[bookmark: _Toc98151795]Chapter 8: Basic CPU Organization
In this chapter, we introduce the basic CPU organization and instructions. This module also shows how a CPU is made, what’s inside a CPU, how computer memory works, and how a CPU works.

[bookmark: _Toc98151796]Objectives

By the end of this chapter you should be able to:
· Recognize the history of Intel microprocessors
· Recall how a CPU is made from sand to chip
· List what’s inside a CPU
· Demonstrate knowledge of computer memory integrating with a CPU

[bookmark: _Toc98151797]8.1 Hardware Overview

Typical personal computer systems consist of lots of input/output devices, storage devices and communication interface. The input device includes keyboard, mouse. The output device includes monitor, printer, and speaker. Storage devices include CD-R/RW, DVD, and Hard disk. When you open a desktop computer case, you can see lots of electronic components in the main board. The key components of your main board are CPU and Memory.

[bookmark: _Toc98151798]History of Intel Processors

The early computers that used vacuum tubes were huge. The ENIAC occupied a whole room. Vacuum also took a long time to warm up and they produce a lot of excess heat and then came transistors. The transistor was invented at Bell Laboratories on December 23, 1947. The following show the history of intel processors:
	Year
	Processors
	# of Transistors
	Clock rate
	Memory
	Feature size

	1971
	Intel 4004
	2,300
	740 KHz
	Up to 4,096 bytes
	10 microns

	1972
	Intel 8008
	3,500
	0.2 to 0.8 MHz
	Up to 16 kB
	10 microns

	1964
	Intel 8080
	4,500
	2 MHz
	Up to 64 kB
	6 microns

	1978
	Intel 8086
	29,000
	5 to 10 MHz
	Up to 1 MB
	3 microns

	1979
	Intel 8088
	29,000
	5 to 10 MHz
	Up to 1 MB
	3 microns

	1982
	Intel 80186
	55,000
	6 to 25 MHz
	Up to 1 MB
	3 microns

	1982
	Intel 80286
	134,000
	6 to 25 MHz
	Up to 16 MB
	1.5 microns

	1985
	Intel 80386
	275,000
	12 to 40 MHz
	Up to 4 GB
	1.5 microns

	1989
	Intel 80486
	1,180,235
	16 to 150 MHz
	Up to 4 GB
Cache – 8 to 16 kB
	1 micron

	1993
	Intel Pentium 80501
	3.1 to 3.3 million
	60 to 66 MHz
	Up to 4 GB
Cache – 8 kB instruction cache, 8 kB cache
	0.35 to 0.8 microns

	1995
	Intel Pentium Pro
	5.5 million
	150 – 200 MHz
	Up to 64 GB
L1 Cache – 8 kB instruction cache & 8 kB data cache
LS Cache – 512 kB
	0.35 to 0.5 microns

	1997
	Intel Pentium II
	7.5 million
	233, 266 or 300 MHz
	Up to 64 GM
L1 Cache – 32 kB
L2 Cache – 512 kB
	0.35 microns

	1999
	Intel Pentium II (Dixon)
	27.4 million
	400 MHz
	Up to 64 GB
L1 Cache – 32 kB
L2 Cache – 256 kB
	180 nm

	1999
	Intel Pentium 3 Katmai
	9.5 million
	450 to 600 MHz
	L1 Cache – 16 kB instruction cache & 16 kB data cache
L2 Cache – 512 kB (50% of CPU speed)
	250 nm

	2001
	Intel Pentium 3 Tualatin
	45 million
	1000 to 1400 MHz
	L1 Cache – 16 kB instruction cache 7 16 kB data cache
L2 Cache – 256 kB or 512 kB (full speed)
	130 nm

	2000
	Intel Pentium 4 Willamette
	42 million
	1300 to 2000 MHz
	L1 Cache – 20 kB
L2 Cache – 256 kB
	180 nm

	2002
	Intel Pentium 4 Northwood
	55 million
	1600 to 2800 MH
	L2 Cache – 512 kB
	130 nm

	2004
	Intel Pentium 4 Prescott
	112 million
	2400 to 3067 MHz
	L2 Cache – 1024 kB
	90 nm

	2005
	Intel Pentium 4 Prescott 2M
	169 million
	2.8 to 4.00 GHz
	L2 Cache – 2 MB
	90 nm

	2006
	Intel Pentium 4 Cedar Mill
	184 million
	3 to 3.6 GHz
	L2 Cache – 2 MB
	65 nm

The list of Intel microprocessors can be found on Wikipedia.

[bookmark: _Toc98151799]How A CPU Is Made

Your CPU made with sand (silicon), UV light, fire (high temperature), and water (cleaning). Intel released all the major steps in a process that normally takes hundreds of stages to complete. See how a CPU is made.

[bookmark: _Toc98151800]8.2 CPU Organization

[bookmark: _Toc98151801]What’s inside a CPU

Inside every computer is a central processing unit and inside every CPU are small components that carry out all the instructions for every program you run. These components include AND gates, OR gates, NOT gates, Clock, Multiplexer, ALU (arithmetic logic unit), etc. Data bus performs data transfer within a CPU and a computer. As shown in Fig. 8-1, CPU is organized with Program Counter (PC), Instruction Register (IR), Instruction Decoder, Control Unit, Arithmetic Logic Unit (ALU), Registers, and Buses. PC holds the address of the next instruction to be fetched from Memory. IR holds each instruction after it is fetched from Memory. Instruction Decoder decodes and interprets the contents of the IR, and splits a whole instruction into fields for the Control Unit to interpret. Control Unit co-ordinates all activities within the CPU, has connections to all parts of the CPU, and includes a sophisticated timing circuit. ALU carries out arithmetic and logical operations, exemplified with addition, comparison, Boolean AND/OR/NOT operations. Within ALU, input registers hold the input operands and output register holds the result of an ALU operation. Once completing ALU operation, the result is copied from the ALU output register to its final destination.
[image:]
Fig. 8‑1. CPU Organization

General-purpose registers are available for the programmer to use in their programs within CPU. Typically, the programmer tries to maximize the use of these registers in order to speed program execution. Busses serve as communication highways for passing information in the computer.
The computer has memory which memorize data in a similar way we remember the past events. The register is the fastest memory which is located within CPU of the computer.

[image:]
Fig. 8‑2. CPU Overview

The above figure shows CPU overview which consists of PC, instruction memory, registers, ALU, and Data memory. PC always holds the address of the next instruction to be fetched from Memory. Instruction, e.g. add $t1, $t2, $t3, is fetched into instruction memory. Register operands are used by an instruction in registers, where $t1 is the first source operand, $t2 is the second source operand, and $t3 is the storage of the result. ALU executes an arithmetic operation, e.g. Sum of $t1 and $t2. The result from the ALU or memory is written back into the register file ($t3). In the figure, ALU results and the output of data memory can’t just join wires together. The red dash-dot line can be designed with the multiplexer to put the wires together.
The following figure shows CPU control with multiplexers. The first multiplexer controls what value replaces the PC (PC + 4 or the branch destination address), where the Mux is controlled by the AND gate with the Zero output of ALU and a control signal. The second multiplexer steers the output of the ALU or the output of the data memory. The third one determines whether the second ALU input is from the registers or from the offset field of the instruction (for a load or store).

[image:]
Fig. 8‑3. CPU Control with Multiplexer

image1.png
Central Processing Unit (CPU) Memory

1
General g ! | Address
X I 5000
Registers 1 1
R1 - ! | $001
! Address Bus 1
R2 | I $002
— '
R3 (.
ALU ! Lo
| '
Output w : H
Registers Input Register 1 2 1 \ !
— 1 H
T | H
Input Register 2 1 '
£ Data Bus -
| '
<—><):> |
! o
Program Counter |— | 1 !
! 1
: o
Instruction Decoder Instruction Register I : \l
¢ l ' '
- 1
Control Unit I Read/Write : $3FF

image2.png
4 —
The result from the ALU or memoryis 1
/‘u written back into the register file i
Register #
PC Address Instruction Registers Address
Register #
Instruction Data
Memory Register # Memory
Data
Instruction is fetched .

i
Register operands used by an instruction ! \\Q Compute an arithmetic
eg $tl, $t2 $t3 |

e. g add $tl, $t2, $t3 | result, or a compare

image3.png
Control what value replaces the PC
(PC + 4 or the branch destination address)

PC

Address Instruction

Instruction
Memory

Determine whether the second ALU input
is from the registers or from the offset field
of the instruction (for a load or store)

[B ! Branch
T Ve
- \’
__________ Dol
i The Mux is controlled | | j==---ccoooooooooo
! bythe AND gatewith 1 | | Steerthe output of
| the Zero output of ALU i i the ALU or the output
—] | and a control signal ! :L of the data memory
Data JALU operation| [
A ——
. MemWrite
Register #
4—[Registers =] Address
Register #
egister - Data | |
i Memory
¢—=| Register # RegWrite
B e Datd \emRead

Instruction
as an input

