[bookmark: _Toc98151756]Chapter 5: Binary Number Formats
In this chapter, we introduce fixed- and floating-point number systems that can represent rational numbers. Fixed-point numbers are analogous to decimals; some of the bits represent the integer part, and the rest represent the fraction. Floating-point numbers are analogous to scientific notation, with a mantissa and an exponent.

[bookmark: _Toc98151757]Objectives

By the end of this chapter you should be able to:
· Use the fixed- and floating-point number systems to represent rational numbers.
· Demonstrate signed fixed- and floating-point numbers.
· Recall how to convert decimal numbers to binary numbers.
· Express rational numbers into scientific notations.
· Identify the biased exponent for IEEE 754 representation.
· Demonstrate the floating-point precision.

[bookmark: _Toc98151758]5.1 Number Systems for Binary Representations

Computers operate on both integers and fractions. So far, the numbers we can represent using binary representations include positive and negative integer numbers. Positive integer numbers are represented with unsigned binary numbers, whereas negative integer numbers are represented with two’s complement and sign/magnitude numbers. How can we represent fractions? There are two common notations to represent numbers with fractions; (1) fixed point notation and (2) floating point notation. In fixed point notation, the location of decimal point is fixed and there are a fixed number of digits after the decimal point. On the other hand, floating point number allows for a varying number of digits after the decimal point, meaning that the decimal point floats to the right of the most significant ‘1’ bit.

[bookmark: _Toc98151759]5.2 Fixed-Point Number Representation

The decimal number can be expressed as the sum of the products of each digit times the weight for that digit. Thus, the decimal number 123.4510, can be expressed as
[image: 123.45 subscript 10 equals open parentheses 1 cross times 10 squared close parentheses plus open parentheses 2 cross times 10 to the power of 1 close parentheses plus open parentheses 3 cross times 10 to the power of 0 close parentheses plus open parentheses 4 cross times 10 to the power of negative 1 end exponent close parentheses plus open parentheses 5 cross times 10 to the power of negative 2 end exponent close parentheses]
The weight of digits moving towards left increases by a factor of 10, whereas the weight of digits moving towards right decreases by a factor of 10.
Now, let’s look at binary number representation. The binary number can be expressed as the sum of the products of each digit times the weight for that digit in a similar manner. Thus, the binary number 101.112, can be expressed as
[image: 101.11 subscript 2 equals open parentheses 1 cross times 2 squared close parentheses plus open parentheses 0 cross times 2 to the power of 1 close parentheses plus open parentheses 1 cross times 2 to the power of 0 close parentheses plus open parentheses 1 cross times 2 to the power of negative 1 end exponent close parentheses plus open parentheses 1 cross times 2 to the power of negative 2 end exponent close parentheses]
[image: equals 4 plus 0 plus 1 plus 0.5 plus 0.25 equals 5.75 subscript 10]
In the binary number representation, the weight of digits moving towards left increases by a factor of 2, whereas the weight of digits moving towards right decreases by a factor of 2.
For example, what decimal number does the binary number 1011.10112 represent? We can find the decimal number value of the binary number 1011.10112 with the sum of the products of each digit times the weight for that digit, such as
[image: {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mn>1011</mn><mo>.</mo><msub><mn>1011</mn><mn>2</mn></msub><mo>=</mo><mn>1</mn><mo>×</mo><msup><mn>2</mn><mn>3</mn></msup><mo>+</mo><mn>0</mn><mo>×</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>×</mo><msup><mn>2</mn><mn>1</mn></msup><mo>+</mo><mn>1</mn><mo>×</mo><msup><mn>2</mn><mn>0</mn></msup><mo>+</mo><mn>1</mn><mo>×</mo><msup><mn>2</mn><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mn>0</mn><mo>×</mo><msup><mn>2</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn><mo>×</mo><msup><mn>2</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>+</mo><mn>1</mn><mo>×</mo><msup><mn>2</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup><mspace linebreak=\"newline\"/><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo>=</mo><mn>8</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>125</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>0625</mn><mspace linebreak=\"newline\"/><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo>=</mo><mn>11</mn><mo>.</mo><mn>6875</mn></mstyle></math>"}

1011.1011 subscript 2 equals 1 cross times 2 cubed plus 0 cross times 2 squared plus 1 cross times 2 to the power of 1 plus 1 cross times 2 to the power of 0 plus 1 cross times 2 to the power of negative 1 end exponent plus 0 cross times 2 to the power of negative 2 end exponent plus 1 cross times 2 to the power of negative 3 end exponent plus 1 cross times 2 to the power of negative 4 end exponent
equals 8 plus 0 plus 2 plus 1 plus 0.5 plus 0 plus 0.125 plus 0.0625
equals 11.6875]
What about the reverse process? Let’s convert the decimal number 6.7510 to a fixed-point binary number. First, we need to split the value into the integral part and the fractional part; integral 6 and fractional 0.75. The integral part will be converted into the binary number by repeating the division, 6 = 110. The fractional part 0.75 will be converted into the binary number by repeating the multiplication as shown below:
· [image: 0.75 cross times 2 equals 1.5] remove overflow digit 	1	
· [image: 0.50 cross times 2 equals 1.0] remove overflow digit	1
By collecting all the overflow digits from top to bottom, we can represent the decimal number 6.75 into the binary number 110.112.

[bookmark: _Toc98151760]Exercises

Represent the decimal number 12.6875 as the binary number using 4 integer bits and 4 fraction bits.
After splitting the decimal number into the integer part and the fractional part, we can get the integral part as shown below:
· Integral part: 12 1100
The fractional part 0.6875 will be converted into the binary number by repeating the multiplication as shown below:
· [image: 0.6875 cross times 2 equals 1.375]	 remove overflow digit 	1
· [image: 0.375 cross times 2 equals 0.75]		 no overflow			0
· [image: 0.75 cross times 2 equals 1.5]		 remove overflow digit 	1
· [image: 0.5 cross times 2 equals 1.0]		 remove overflow digit 	1
By collecting all the overflow digits from top to bottom, we can represent the decimal number 12.6875 into the binary number 1100.10112.

[bookmark: _Toc98151761]Signed Fixed-Point Numbers

The fixed-point number can represent the positive and negative values with two’s complement and sign/magnitude number systems.
For example, let’s represent the decimal number -7.510 as a signed fixed-point binary number using 4 integer and 4 fraction bits. In the sign/magnitude number system, the first bit always represents the sign. Since the decimal number -7.510 is a negative value, the sign bit should be ‘1’. The rest of integer bits can represent the integer value, so that we can convert the integer part 7 into the binary value 111. The fractional part 0.5 will be converted into the binary number by repeating the multiplication, [image: 0.5 cross times 2 equals 1.0] (overflow digit: 1). The number -7.510 can be converted into the signed fixed-point number, 1111.1000, where the decimal point is fixed.
Now, let’s represent the decimal number -7.510 as a two’s complement number. First, we will find a positive representation of the number and then we will negate the value, meaning that we convert the positive value to the negative value. We can find a positive representation of the number 7.5, by splitting the value into the integral part and the fractional part; integral 0111 and fractional 1000. Let’s negate the positive representation 01111000 by inverting all the bits and adding 1 to lsb (least significant bit), as shown below:
[image:]
In the two’s complement number system, the first digit always represents a negative value. The other bits are regular binary numbers, as shown below:
	Digits
	1
	0
	0
	0
	1
	0
	0
	0

	Weights
	-8
	4
	2
	1
	0.5
	0.25
	0.125
	0.0625

That means the first digit ‘1’ represents -8 and the fifth digit ‘1’ represents 0.5. The sum of these two digits represents -7.5 ([image: equals short dash 8 plus 0.5]) which we got from the above operation.

[bookmark: _Toc98151762]Exercises

Convert the following two’s complement binary fixed-point numbers to base 10. The implied binary point is explicitly shown to aid in your interpretation.

· 0101.1000 =
The integer part is 0101, so that we can get the integer part as follows: [image: 0 cross times short dash 2 cubed plus 1 cross times 2 squared plus 0 cross times 2 to the power of 1 plus 1 cross times 2 to the power of 0 equals 1 cross times 4 plus 1 cross times 1 equals 5]. The fractional part is 1000, so that we can get the fractional part as follows: [image: 1 cross times 2 to the power of short dash 1 end exponent plus 0 cross times 2 to the power of short dash 2 end exponent plus 0 cross times 2 to the power of short dash 3 end exponent plus 0 cross times 2 to the power of short dash 4 end exponent equals 0.5]. The sum of integer part and the fractional part is 5.5.

· 1111.1111 =
The integer part is 1111, so that we can get the integer part as follows: [image: 1 cross times short dash 2 cubed plus 1 cross times 2 squared plus 1 cross times 2 to the power of 1 plus 1 cross times 2 to the power of 0 equals short dash 8 plus 4 plus 2 plus 1 equals short dash 1]. The fractional part is 1111, so that we can get the fractional part as follows: [image: 1 cross times 2 to the power of short dash 1 end exponent plus 1 cross times 2 to the power of short dash 2 end exponent plus 1 cross times 2 to the power of short dash 3 end exponent plus 1 cross times 2 to the power of short dash 4 end exponent equals 0.5 plus 0.25 plus 0.125 plus 0.0625 equals 0.9375]. The sum of integer part and the fractional part is [image: short dash 1 plus 0.9375 equals short dash 0.0625].

· 1000.000 =
There is only the integer part 1000. We can get the integer value, -8.

[bookmark: _Toc98151763]5.3 Floating-Point Number Representation

In the floating-point number, the binary point position is assumed always just before the most significant digit, which is very similar to decimal scientific notation. Before we dive into the binary number, let’s look at a decimal number 27310. We can write the decimal number 27310 in scientific notation: [image: 273 equals 2.73 cross times 10 squared].
In general, a number is written in scientific notation as follows:
[image: plus-or-minus blank M cross times B to the power of E]
where the symbol [image: M] defines the mantissa (fraction), the symbol [image: B] defines the base, and the symbol [image: E] defines the exponent. In the example, the mantissa [image: M] is 2.73, the base [image: B] is 10, and the exponent [image: E] is 2.
The binary number can be written in scientific notation as shown above, where the base is 2. Once we got the scientific notation, we can store the binary number in 32 bits, as shown in Fig. 5-1. The first bit stores the sign. If the sign bit is 0, the number is positive; otherwise the number is negative. The next exponent field (8 bits) stores the exponent value. The mantissa field (23 bits) stores all the digit of the number.

[image:]
Fig. 51. Floating-Point Number Representation

We will show you how to represent the decimal number 22810 using a 32-bit floating point representation. There are three versions. The final version is called the IEEE 754 floating-point standard.
First, we need to convert the decimal number to the binary number.
· [image: 228 subscript 10 equals 11100100 subscript 2]
After getting the binary number, we can write the binary number in “binary scientific notation”.
· [image: 11100100 subscript 2 equals 1.11001 subscript 2 cross times 2 to the power of 7]
where, we can identify the mantissa [image: M equals 111001], the base [image: B equals 2], and the exponent [image: E equals 7]. Let’s fill in each field of the 32-bit floating point number:
· The sign bit is positive (0)
· The 8-bit exponent represents the value 7: 00000111
· The remaining 23 bits are the mantissa: 11100100000000000000000
Since the mantissa has a total of 6 digits in the given example. The rest of the mantissa will be filled with ‘0’. The following figure show the first representation of the floating-point number.
[image:]
Fig. 52. Floating-Point Number Representation 1

The first bit of the mantissa is always ‘1’. The implicit leading one is not included in the 23-bit mantissa for efficiency. We only store the fraction bits in 23-bit field except the leading one. The following figure shows the second representation of the floating-point number.
[image:]
Fig. 53. Floating-Point Number Representation 2

Notice that the first bit of the mantissa is gone. Now we only store the fraction.
The exponent needs to represent both positive and negative exponents. To do so, floating-point uses a biased exponent, which is the original exponent plus a constant bias. 32-bit floating-point uses a bias of 127. The exponent of 7 is stored as a biased exponent that is equal to the sum of the bias (127) and the original exponent (7), i.e., [image: 127 plus 7 equals 134 equals 10000110 subscript 2]. The IEEE 754 32-bit floating-point representation of 22810 is shown in the following figure:
[image:]
Fig. 54. Floating-Point Number Representation 3 – IEEE 754

The hexadecimal representation of the number is [image: 0 cross times 43640000].

[bookmark: _Toc98151764]Exercises

Write the decimal number -58.2510 in floating point of IEEE 754 format.
First, we need to convert the decimal number to the binary number, as shown below:
· [image: 58.25 subscript 10 equals 111010.01 subscript 2]
Second, we can write the binary number in “binary scientific notation”.
· 	[image: 1.1101001 cross times 2 to the power of 5]
where, we can identify the mantissa [image: M equals 11101001], the base [image: B equals 2], and the exponent [image: E equals 5]. Let’s fill in each field of the 32-bit floating point number:
· The sign bit is negative (1)
· The 8-bit biased exponent bits: [image: open parentheses 127 plus 5 close parentheses equals 132 equals 10000100 subscript 2]
· 23 fraction bits: 110 1001 0000 0000 0000 0000
Note that the first bit of the mantissa is gone and we have 23 fraction bits.
[image:]
Fig. 55. Floating-Point Number Representation with IEEE 754 Format

The hexadecimal representation of the number is [image: 0 cross times C 2690000].
[bookmark: _Toc98151765]Special Cases

The IEEE 754 floating-point format has special cases to represent numbers such as zero, positive and negative infinity, and illegal results. The following figure show special cases of these values.
Table 51. Special Cases of IEEE 754 Standard Format
	Number
	sign
	Exponent (8 bits)
	Fraction (23 bits)

	0
	x
	00000000
	00000000000000000000000

	
	0
	11111111
	00000000000000000000000

	-
	1
	11111111
	00000000000000000000000

	NaN
	x
	11111111
	Non-zero

We have showed 32-bit floating-point numbers. When you declare a float variable in your program language, the variable is stored with the format we have discussed so far in the computer system. The format is also called single-precision (float) or single. The IEEE 754 standard also defines 64-bit double-precision numbers (also called doubles) that can provide greater precision and range.
The following table shows the number of bits used for the fields in each format.

Table 52. Single-Precision and Double-Precision Formats of IEEE 754 Standard
	Format
	Total bits
	Sign bits
	Exponent bits
	Bias value
	Fraction bits

	Single-Precision
	32
	1
	8
	127
	23

	Double-Precision
	64
	1
	11
	1023
	52

Recall that a number overflows when its magnitude is too large to be represented. Likewise, the number underflows when it is too tiny to be represented. Arithmetic results that fall outside of the available precision must round to a neighboring number. The rounding modes are: round down, round up, round toward zero, and round to nearest. The default rounding mode is round to nearest.
For example, round the value 1.100101 (1.578125) to only 3 fraction bits. If the round down mode is applied, the value rounds ‘1.100’. If the round up mode is applied, the value rounds ‘1.101’. If the round toward zero is applied, the value rounds ‘1.100’. If the round to a neighboring number is applied, the value rounds ‘1.101’, because 1.62510 (1.1012) is closer to 1.57812510 (1.1001012) than 1.510 (1.12) is.

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image1.png

image2.png

