plays no role in a given instruction.

[image:]
Fig. 11‑28. Pipeline Control – Click 3

LW instruction enters the EX stage in the third clock cycle, adding $1 and 20 to form the address in the EX/MEM pipeline register.
At the same time, the SUB instruction (sub $11, $2, $3) enters ID stage, reading registers $2 and $3, and the AND instruction (and $12, $4, $5) starts IF stage.

[image:]
Fig. 11‑29. Pipeline Control – Click 4

In the fourth clock cycle, LW instruction moves into MEM stage, reading memory using the value in EX/MEM as the address.
In the same clock cycle, the ALU subtracts $3 from $2 and places the difference into EX/MEM pipeline registers, reads registers $4 and $5 during ID stage, and the OR instruction (or $13, $6, $7) enters IF stage.

[image:]
Fig. 11‑30. Pipeline Control – Click 5

The final instruction, an ADD instruction in this example, enters IF stage in the datapath. All instructions are engaged in the fifth clock cycle. By writing the data in MEM/WB into the write register 10, LW instruction completes and both the data and the register number are in MEM/WB.
In the same clock cycle, SUB instruction sends the difference in EX/MEM to MEM/WB, and the rest of the instructions move forward.

[image:]
Fig. 11‑31. Pipeline Control – Click 6

In the sixth clock cycle, SUB instruction selects the value in MEM/WB to write to the write register number 11, again found in MEM/WB.
The remaining instructions play follow-the-leader: the ALU calculates the OR of $6 and $7 for the OR instruction in the EX stage, and registers $8 and $9 are read in the ID stage for the ADD instruction.
The instructions after ADD are shown as inactive just to emphasize what occurs for the five instructions in the example.

[image:]
Fig. 11‑32. Pipeline Control – Click 7

In the seventh clock cycle, the ADD instruction brings up the rear, adding the values corresponding to registers $8 and $9 during the EX stage.
The result of the OR instruction is passed from EX/MEM to MEM/WB in the MEM stage, and the WB stage writes the result of the AND instruction in MEM/WB to the write register $12.
Note that the control signals are deasserted (set to 0) in the ID stage, since no instruction is being executed.

[image:]
Fig. 11‑33. Pipeline Control – Click 8

In the eighth clock cycle, the WB stage writes the result to the write register $13, thereby completing OR instruction, and the MEM stage passes the sum of the ADD instruction from EX/MEM to MEM/WB.
The instructions after ADD instruction are shown as inactive for pedagogical reasons.

[image:]
Fig. 11‑34. Pipeline Control – Click 9

The WB stage writes the sum in MEM/WB into the write register $14, completing all five-instruction sequences including ADD instruction. The instructions after ADD instruction are shown as inactive for pedagogical reasons.

[image:]
Fig. 11‑35. Summary of Pipelined Control

Fig. 11-35 summarized the pipeline control. The control values for the last three stages are created during the instruction decode stage and then placed in the ID/EX pipeline register. All the control values are as follows for each stage:
· EX stage: ALUSrc, ALUOp, and RegDst
· MEM stage: Branch, MemWrite, PCSrc, and MemRead
· WB stage: MEMtoReg and RegWrite
The control lines for each pipe stage are used, and remaining control lines are then passed to the next pipeline stage.

image3.png
RegDs

Branch

Add
ALU result

\ MemRead

=)

\ MemtoReg

|ATuop

Instruction
[31-26]: Opcode

g
s
o
o

[Memwrite

Instruction
Read 2521 s
address
Instructi Instruction
nstruction e
o [2etel
Instruction
Memory q
Execute
. Instruction
Operation T15-0]

Read
register 1 Read

data1

Read

register 2
Registers

Write Read

register data 2

Write data

Instruction [5-0]: function field

Address

Data
Memory

Write Data

image4.png
Add
ALU result

RegDst Branch l__D
"\ MemRead

\ MemtoReg
ALUGH
[Memwirite
ALUSTe
RegWiite

Control

Instruction
[31-26]: Opeofle

Instruction
e [2521):rs
et Instruction
etetion | 8 0-Ter Address
) Data
Instruction | ngtrycio Memory
Memory | 9

Write Data

Write st
nstruction
Result Back [15-0]

Instruction [5-0J: function field

image5.png
Instruction
Fetch

RegDs|

Branch

Add
ALU result

\ MemRead

=

\ MemtoReg

|_ALUCp

Instruction
[31-26]: Opcogle

| MemWrite

Control

ALUSTC
RegWiite

Instruction

{ Instruction

[25-21]):rs

Read
register 1 Read

data1

Read

register 2
Registers

Write

register

Write data

Instruction 1|

[15-0L:
constant

ALU
Control

Address Reag

d
Data
Memory

Write Data

image6.png
Branch

Add
ALU result

MemRead

=)

MemtoReg

ALUOp

Read
address

Instruction
[31-0]

Instruction
Memory

Instruction
[31-26]: Opcof

Instryction,

MemWrite

ALUStC
RegWiite

Instruction
Decode

[25-21):rs

Instruction

32

[15-0]:
constant

ALU
Control

4

Address Read

data
Data

Memory

Write Data

image7.png
Add
ALU result

RegDs| Branch
4— "\ MemRead ,__D

\ MemtoReg
ALUGp
| MemWrite:
ALUStC
RegWiite

Control

Instruction
[31-26]: Opcoge

Instruction Read
Read [25-21]:1s register 1 Read
address data1
5 4 Instruction Read
|nstrr3c:|_zg} | ¢ reg:‘steq Address Read
egisters data
Write Data
In':!er:'cot:tym register Memory
Wiite data Write Data

Calculate m \
Instruction 18 Sign- 32 ALU

Address 1150y \exena/ conel

constant

image8.png
RegDs|

Branch

Add
ALU result

\ MemRead

\ MemtoReg

| ery

Read
address

Instruction
[31-0]

Instruction
Memory

Instruction
[31-26]: Opco

Instruction

fe

| MemWrite

Control

ALUSTe
RegWiite

Access
Memory

[25-21]:1s

Instruction

Read
register 1 Read

data 1
Read
register 2
Registers
Write
register

Write data

Instruction 18
constant

4
ALU
Control

image9.png
Add
ALU result

RegDs Branch ,—_D
"\ MemRead

\ MemtoReg
| T
[Wemwiite

Instruction
[31-26]: Opcoe

RegWiite

Instruction
[25-21]:1s

Read
address

Instruction

Instruction
Add
310 ress
. Data
Instruction Memory
Memory
Write Data

Write /‘\
Instruction 1§ sign- 32 ALU

Result Back T15-0: w Control

constant

image10.png
Program

execution Time 200 400 600 800 1000 1200 1400 1600 1800
order ‘ ‘ ‘ ! I ‘ ‘ I
(in instruction) 3 i
1w $1, 100(50) | ™Ha | reo | aw | O | re
1w §2, 200(50) el Rl I -
800 ps L

: o

1w $3, 300(50) | 800 ps [feteh

image11.png
Program

execution Time
order

(in instruction)

1w $1, 100(50)
1w $2, 200(50)
1w $3, 300(50)

200

400 600 800 1000 1200 1400
T T I
Reg. ALY .CD:“ Reg.
ERIDEREAE
el) I =

"200ps 200ps 200 ps 200 ps 200 ps

image12.png
300,002,400 ps 800 p:
PE o TP 400

200,002,400 ps 200 ps

image13.png
IF: Instruction fetch

ID: Instruction
decode/register file read

EX: Execute/address
calculation

MEM: Memory access ‘WB: Write back

Read
address

Instruction

Instruction
Memory

Read
register 1 ‘:?‘:‘:
Read

register 2

Registers

Write

register Read
Write data ~ data2

16 [sign-) 32

Address Reaq

data
Data

Memory

Write Data

extend

image14.png
IF/ID

Read address

Instruction

Instruction
Memory

Read Read

Reg. 1 data 1

Read

Reg.2
Registers

Write Read

Reg. data 2

Write data

MEM/WB

The Pipeline registers

separate each pipeline stage

Read
AOress gty

Data
Memory

Write Data

image15.png
: 1w

nstruction Fetch

PC address incremented
by 4 and then written
back into the PC

Read Read L{
Reg.1 datat
Read
Reg.2

Registers
write ~ Read |_|
Reg. data2
Wrte data

EX/MEM

MEM/WB

Rea
Aadress e
Data
Memory

Write Data

16 32 |

o By

image16.png
: 1w

nstruction Decode

IF/ID ID/EX EX/MEM MEM/WB

= Add
ALU
result

Read address

Instruction =] Read
Address gt

Instruction
Memory

Data
Memory

Wite Data

image17.png
1w
e —

xecution

IF/ID

ID/EX

EX/MEM

Add

Road addross

Instruction

Instruction
Memory

on

Read Read
Reg.1 datal
Read
Reg.2
Registers
Write Read
Reg. data 2
Write data

ALU
result

MEM/WB

Rex
AddresS ot

Data
Memory

Wiite Data

ad ||

{

image18.png
Mln

lemory

IF/ID ID/EX EX/MEM MEM/WB

Add
ALU
4 shi result
Left2,

Read address. g Read Read | _{
Reg.1 datal
Read
Reg.2

Instruction 1| Registers

write Read

Instruction Reg data2 [

Memory Write data

image19.png
1w
White back

IF/ID ID/EX EX/MEM MEM/WB

Add
4' ALU
Shi result
Left2

|
-
Instruction 1= Aaross, "2 =
ata
Instruction Data
Memory Memory
r', \Write Data
Wrong
register
number |

image20.png
ID/EX

Shift
Left2

Add
ALU
result

EX/MEM

MEM/WB

Read
Address yorg

Data
Memory

Write Data

IF/ID
Add
4
Read address S| Read Read ||
J | Reg.1 data 1
E
2 | read
[P Reg.2
Instruction |-={ 4 Registers
| Write Read
Instruction Reg. data2 [
Memory | Write data
16 g\ 32
extend

== 1

xcz

image21.png
sw
Ee—

xecution

IF/ID

ID/EX

EX/MEM

Add

Add

4
P

Read address
c

Instruction 4—={
Instruction
Memory

nsruchion

Read Read ||
Reg. 1 data 1
Read
Reg.2

Registers
Write Read
Reg. data2 [
Write data

The second register value
loaded into the EX/MEM

pipeline register to be used
in the next stage

Sig 32
EXtEl

ALU
result

‘Shift
Left2

MEM/WB

Read
ADI6SS ot

Data
Memory

Write Data

{

image22.png
=

lemory

IF/ID ID/EX EX/MEM MEM/WB

Add Add

4 ALU
Shift result
Left2

Read addross S| Read Read ||
% Reg. 1 data 1
< Read
Reg. 2
Instruction 4| Registers
‘Write Read
Instruction Reg. data2 [
Mem ory ‘Write data

The data is written into data
memory for the store. Note
that the data comes from the
EX/MEM pipeline register.

image23.png
Time (in clock cycles)

Program execution
order (in instruction)

1w 510,

sub 511,

add 512,

1w 513,

add 514,

20(51)

$2, $3

$3, sS4

24(51)

$5, S6

cc1

cc2

ccs

cce

cct

ccs

cco

image24.png
Time (in clock cycles)

1w $10, 20(51) e | e | St || Witk

sub $11, $2, $3 Instucton | rstoton | mxeouton | 032, | wiesack

add $12, $3, $4 frstmeton | Instmeton | exeouton | 035 | witesank

1w $13, 24(51) e | e | e || Wik

add $14, $5, $6 rscton | oscton | guugon | 052 | witssaok

image25.png
PCSrc

Read address

Instruction

Instruction
Memory

EX/MEM

Branch

MemWrite

Data
Memory

Write Data

Read
Address ot

MemRead

IF/ID ID/EX
RegWrite
|
| Read Read | |
Reg.1 datat
Read
P Reg.2 ALUSTC
- Registers
Lo | Write Read
Reg. —
| wite dota 2
data
instructiog! 6 /“Sign- 32 6 .
[15-0]
extend Control
Instruction (z¢)
120-16] oM
u|ALuop
Instruction (xd) 1x
L | Tosr L

MEM/WB

MemtoReg

|1 M|
u
0X

RegDst

image26.png
Instruction

IF/ID

Control

WB

ID/EX

WB

EX/MEM

WB

MEM/WB

image27.png
F- D MEM: WE:
1w $10, 20($1)
‘ IE/D ID/EX EX/MEM . MEM/WB
u s
1x 3 b i
£ =
R -
) ES
-
w Add o
- e - ‘ ALU Branch g
s shift result 4 g
) Left2 . H
3] 2
. £
Read g
c Read address e,y o =
Read H zero L
Reg.2 2 ALY
. Registers 2 ALY Adaress, i
resut
Instruction o Data &
Memory X Memory
Wirte Data
Sign-
extend
Clock 1 oM oo MemRead
X

R

egDst

image28.png
F: D MEM: WB
sub $11, $2, $3 1w $10, 20($1)
‘ IF/ID ID/EX EX/MEM . MEM/WB
u 1 s
g
o 010) =
00 Loy
ES
Add -
g g ALY Branch g
4 H Shift result Ly 2
] Left2 = £
& : 2
H
P =4 W E
Sl Read Read H
c Read address He N]
2]x| reaa & Zer0 !
<7 Reo2 2 ALY M
nstruction [Registers. 2 ALY Adaress, v
Read |5 resut M
Instruction dataz o Data N
Memory X Memory
20 Wirte Data
Eecia® ASgENI2
extend
Clock 2 pimom oM T awop NemRead
x x u
nsiruction X
=0 RegDst

image29.png
IF - :
and $12, $4, §5 sub $11, $2, $3
‘ - ID/EX EX/MEM o MEM/WE
. &
1X] :
Lerg
- w Branch g
= E
= 2
H
P s g
C [Reas aderess £ :
g
p— ndiess U
Instruction o &
Memory Memory
Wit Data
Clock 3 MemRead

image30.png
MEM/WB

IF D = g
or $13, $6, §7 and 12, §4, §5 s S11, §2, §3 v $10, 20(5D)
‘ /D ID/EX EX/MEM ¢
" &
]

1x

=l

:
> .
& Hel ressossens | | |
:
E
Instruction [*]
Instruction
Memory

Clock 4

MemRead

MemtoReg

M

oX

image31.png
F- D EX: MEM: WBE:
add $14, $8, $9 or $13, §6, §7 and $12, $4, $5 sub $11, 82, 83 | 1w §10, 20(51)

" w H
H
H
P <
© [Reac adoress £
2
i
instruction [
Instruction
Memory

Clock 5 MemRead

image32.png
MEM: WB:
§7 and $12, $4, $5 sub $11, $2, $3

D
add §14, $8, $9 or $13, $6,

oM IF/ID

1X

Add

c Read address

= MemtoReg

Instruction
c=

Instruction

x

Instruction
Memory

MemRead

Clock 6

image33.png
MEM: WB:

D 3
add $14, $8, $9 or $13, $6, §7 and $12, 54,88
[
I
om
u
1x
Add g
H
H
H
P
c
im
u
Instruction <
Memory

MemRead

Clock 7

image34.png
MEM: WBE:

D:
add §14, $8, $9 or $13, $6, §7
[
I
om) IF/ID
u
1x
aa Add o
ALU &
result -
5
2
3
c
1m]
u
Instruction &
Memory

MemRead

Clock 8

image35.png
D:
add $14,
I
oM IF/ID
u
1x
aa Add =
e AL &
£ result -
H £
g 2
1m
u
Instruction &
Memory

Clock 9

[]

MemRead

$8, $9

image36.png
PCSTC

ID/EX
EX/MEM
3 \ H
E] -] MEM/WB
8 L
FD = L= 2
Add)
T 2 ALU Branch &
s i result D_]
H g 2
o M| £
Ul B Read address S| Read Read | | §
—|:x HRE 3 -
% a8 E i Read 1w
nstruction || Registers = ALY | Adress e (171 [|y
; Read | | X
Instruction data2 Data N
Memory Memory
Wit Data
nstruction!® 32
i exiena
nsiucton
prpcien WemRead
Insiucton
=01

image1.png
Instruction
Fetch

RegDs!

Branch

Add
ALU result

\ MemRead

=D

\ MemtoReg

|Aos

Instruction
[31-26]: Opcofle

Control

[Wemwrite

ALUSrc
RegWrite

Instruction

[2521]:1s

Instruction

[20-16]: 1t

Read
register 1 Read

data1
Read
register 2
Registers
Write Read
register data2|

Write data

Instruction

[15-0]

Instruction [5-0]: function field

Address

Data
Memory

Write Data

image2.png
Branch

Add
ALU result

MemRead

=D,

MemtoReg

ALUOp

Read
address

Instruction
[31-0]

Instruction
Memory

Instruction
[31-26]: Opeofie

Instruction

MemWrite

ALUSrc
RegWite

[25-21):rs

Instruction

Instruction
Decode

Instruction
[15-0] |

Instruction [5-0: function field

Address

Data
Memory

Write Data

