
Computer Organization

2021

CPSC 2105
LEE, SUK

COLUMBUS STATE UNIVERSITY | 4225 University Ave, Columbus, GA 31907

i

Contents
Chapter 1: Introduction .. 1

Objectives.. 1

1.1. Overview on Computing Hardware .. 1

Basic Definitions .. 1

Hardware Overview .. 1

1.2. Digital Discipline .. 3

Binary Values ... 3

Number Systems ... 3

1.3. Definitions ... 4

1.4. Signed Binary Numbers ... 4

Sign-Magnitude ... 5

Two’s Complement ... 5

Chapter 2: Overview on Computing Hardware .. 6

Objectives.. 6

2.1. Logic Gates .. 6

Single-Input Logic Gates .. 6

Two-Input Logic Gates .. 7

2.2. Noise ... 8

2.3. Transistors and Logic Gates .. 9

Chapter 3: Boolean Expressions ... 16

Objectives.. 16

3.1. Boolean Equations .. 16

3.2. Boolean Algebra .. 17

Boolean Axioms and Theorems .. 17

Exercises .. 21

3.3. De Morgan's Theorems ... 22

Exercise ... 24

Chapter 4: Boolean Expressions and Combinational Circuits ... 26

Objectives.. 26

4.1 Circuit Schematics Rules ... 26

Multiple-Output Circuits ... 28

4.2 Karnaugh Maps (K-Maps) .. 30

ii

Exercise ... 35

4.3 Combinational Circuits .. 36

1-Bit Half Adders ... 36

Multiplexer .. 37

Encoder ... 41

Binary Decoder .. 43

Priority Circuit ... 44

Chapter 5: Binary Number Formats .. 49

Objectives.. 49

5.1 Number Systems for Binary Representations ... 49

5.2 Fixed-Point Number Representation .. 49

Exercises .. 50

Signed Fixed-Point Numbers ... 51

Exercises .. 51

5.3 Floating-Point Number Representation .. 52

Exercises .. 54

Special Cases ... 55

Chapter 6: Computer Arithmetic .. 56

Objectives.. 56

6.1 Boolean Addition .. 56

1-Bit Full Adders .. 57

Four-Bit Adders ... 60

Exercises .. 60

6.2 Boolean Subtraction .. 61

Four-Bit Subtractor ... 62

6.3 Adder-Subtractor .. 63

Exercises .. 65

6.4 Comparators ... 66

Equality ... 66

Less Than ... 67

6.5 Arithmetic Logic Unit .. 67

N-bit ALU ... 68

Exercises .. 70

iii

Logical Shift ... 70

Arithmetic Shift ... 71

Exercises .. 72

Chapter 7: Circuit Designs and Sequential Circuits ... 73

Objectives.. 73

7.1 Combinational Circuit Design .. 73

Multiplexer .. 73

Decoder ... 75

Encoder ... 76

7.2 Sequential Circuits .. 79

SR Latch ... 79

D Latch .. 82

D Flip-Flop ... 84

Chapter 8: Basic CPU Organization ... 86

Objectives.. 86

8.1. Hardware Overview .. 86

History of Intel Processors .. 86

How A CPU Is Made .. 88

8.2. CPU Organization .. 88

What’s inside a CPU .. 88

Chapter 9: Instruction Set Architecture .. 91

Objectives.. 91

9.1. Instructions ... 91

Operands ... 92

Word-addressable Memory .. 94

Exercises .. 94

9.2. Machine Languages... 95

R-type Instruction Format ... 95

I-type Instruction Format .. 97

J-type Instructions ... 99

Instruction Fetch and PC ... 100

Exercises .. 100

Chapter 10: Assembly ... 102

iv

Objectives.. 102

10.1. Assembly Languages ... 102

Read Word-Addressable Memory .. 102

Write Word-Addressable Memory ... 103

Byte-Addressable Memory ... 104

Power of the Stored Program ... 104

Exercises .. 105

10.2. Logic Operations ... 107

Shift Operations .. 107

AND Operations .. 108

OR Operations ... 108

NOT Operations .. 109

Exercises .. 109

10.3. Conditional Operation ... 110

Conditional Statements .. 111

Chapter 11: Pipeline .. 116

Objectives.. 116

11.1. Instruction Pipelining .. 116

R-Type Instruction ... 116

Load Instruction .. 118

Performance Issues ... 120

11.2. Pipelined Datapath ... 124

Single-clock-cycle Pipeline Diagram .. 124

Multi-Cycle Pipeline Diagram .. 129

Exercises .. 130

11.3. Pipelined Controls ... 131

Example – Pipeline Control ... 133

Chapter 12: Memory ... 143

Objectives.. 143

12.1. Memory Hierarchy .. 143

Locality .. 145

SRAM and DRAM Technologies .. 146

Disk Storage .. 147

v

Exercises .. 147

12.2. Cache Memory .. 148

Direct Mapped Cache.. 149

N-Way Set Associative Cache .. 153

Full Associative Cache ... 155

Exercises .. 155

Chapter 13: Virtual Memory ... 156

Objectives.. 156

13.1. Virtual Memory Address ... 156

Address Translation .. 158

Exercises .. 159

13.2. Page Table ... 160

Translation Lookaside Buffer (TLB) ... 161

Virtual Memory Settings ... 162

Exercises .. 163

1

Chapter 1: Introduction

In this chapter, we present an overview of basic computer organization and representation of data in

computers.

Objectives

By the end of this chapter you should be able to:

• Explain the decimal numbers and binary numbers systems.

• Explain the number conversion among binary, decimal and hexadecimal numbers.

• Understand a basic binary addition and the overflow due to a fixed number of bits.

• Represent binary negative numbers to sign/magnitude numbers and two's complement numbers.

• Demonstrate basic skill in taking two's complement numbers.

1.1. Overview on Computing Hardware

Basic Definitions

Hardware: Physical parts of a computer. Everything you can touch.

Transistor: A tiny electrically operated switch that can alternate between “on” and “off”. Fig. 1-1 shows

a transistor which has three pins.

Fig. 1-1. Transistor

Chip (Microchip): A tiny piece of silicon that contains millions of transistors and other electronic

components, as shown in Fig. 1-2. Your CPU (Central Processing Unit) is one of Microchips.

Fig. 1-2. Chip (Microchip)

Hardware Overview

Typical Personal Computer System consists of lots of components, as shown in Fig. 1-3:

2

Fig. 1-3. Personal Computer System

• System unit: Motherboard is the main circuit board for the computer, which includes CPU,

memory, ports, etc.

• Secondary storage devices can "permanently" hold data and information. Some examples include

Floppy disk, hard disk drives, Magnetic tape, CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-R, DVD-RW.

− CD-ROM stands for Compact Disc - Read Only Memory.

− CD-R stands for Compact Disc - Recordable and can be written to only once.

− CD-RW stands for Compact Disc - Re-writeable (or Read/Write).

− DVD-ROM stands for Digital Versatile Disc - Read Only Memory.

− DVD-R stands for Digital Versatile Disc - Recordable and can be written to only once.

− DVD-RW stands for Digital Versatile Disc - Re-writeable (or Read/Write).

• Input devices translate data into a form the computer can understand.

− Keyboard, mouse, trackball, and touchpad

• Output devices translate information into a form human can understand.

− Monitor (or Display Screen), Printer, Speaker

• Communications devices send/receive data to/from other computers

− Modem, network card

3

1.2. Digital Discipline

Binary Values

In digital discipline, there are two discrete values:

• 1, TRUE, HIGH

• 0, FALSE, LOW

1 and 0 can be represented with voltage levels. If the voltage level is high, it represents 1 bit. If the

voltage level is low, it represents 0 bit. The two discrete values can be also represented with rotating

gears, fluid levels, etc. Digital circuits of your computer use voltage levels to represent 1 and 0. This is a

binary digit so we simply call it “bit”.

Number Systems

Decimal numbers can be expressed as shown in Fig. 1-4. The rightmost digit represents 1’s column. As

the digit moves forward to left-side, the weight of each digit increases as power of 10. In the figure, we

can read the number, as follows: five thousand, three hundred, seven ten, and four one.

Fig. 1-4. Decimal number

Binary number also can be expressed as shown in Fig. 1-5. Here, the rightmost digit represents 1’s

column. As the digit moves forward to left-side, the weight of each digit increases as power of 2. In the

figure, we have a binary number 1101. Each bit represents a different weight, the first bit (1) for 8’s

column, the second one (1) for 4’s column, the third one (0) for 2’s column, and the last one (1) for 1’s

column.

Fig. 1-5. Binary number

4

Fig. 1-6. Number Conversion

Let’s convert the decimal number 47 to a binary number. We can start to divide the number with the

divisor, where the divisor is always 2. You will the quotient 23 and a remainder 1. Keep repeat this

process until the dividend becomes zero, as shown in Fig. 1-6. Now let’s read the remainders from

bottom to up, 101111 is the binary representation of the decimal number 47.

1.3. Definitions

The bit is the most basic unit of information in computing and digital communications.

 1 0 0 1 0 1 1 0

The above 8 bits show an example of the binary number. The first bit we call it most significant bit

(msb), whereas the last bit we call it least significant bit (lsb). A group of 8-bit, we call it a byte.

The large powers of two can be expressed as shown below:

• 210 = 1 kilo: 210 (1024) is approximately equal to 1000

• 220 = 1 mega: 220 (1,048,576) is approximately equal to 1 million

• 230 = 1 giga: 230 (1,073,741,824) is approximately equal to 1 billion

• 240 = 1 tera: 240 (1,099,511,627,776) is approximately equal to 1 trillion

1.4. Signed Binary Numbers

There are two ways of representation of signed numbers, i.e. sign-magnitude form and two’s

complement form.

5

Sign-Magnitude

The sign-magnitude binary format is the simplest conceptual format. To represent a number in sign-

magnitude, we simply use the leftmost bit to represent the sign, where 0 means positive and 1 means

negative. The remaining bits represent the magnitude (absolute value).

For example, let’s represent +6 and -6 with 4-bit sign-magnitude form. The absolute value for both

numbers is equal to |6| = 110. The sign bit for +6 is 0, whereas the sign bit for -6 is 1. We can express

both +6 and -6 as shown below:

• +6 = 0110

• -6 = 1110

One of problem in this form is that the addition doesn’t work. If you add these two number as shown

below, the result is not correct.

 1110

 + 0110

 1 0100 (wrong~!)

Another issue is that there are two representation of 0, i.e. 1000 (-0) and 0000 (+0). That reduces the

possible number representation.

Two’s Complement

Two's complement is the most common method of representing signed integers on computers. The msb

has value of -2N-1, where N is the total number of bits. for example, if you have 4-bit two’s complement,

the most positive 4-bit number is 0111 that is equal to 7. The most negative 4-bit number is 1000 that is

equal to -8. In contrast to sign-magnitude form, addition works in two’s complement form and there is

single representation for 0.

You can find some YouTube video how to convert the number into two’s complement number in the

following link:

 Two's Complement Representation of Negative Numbers

https://www.youtube.com/watch?v=mRvcGijXI9w

6

Chapter 2: Overview on Computing Hardware

In this chapter, we explore basic logic gates that take one or more binary inputs and produce a binary

output. In addition, we cover how CMOS transistors are used to implement logic gates.

Objectives
By the end of this chapter you should be able to:

• Explain the basic logic gates and logic levels.

• Explain what noise is and what noise margin is.

• Understand two types of transistors and how to build logic gates from these transistors.

• Demonstrate basic logic gates from the corresponding CMOS gates.

2.1. Logic Gates
Basically, logic gates perform logic functions in the computer system.

Single-Input Logic Gates

The single-input logic gates take a single input and produce an output, which include a logic NOT gate

and a buffer. The logic NOT gate is the most basic of all the logic gates and flips an input value. If the

input A is “0” or LOW, the NOT gate produces the output “1” or HIGH. If the input A is “1” or HIGH, then

it produces the output “0” or LOW, giving us the Boolean expression of: 𝑌 = �̅�. The following figure

shows the symbol and the truth table of the logic NOT gate.

Symbol Truth Table

 A Y

 0 1

 1 0
Fig. 2-1. Logic NOT gate

A buffer is a basic logic gate that passes its input, unchanged, to its output. It just repeats the input

signal, giving us the Boolean expression of: 𝑌 = 𝐴. The main purpose of a buffer is to regenerate the

input, usually using a strong high and a strong low. The following figure shows the symbol and the truth

table of the buffer.

Symbol Truth Table

 A Y

 0 0

 1 1
Fig. 2-2. Buffer gate

7

Two-Input Logic Gates

For a two-input AND gate, the output Y is true if both input A and input B are “1” or HIGH, giving us the

Boolean expression of: 𝑌 = 𝐴 ∙ 𝐵. Note that the Boolean expression for a two-input AND gate can be

written as: 𝐴 ∙ 𝐵 or just simply 𝐴𝐵 without the point. The following figure shows the symbol and the

truth table of the two-input AND gate.

Symbol Truth Table

 A B Y

 0 0 0

 0 1 0

 1 0 0

 1 1 1
Fig. 2-3. Two-input AND gate

For a two-input OR gate, the output Y is true or HIGH if either input A or input B is “1” or HIGH, giving us

the Boolean expression of: 𝑌 = 𝐴 + 𝐵. Note that it produces the output Y = 0 if only if both of inputs are

“0” or LOW. The following figure shows the symbol and the truth table of the two-input OR gate.

Symbol Truth Table

 A B Y

 0 0 0

 0 1 1

 1 0 1

 1 1 1
Fig. 2-4. Two-input OR gate

For a two-input XOR gate, the output Y is true or HIGH if either input A or input B is true, but not both,

giving us the Boolean expression of: 𝑌 = 𝐴 ∙ �̅� + �̅� ∙ 𝐵 = 𝐴𝐵. The following figure shows the symbol

and the truth table of the two-input XOR gate.

Symbol Truth Table

 A B Y

 0 0 0

 0 1 1

 1 0 1

 1 1 0
Fig. 2-5. Two-input XOR gate

For a two-input NAND gate, the output Y is NOT true if both input A and input B are “1” or HIGH, giving

us the Boolean expression of: 𝑌 = 𝐴 ∙ 𝐵̅̅ ̅̅ ̅̅ . The following figure shows the symbol and the truth table of

the two-input NAND gate.

8

Symbol Truth Table

 A B Y

 0 0 1

 0 1 1

 1 0 1

 1 1 0
Fig. 2-6. Two-input NAND gate

For a two-input NOR gate, the output Y is true if both input A and input B are not true, giving us the

Boolean Expression of: 𝑌 = 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ . The following figure shows the symbol and the truth table of the

two-input NOR gate.

Symbol Truth Table

 A B Y

 0 0 1

 0 1 0

 1 0 0

 1 1 0
Fig. 2-7. Two-input NOR gate

For a two-input XNOR gate, the output Y is true if both input A and input B are the same, either true or

false, giving us the Boolean expression of: 𝑌 = (𝐴 ∙ 𝐵) + (�̅� ∙ �̅�) = 𝐴𝐵̅̅ ̅̅ ̅̅ . The following figure shows

the symbol and the truth table of the two-input XNOR gate.

Symbol Truth Table

 A B Y

 0 0 1

 0 1 0

 1 0 0

 1 1 1
Fig. 2-8. Two-input XNOR gate

2.2. Noise
Anything that degrades the signal can be noise. The noise includes resister, power supply noise, coupling

to neighboring wires, etc. The following figure shows how the noise affect the signal strength. There are

two buffers connected serially. The output of one buffer connected to the input of the other one.

Assume the output voltage of the first one is 5V. The input voltage of the second one may be 4.5 V due

to the wire noise which can degrade the signal strength.

9

Fig. 2-9. Noise between Driver and Receiver

In a digital circuit or system, with logically valid inputs, every circuit element must produce logically valid

outputs, called static discipline. Integrated circuits use limited ranges of voltages to represent discrete

values as follows:

The output characteristics:

• The logic high output ranges from VDD to VOH

• The logic low output ranges from VOL to GND

The input Characteristics:

• The logic high input ranges from VDD to VIH

• The logic low input ranges from VIL to GND

The voltage level difference between the logic output high (VOH) and the logic input high (VIH) is called

the noise margin for the logic, whereas the voltage level difference between the logic input low (VIL) and

the logic output low high (VOL) is called the noise margin for the logic.

In 1970’s and 1980’s, VDD was 5V. Nowadays VDD has dropped so we can void frying tiny transistors and

save the power in the computer system. When you connect chips with different supply voltages, you

should be careful; otherwise, you may burn the chip!

2.3. Transistors and Logic Gates
We can build logic gates (AND, OR, XOR, etc.) from transistors. The transistor is a 3-ported voltage-

controlled switch with g: gate, d: drain, s: source. Two ports, i.e. drain and source, connected depending

on the gate voltage. If the gate voltage is LOW, the switch is OFF. If the gate voltage is HIGH, the switch

is on.

10

Fig. 2-10. Transistor with g = 0 and g = 1

The Metal oxide silicon (MOS) transistor has the polysilicon (used to be metal) on the gate. The oxide

(silicon dioxide) insulator isolates the substrate (p-type silicon: a positively charges silicon) from the

polysilicon.

If the gate voltage is low, the polysilicon gate has the negative voltage and the substrate has the positive

feature. There is nothing happened, meaning the source and the drain are not connected. If the gate

voltage is HIGH, the polysilicon gate has the positive voltage and the substrate also has the positive

feature. The positives push each other. It attracts the negative feature (electron) on the surface of the

silicon dioxide insulator, which creates a channel to connect the source and the drain, meaning the

source and the drain are connected.

Fig. 2-11. Transistors: nMOS

The following figure shows the pMOS transistor. The pMOS is working in a opposite manner. If the gate

voltage is LOW, the switch is on, meaning that the source and the drain are connected. If the gate

voltage is HIGH, the switch is off, meaning that the source and the drain are disconnected.

11

Fig. 2-12. Transistors: pMOS

In summary, the nMOS transistor has the following features:

• If the gate voltage is LOW, the switch is OFF, meaning that the source and the drain are

disconnected.

• If the gate voltage is HIGH, the switch is ON, meaning that the source and the drain are

connected.

The pMOS transistor has the following features:

• If the gate voltage is LOW, the switch is ON, meaning that the source and the drain are connected.

• If the gate voltage is HIGH, the switch is OFF, meaning that the source and the drain are

disconnected.

The nMOS transistor is a good component to pass 0’s, so the source port should be connected to GND.

The pMOS transistor is a good component to pass 1’s, so the source port should be connected to VDD.

The drain ports of both nMOS and pMOS transistors can be connected to the output port.

Fig. 2-13. Transistor function

If the gate voltages of both nMOS and pMOS transistors are HIGH (logic “1”), the pMOS transistor is OFF

and the nMOS transistor is ON. The output port has the GND voltage (logic “0”). If the gate voltages of

both nMOS and pMOS transistors are LOW (logic “0”), the pMOS transistor is ON and the nMOS

transistor is OFF. The output port has the VDD voltage (logic “1”).

The NOT logic gate can be designed by connecting two transistors, nMOS and pMOS transistors, as

follows:

12

• The logic input A connected to the gate ports of both transistors.

• The source port of the nMOS transistor connected to GND.

• The source port of the pMOS transistor connected to VDD.

• The drain ports of both transistors connected to the output port Y.

Fig. 2-14. CMOS Gates: NOT Gate

If the logic input A = 0, the gate voltage of nMOS transistor (N1) is LOW so that the nMOS transistor is

OFF. On the other hand, the gate voltage of pMOS transistor (P1) is HIGH so that the pMOS transistor is

ON. Since the pMOS transistor (P1) is ON, the logic output voltage has the VDD voltage. That means the

logic output Y = 1.

If the logic input A = 1, the gate voltage of nMOS transistor (N1) is HIGH so that the nMOS transistor is

ON. On the other hand, the gate voltage of pMOS transistor (P1) is LOW so that the pMOS transistor is

OFF. Since the nMOS transistor (N1) is ON, the logic output voltage has the GND voltage. That means the

logic output Y = 0.

The NAND logic gate can be designed by connecting four transistors, where two nMOS transistors (N1,

N2) are connected serially and two pMOS transistors (P1, P2) are connected parallelly, as follows:

• The logic input A connected to the gate ports of both pMOS transistor (P1) and nMOS transistor

(N1).

• The logic input B connected to the gate ports of both pMOS transistor (P2) and nMOS transistor

(N2).

• The source port of nMOS transistor (N1) connected to the drain port of nMOS transistor (N2).

• The source port of the nMOS transistor (N2) connected to the GND.

• The source ports of both pMOS transistors (P1, P2) connected to VDD.

• The drain ports of both pMOS transistors (P1, P2) and the drain port of nMOS transistor (N1)

connected to the output Y

13

Fig. 2-15. CMOS Gates: NAND Gate

If the logic inputs A = 0 and B = 0, then

• Both nMOS transistors (N1, N2) are OFF. The output port Y has no access to the GND voltage.

• Both pMOS transistors (P1, P2) are ON. The output port Y has the voltage VDD (logic 1).

If the logic inputs A = 0 and B = 1, then

• One nMOS transistor (N1) is OFF and the other nMOS transistor (N2) is ON. Two transistors

connected serially, the output port Y has no access to the GND voltage.

• One pMOS transistor (P1) are ON and the other pMOS transistor (P2) is OFF. One of pMOS

switches is on. The output port Y has the voltage VDD (logic 1).

If the logic inputs A = 1 and B = 0, then

• One nMOS transistor (N1) is ON and the other nMOS transistor (N2) is OFF. Two transistors

connected serially, the output port Y has no access to the GND voltage.

• One pMOS transistor (P1) are OFF and the other pMOS transistor (P2) is ON. One of pMOS

switches is on. The output port Y has the voltage VDD (logic 1).

If the logic inputs A = 1 and B = 1, then

• Both nMOS transistors (N1, N2) are ON. Since two transistors connected serially, the output port Y

can access the GND voltage (logic 0).

• Both pMOS transistors (P1, P2) are OFF. The output port Y has no access to the voltage VDD.

The following table summarizes the operation of all the transistors with respect to the two inputs:

A B P1 P2 N1 N2 Y

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 1

1 0 OFF ON ON OFF 1

1 1 OFF OFF ON ON 0

How do you build a two-input AND gate?

14

By connecting the output port of CMOS NAND logic gate to the input port of CMOS NOT logic gate, we

can design AND gate, as shown in the following figure:

Fig. 2-16. CMOS Gates: AND Gate

The NOR logic gate can be designed by connecting four transistors, where two nMOS transistors (N1,

N2) are connected parallelly and two pMOS transistors (P1, P2) are connected serially, as follows:

• The logic input A connected to the gate ports of both pMOS transistor (P1) and nMOS transistor

(N1).

• The logic input B connected to the gate ports of both pMOS transistor (P2) and nMOS transistor

(N2).

• The source ports of both nMOS transistors (N1, N2) connected to GND.

• The source port of the pMOS transistor (P1) connected to the VDD.

• The drain port of pMOS transistor (P1) connected to the source of pMOS transistor (P2).

• The drain port of pMOS transistor (P2) and the drain ports of both nMOS transistor (N1) and

nMOS transistor (N2) connected to the output Y.

Fig. 2-17. CMOS Gates: NOR Gate

If the logic inputs A = 0 and B = 0, then

• Both nMOS transistors (N1, N2) are OFF. The output port Y has no access to the GND voltage.

• Both pMOS transistors (P1, P2) are ON. The output port Y has the voltage VDD (logic 1).

15

If the logic inputs A = 0 and B = 1, then

• One pMOS transistor (P1) is ON and the other pMOS transistor (P2) is OFF. Two transistors

connected serially, the output port Y has no access to the VDD voltage.

• One nMOS transistor (N1) are OFF and the other nMOS transistor (N2) is ON. One of nMOS

switches is on. The output port Y has the GND voltage (logic 0).

If the logic inputs A = 1 and B = 0, then

• One pMOS transistor (P1) is OFF and the other pMOS transistor (P2) is ON. Two transistors

connected serially, the output port Y has no access to the VDD voltage.

• One nMOS transistor (N1) are ON and the other nMOS transistor (N2) is OFF. One of nMOS

switches is on. The output port Y has the GND voltage (logic 0).

If the logic inputs A = 1 and B = 1, then

• Both pMOS transistors (P1, P2) are OFF. The output port Y has no access to the VDD voltage.

• Both nMOS transistors (N1, N2) are ON. The output port Y has the GND voltage (logic 0).

The following table summarizes the operation of all the transistors with respect to the two inputs:

A B P1 P2 N1 N2 Y

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 0

1 0 OFF ON ON OFF 0

1 1 OFF OFF ON ON 0

How do you build a two-input OR gate?

By connecting the output port of CMOS NOR logic gate to the input port of CMOS NOT logic gate, we can

design OR gate, as shown in the following figure:

Fig. 2-18. CMOS Gates: OR Gate

16

Chapter 3: Boolean Expressions

In this chapter, we learn how to write a Boolean expression given a truth table and use Boolean algebra

to simplify Boolean equations. De Morgan's Theorem is a particularly powerful tool in digital design,

which explains that the complement of the product of all the term is equal to the sum of the

complement of each term.

Objectives

By the end of this chapter you should be able to:

• Explain how to derive a Boolean equation from any truth table.

• Express a Boolean equation for any truth table by summing each of the minterms for the output.

• Understand how to use Boolean algebra to simplify equations.

• Demonstrate De Morgan's Theorem to simplify a Boolean equation.

3.1. Boolean Equations
A Boolean equation is a functional specification of outputs in terms of inputs, which are

expressed as a logical statement that is either TRUE or FALSE. The following figure exemplifies a

functional specification with two inputs A and B and the output Y.

Fig. 3-1. Functional specification with two inputs A and B and the output Y

Let’s assume that the functional specification of the above figure can be expressed as the following truth

tables:

Fig. 3-2. Boolean Equations with Truth Tables

In the first truth table, the output Y is always equal to the input B regardless of the input A. We can

simplify the Boolean equation with the truth table, such as 𝑌 = 𝐵.

17

In the second truth table, the output Y produces TRUE if only if both two inputs A and B are TRUE. Either

input A or B is FALSE, the output Y is False. Here, the output Y values are equivalent to the AND

operation with two inputs A and B. We can simplify the Boolean equation with the truth table, such as

𝑌 = 𝐴 ∙ 𝐵 = 𝐴𝐵.

In the last truth table, the output Y is always TRUE regardless of two inputs A and B. We can simplify the

Boolean equation with the truth table, such as 𝑌 = 1.

3.2. Boolean Algebra
In mathematics and mathematical logic, Boolean algebra is the branch of algebra in which the

values of the variables are the truth values true and false, usually denoted 1 and 0, respectively. You can

simplify the Boolean equations using a variety of axioms and theorems. Like the regular algebra, the

Boolean algebra has numerical operations, but it is simpler than the regular algebra because valuables

have only two values, i.e. 1 or 0. The main operations of Boolean algebra are the AND operation, the OR

operation and the negative or NOT operation.

Boolean Axioms and Theorems

Table 3-1 summarizes the Boolean axioms with its duality, where ANDs and ORs, 0’s and 1’s are

interchanged.

Table 3-1. Boolean Axioms with Its Duality

 Axiom Dual Name

(1) 𝐴 = 0 if 𝐴 ≠ 1 𝐴 = 1 if 𝐴 ≠ 0 Binary field

(2) 0̅ = 1 1̅ = 0 NOT

(3) 0 ∙ 0 = 0 1 + 1 = 1 AND/OR

(4) 1 ∙ 1 = 1 0 + 0 = 0 AND/OR

(5) 0 ∙ 1 = 1 ∙ 0 = 0 1 + 0 = 0 + 1 = 1 AND/OR

(1) Since the Boolean algebra has the binary field, the value A will be 0 if the value A is not 1. If the value

A is not 0, the value A will be 1. (2) The negative or NOT operation can be denoted as a bar over the

variable. The negative operation is equivalent to the complement or inverse of the variable.

 Axiom Dual

(3) 0 ANDed with O is equal to 0. 1 ORed with 1 is equal to 1.

(4) 1 ANDed with 1 is equal to 1. 0 ORed with 0 is equal to 0.

(5) 0 ANDed with 1 is equal to 0. 0 ORed with 1 is equal to 1.

The identify theorem exists in the Boolean algebra. A variable 𝐴 ∈ {1, 0} ANDed with 1 is always equal to

itself. This operation executes in AND gate, as follows:

• A = 0 ANDed with 1 equal to Y = 0,

18

• A = 1 ANDed with 1 equal to Y = 1.

In a similar manner, A variable 𝐴 ∈ {1, 0} ORed with 0 is always equal to itself. This operation executes

in OR gate, as follows:

• A = 1 ORed with 0 equal to Y = 1,

• A = 0 ORed with 0 equal to Y = 0.

The Fig. 3-3 visualizes the identify theorem.

Fig. 3-3. Identify Theorem

The null element theorem exists in the Boolean algebra. A variable 𝐴 ∈ {1, 0} ANDed with 0 is always

equal to 0. This operation executes in AND gate, as follows:

• A = 1 ANDed with 0 equal to Y = 0,

• A = 0 ANDed with 0 equal to Y = 0.

In a similar manner, A variable A {1, 0} ORed with 1 is always equal to 1. This operation executes in OR

gate, as follows:

• A = 1 ORed with 1 equal to Y = 1,

• A = 0 ORed with 1 equal to Y = 1.

The Fig. 3-4 visualizes the null element theorem.

Fig. 3-4. Null Element Theorem

The idempotency theorem exists in the Boolean algebra. A variable 𝐴 ∈ {1, 0} ANDed with itself is

always equal to the variable. This operation executes in AND gate, as follows:

• A = 1 ANDed with itself (1) equal to Y = 1

19

• A = 0 ANDed with itself (0) equal to Y = 0

In a similar manner, A variable 𝐴 ∈ {1, 0} ORed with itself is always equal to the variable. This operation

executes in OR gate, as follows:

• A = 1 ORed with itself (1) equal to Y = 1,

• A = 0 ORed with itself (0) equal to Y = 0.

The Fig. 3-5 visualizes the idempotency theorem.

Fig. 3-5. Idempotency Theorem

The complement theorem exists in the Boolean algebra. A variable 𝐴 ∈ {1, 0} ANDed with its

complement �̅� is always equal to 0. This operation executes in AND gate, as follows:

• A = 1 ANDed with its complement (�̅� = 0) is always equal to 0,

• A = 0 ANDed with its complement (�̅� = 1) is always equal to 0.

In a similar manner, A variable 𝐴 ∈ {1, 0} ORed with its complement �̅� is always equal to 1. This

operation executes in OR gate, as follows:

• A = 1 ORed with its complement (�̅� = 0) is always equal to 1,

• A = 0 ORed with its complement (�̅� = 1) is always equal to 1.

The Fig. 3-6 visualizes the complement theorem.

Fig. 3-6. Complement Theorem

The double complement law exists in the Boolean algebra. The double complement (negation) of a

variable 𝐴 ∈ {1, 0} is always equal to the variable. This operation executes with by connecting two NOT

gates serially, as follows:

20

• A = 0 double complement is always equal to 0,

• A = 1 double complement is always equal to 1.

The Fig. 3-7 visualizes the double complement law.

Fig. 3-7. Double Complement Law

The commutative law exists in the Boolean algebra.

• 𝐴 ∙ 𝐵 = 𝐵 ∙ 𝐴; A ANDed with B is equal to B ANDed with A

• 𝐴 + 𝐵 = 𝐵 + 𝐴; A ORed with B is equal to B ORed with A

The associative law exists in the Boolean algebra. When we execute AND or OR gates with more than 2

inputs, the order doesn’t matter.

• 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶; A ANDed with BC is equal to C ANDed with AB.

• 𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶; A ORed with (B+C) is equal to C ORed with (A+B).

The distributive law exists in the Boolean algebra.

• 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶; A ANDed with (B+C) is equal to AB ORed with AC.

The absorption law exists in the Boolean algebra.

• 𝐴 + 𝐴𝐵 = 𝐴

With the distributive law, the left-hand side of the equation can be expressed as follows:

𝐴 + 𝐴𝐵 = 𝐴(1 + 𝐵), where the round bracket is further simplified as (1 + 𝐵) = 1 due to the identify

theorem. A variable A ANDed with 1 is equal to A (𝐴 ∙ 1 = 𝐴), which is identical to the right-hand side of

the above equation.

• 𝐴(𝐴 + 𝐵) = 𝐴

With the distributive law, the left-hand side of the equation can be expressed as follows:

𝐴(𝐴 + 𝐵) = 𝐴𝐴 + 𝐴𝐵, where 𝐴𝐴 is equal to 𝐴 (𝐴𝐴 = 𝐴) due to the idempotency theorem. Now the

above equation is expressed as 𝐴 + 𝐴𝐵 = 𝐴. You can also simplify the equation by drawing the truth

table, as follows:

21

𝐴 𝐵 𝐴 + 𝐵 𝐴(𝐴 + 𝐵)

0 0 0 0

0 1 1 0

1 0 1 1

1 1 1 1

Exercises

Simplifying the following Boolean Equations:

(1) 𝑌 = 𝐴𝐵 + �̅�𝐵

Answer:

𝑌 = 𝐴𝐵 + �̅�𝐵 = 𝐵(𝐴 + �̅�) = 𝐵 (1) = 𝐵

(2) 𝑌 = 𝐴(𝐴𝐵 + 𝐴𝐵𝐶)

 Answer:

𝑌 = 𝐴(𝐴𝐵 + 𝐴𝐵𝐶)

 = 𝐴(𝐴𝐵(1 + 𝐶)) // distributive law

 = 𝐴(𝐴𝐵(1)) // identify theorem

 = 𝐴(𝐴𝐵)

 = (𝐴𝐴)𝐵

 = 𝐴𝐵

(3) 𝑌 = 𝐴𝐵 + 𝐴(𝐵 + 𝐶) + 𝐵(𝐵 + 𝐶)

Answer:

𝑌 = 𝐴𝐵 + 𝐴(𝐵 + 𝐶) + 𝐵(𝐵 + 𝐶)

 = 𝐴𝐵 + 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐵 + 𝐵𝐶 // distributive law

 = 𝐴𝐵 + 𝐴𝐵 + 𝐴𝐶 + 𝐵 + 𝐵𝐶 // idempotency theorem

 = 𝐴𝐵 + 𝐴𝐶 + 𝐵 + 𝐵𝐶 // 𝐵 + 𝐵𝐶 = 𝐵

 = 𝐴𝐵 + 𝐴𝐶 + 𝐵 // 𝐴𝐵 + 𝐵 = 𝐵

 = 𝐵 + 𝐴𝐶

22

3.3. De Morgan's Theorems
De Morgan's Theorems are a pair of transformation rules that are both valid rules of inference. The rules

can be expressed as:

• The complement of the intersection of two sets is the same as the union of their complements;

and

• the complement of the union of two sets is the same as the intersection of their complements,

where the intersection and union operations are expressed as AND and OR gates respectively in the

digital logic systems. In the Boolean algebra, these are written formally as follows:

• 𝐴 ∙ 𝐵̅̅ ̅̅ ̅̅ = �̅� + �̅�

• 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ = �̅� ∙ �̅�

Bubble pushing is a technique to apply De Morgan's theorem directly to the logic diagram. There are

two steps to use the bubble pushing, as follows:

• Change the logic gate (AND to OR and OR to AND).

• Add bubbles to the inputs and outputs where there were none, and remove the original bubbles.

For example, the backward bubble pushing is applied to NAND gate, pushing the bubble in the output

side back to input side. After changing AND gate to OR gate, add bubbles to two inputs A and B, as

shown in the following figures:

Fig. 3-8. Backward Bubble Pushing

The forward bubble pushing is applied to the logic gate which has the bubbles at all the inputs, by

pushing the bubbles at the input side A & B to the output side Y. After changing OR gate to AND gate,

add a bubble to the output Y, as shown in the following figures:

Fig. 3-9. Forward Bubble Pushing

23

There are rules for the bubble pushing, as listed:

• Begin at output, then work toward inputs

• Push bubbles on final output back

• Draw gates in a form so bubbles cancel

There are four inputs, A, B, C, and D in Fig. 3-10. Two inputs A & B are fed into NOR gate. It’s output and

the input C are fed into a NAND gate. The output of NAND gate and the input D are fed into another

NAND gate, and those two inputs produce the output Y.

Fig. 3-10. Bubble Pushing Example

The last NAND gate can be changed with the backward bubble pushing, as shown in Fig. 3-11.

• Body changes from AND to OR gate.

• Adds bubbles to inputs. No bubble at the output.

Fig. 3-11. Bubble Pushing Example - No Output Bubble-1

Two bubbles, i.e. the output bubble of NAND gate and the input bubble produced with backward, are

now put in the same line. These two bubbles canceled each other, because the double complement of a

variable is always equal to the variable.

NOR gate with two inputs A & B can be changed with De Morgan's Theorems, as shown in Fig. 3-12:

• Body changes from OR to AND gate.

• Adds bubbles to inputs. No bubble at the output.

24

Fig. 3-12. Bubble Pushing Example - No Output Bubble-2

From the above figure, we can draw the following Boolean equation: 𝑌 = �̅� ∙ �̅� ∙ 𝐶 + �̅�. Note that we

will get the Boolean equation 𝑌 = 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝐷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 without De Morgan's theorems.

Exercise

1) There are five inputs, A, B, C, D, and E with four NAND gates, as shown in Fig. 3-13:

Fig. 3-13. Quiz 1 Figure

• NAND_1 gate has two inputs A and B. NAND_2 gate has two inputs C and D.

• The two outputs of NAND gates fed into NAND_3 gate.

• The out of the NAND_3 gate and input E fed into the NAND_4 gate, produce the output Y.

Simply the logic gates with De Morgan's theorems and write the corresponding Boolean equation.

2) There are five inputs, A, B, C, D, and E with three NAND gates and one NOR gate, as shown in Fig. 3-

14:

Fig. 3-14. Quiz 2 Figure

25

• NAND_1 gate has two inputs A and B. NAND_2 gate has two inputs C and D.

• The two outputs of NAND gates fed into NAND_3 gate.

• The out of the NAND_3 gate and input E fed into the NOR_4 gate, produce the output Y

Simply the logic gates with De Morgan's theorems and write the corresponding Boolean equation.

3) There are four inputs, A, B, C, and D with three NAND gates, as shown in Fig. 3-15:

Fig. 3-15. Quiz 3 Figure

• One NAND gate has two inputs A and B. Another NAND gate has two inputs C and D.

• The two outputs of NAND gates fed into the other NAND gate, and produce output Y.

Simply the logic gates with De Morgan's theorems and write the corresponding Boolean equation.

4) Simplify the following Boolean expression to a minimum number of literals:

𝑌 = �̅��̅� + �̅�𝐵𝐶̅ + (𝐴 + 𝐶̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

Answer)

𝑌 = �̅��̅� + �̅�𝐵𝐶̅ + (𝐴 + 𝐶̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= �̅��̅� + �̅�𝐵𝐶̅ + �̅�𝐶 (De Morgan)

= �̅�(�̅� + 𝐵𝐶̅ + 𝐶)

= �̅�(�̅� + 𝐵𝐶̅ + 𝐶(�̅� + 𝐵))

= �̅�(�̅� + 𝐵𝐶̅ + �̅�𝐶 + 𝐵𝐶)

= �̅�(�̅�(1 + 𝐶) + 𝐵(𝐶̅ + 𝐶))

= �̅�(�̅� + 𝐵) = �̅�

26

Chapter 4: Boolean Expressions and Combinational Circuits

In this chapter, we learn how to express Boolean equation with combinational circuits, circuit

schematics rules for combinational circuits, and one of the multiple-output circuits - priority circuit. By

understanding the meanings of Contention X (don't care) and floating Z, we can apply the rules of

Karnaugh maps for simplifying Boolean equations.

Objectives

By the end of this chapter you should be able to:

• Express Boolean equation with combinational circuits.

• Recognize circuit schematics rules for combinational circuits.

• Recall multiple-output circuits - priority circuit.

• Demonstrate the meanings of Contention X (don't care) and floating Z.

• Summarize the rules of Karnaugh maps.

• Apply Karnaugh maps for simplifying Boolean equations.

4.1 Circuit Schematics Rules
Digital systems are constructed by using logic gates which are abstract representations of real devices.

We can represent the Boolean algebra with two-level logic, ANDs followed by ORs. For example, we

have a Boolean equation: 𝑌 = �̅� ∙ �̅� ∙ 𝐶̅ + 𝐴 ∙ �̅� ∙ 𝐶̅ + 𝐴 ∙ 𝐵 ∙ 𝐶̅. This equation can be designed with logic

gates, as shown in the following figure:

Fig. 4-1. From Logic to Gates

In Fig. 4-1, There are three AND gates. These AND gates have the following inputs,

• AND_1: A complement, B complement, C complement

• AND_2: A, B complement, C complement

27

• AND_3: A, B, C complement

The outputs of the three AND gates feed into OR gate. The OR gate produces the output Y.

There are some rules for circuit schematics. Wires always connect at a T junction, as shown in Fig. 4-2. A

dot where wires cross indicates a connection between the wires. Wires crossing without a dot make no

connection.

Fig. 4-2. Circuit Schematics Rules

The following figures show that there are T junctions between the wires. That means the wires are

connected.

Fig. 4-3. Some examples of Junction

The following figures show that there is no T junction between the wires. That means the wires are not

connected.

Fig. 4-4. Some examples of No Junction

The following figure, Fig. 4-5, designed a Boolean equation. There are five AND gates. These AND gates

have the following inputs,

• AND_1: A complement, D

• AND_2: B, D

• AND_3: A, C complement, D

• AND_4: A, B complement, C

• AND_5: A, B, C, D

28

The outputs of four AND gates (AND_1, AND_3, AND_4, AND_5) feed into OR gate. The OR gate

produces the output Y. We can express the corresponding Boolean equation as follows: 𝑌 = �̅� ∙ 𝐷 + 𝐴 ∙

𝐶̅ ∙ 𝐷 + 𝐴 ∙ �̅� ∙ 𝐷 + 𝐴 ∙ 𝐵 ∙ 𝐶 ∙ 𝐷.

Fig. 4-5. Some examples of Boolean equation

Multiple-Output Circuits

Circuits that we have previously discussed have only one output. Here we will discuss how multiple

output systems are analyzed. A priority encoder is a circuit or algorithm that compresses multiple binary

inputs into a smaller number of outputs. The priority circuit produces an output asserted corresponding

to the most significant TRUE input. The following figure shows the truth table and the hardware design

of the priority circuit.

29

Fig. 4-6. Truth Table and Hardware Design of Priority Circuit

The priority circuit has:

• Input A3 directly connected to Y3

• AND_1 gate produces the output Y2 with two inputs, A3 complement and A2

• AND_2 gate produces the output Y1 with three inputs, i.e. A3 complement, A2 complement, and

A1

• AND_3 gate produces the output Y0 with four inputs, i.e. A3 complement, A2 complement, A1

complement and A0

where the bubble symbol represents a complement. The above truth table can be simplified as the

following table.

Table 4-1. Truth Table of Priority Circuit with Don’t Cares (X)

A3 A2 A1 A0 Y3 Y2 Y1 Y0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 X 0 0 1 0

0 1 X X 0 1 0 0

1 X X X 1 0 0 0

30

Let’s look at the case when the output Y1 is TRUE. A3 and A2 didn’t assert, meaning that both A3 and A2

are FALSE. In this case, A1 has a priority among the input values. Once A1 asserts TRUE, the input A0

doesn’t matter whether it is TRUE or FALSE. Only Y1 is TRUE and the other outputs are all FALSE.

Let’s look at the case when the output Y2 is TRUE. A3 didn’t assert, meaning that A3 is FALSE. In this case,

A2 has a priority among the input values. Once A2 asserts TRUE, the two inputs A0 and A1 don’t matter

whether they are TRUE or FALSE. Only Y2 is TRUE and the other outputs are all FALSE.

In the last case where the output Y3 is TRUE, A3 has a priority among the input values. Once A3 asserts

TRUE, the other inputs A0, A1 and A2 don’t matter whether they are TRUE or FALSE. Only Y3 is TRUE and

the other outputs are all FALSE. Here, a don't-care term (X) for a function is an input-sequence (a series

of bits) for which the function output does not matter.

With the contention X, circuit tries to drive an output to 1 and 0. The actual value of the contention

could be 0, 1, or in forbidden zone. That might change with voltage, temperature, time and noise. The

contention often causes excessive power dissipation. However, the contention usually indicates a bug.

The symbol, X, is used for “don’t care” and contention. With this don’t care, we can find out some way

to simplify the Boolean equation when we design the digital circuits.

The floating Z, high impedance, is driven neither HIGH nor LOW. The floating Z might be 0, 1 or

somewhere in between. The tristate buffer is one of example of this floating Z which has three possible

output states: HIGH (1), LOW (0) and floating (Z).

The output Y determined by both the input A and the enable E.

• If enable E = 0, then the tristate buffer outputs floating Z regardless of the value of input A.

• If enable E = 1, then the tristate buffer outputs the same as the value of input A.

Fig. 4-7. Tristate Buffer

The floating nodes are used in tristate busses, where many different drivers use the shared bus with

processor, video, Ethernet, memory, etc.

4.2 Karnaugh Maps (K-Maps)

The Karnaugh map (K-map) is a graphical method of simplifying Boolean algebra expressions, where the

Boolean expressions can be minimized by combining terms.

Let’s look at a truth table, where the output Y is TRUE if only if the two inputs are A = 0 and B = 1, or A =

1 and B = 1.

31

A B Y

0 0 0

0 1 1

1 0 0

1 1 1

The above table can be expressed in the K-map as the following figure, where each value of the squares

is corresponding to the value of Y:

• If A = 0 and B = 0, Y = 0 (i.e., 𝑌 = �̅��̅�).

• If A = 0 and B = 1, Y = 1 (i.e., 𝑌 = �̅�𝐵).

• If A = 1 and B = 0, Y = 0 (i.e., 𝑌 = 𝐴�̅�).

• If A = 1 and B = 1, Y = 0 (i.e., 𝑌 = 𝐴𝐵).

Fig. 4-8. K-Map Representation

In order to simplify the Boolean expression with K-map, we can circle 1’s in adjacent squares, where the

most left column and the first row represent the input variables, inputs A and B.

In the following figure, the circle is located in the most right column, whose literal corresponds to the

input B. Let’s look closely at the circle to draw the corresponding literal. The circle takes two rows (𝐴, �̅�),

i.e. one for the input 𝐴 and another for the input �̅�. These two literals, 𝐴 and �̅�, are cancelled each. We

can only write the literal B, 𝑌 = 𝐵 that simplify the Boolean equation.

Fig. 4-9. K-Map Representation with a Circle

The following figure shows that the circles must span a power of 2.

32

Fig. 4-10. K-Map Representation with a Circle

Fig. 4-10 has two red circles, one located at the most right column and another located at the last row.

The first circle takes a single column (𝐵) and two rows (𝐴, �̅�), where 𝐴 and �̅� are cancelled each other.

We can draw only the literal 𝐵 from this circle. The latter circle takes a single row (𝐴) and two columns

(𝐵, �̅�), where 𝐵 and �̅� are cancelled each other. We can draw only the literal 𝐴 from the circle. These

two literals are ORed, so we can draw the corresponding Boolean equation: 𝑌 = 𝐴 + 𝐵 from Fig. 4-10.

The 3-input K-Map can be drawn in the following figure:

Fig. 4-11. 3-Input K-Map Representation

In this K-map, the first row and the most left column represent the input variables.

• First row: inputs A and B

• Most-left column: input C

In the first row, we can identify four different combinations of two inputs; AB=00, AB=01, AB=11, and

AB=10, where only one-bit change in value from one adjacent column to the next column is allowed.

Let’s see how to use this 3-input K-Map to simplify the Boolean equation. The following truth table can

be mapped to K-map, as shown in Fig. 4-12.

Fig. 4-12. 3-Input K-Map Representation with Circles

33

In the K-map of Fig. 4-12, we can identify only 3 squares filled with ‘1’ bit; mapping to �̅�𝐵𝐶̅ , �̅�𝐵𝐶, and

𝐴𝐵𝐶. We can circle 1’s in adjacent squares, and have two red circles; one located at the second column

of the squares and another located at the last row of the squares. The first circle takes a single column

(�̅�𝐵) and two rows (𝐶, 𝐶̅), where 𝐶 and 𝐶̅ are cancelled each other. We can draw the literal �̅�𝐵 from the

circle. The latter circle takes a single row (𝐶) and two columns (�̅�𝐵, 𝐴𝐵), where 𝐴 and �̅� are cancelled

each other, leaving only the literal 𝐵. We can draw the literals 𝐵𝐶 from the circle. These two implicants

(product of literals) are ORed, so we can draw the corresponding Boolean equation: 𝑌 = �̅�𝐵 + 𝐵𝐶 from

Fig. 4-12.

When we draw a circle in the K-map, we need to draw a circle as big as possible so that the

corresponding implicant can be minimized. We called a prime implicant whose implicant corresponding

to the largest circle in a K-map.

 There are some rules when we draw a circle in a K-map:

• Every 1 must be circled at least once

• Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction

• Each circle must be as large as possible

• A circle may wrap around the edges

• A “don't care” (X) is circled only if it helps minimize the equation

Let’s look at another example of 3-input K-map in Fig. 4-13.

Fig. 4-13. 3-Input K-Map Representation with wrap around edges

In Fig. 4-13, we have the two circles, one for the column 𝐴𝐵 and another for the bottom edges of the

squares. The first circle takes a single column (𝐴𝐵) and two rows (𝐶, 𝐶̅), where 𝐶 and 𝐶̅ are cancelled

each other. We can draw the literals 𝐴𝐵 from the circle. The latter circle takes a single row (𝐶) and two

columns (�̅��̅�, 𝐴�̅�), where 𝐴 and �̅� are cancelled each other, leaving only the literal �̅�. We can draw the

literals �̅�𝐶 from the circle. These two implicants (product of literals) are ORed, so we can draw the

corresponding Boolean equation: 𝑌 = 𝐴𝐵 + �̅�𝐶 from Fig. 4-13.

The following table shows a 4-input truth table. From the truth table, we can fill out K-map. In the K-

map, the first row and the most left column represent the input variables.

• First row: inputs A and B have four different combinations AB=00, AB=01, AB=11, and AB=10,

where only one-bit change in value from one adjacent column to the next column is allowed.

• Most-left column: inputs C and D have four different combinations CD=00, CD=01, CD=11, and

CD=10, where only one-bit change in value from one adjacent column to the next column is

allowed.

34

Fig. 4-14. 4-Input K-Map Representation

Let’s see how to use this 4-input K-Map to simplify the Boolean equation. We can draw four circles in

the above figure using the rules. The first circle① takes two columns (�̅��̅�, �̅�𝐵) and two rows (𝐶𝐷, 𝐶�̅�),

where 𝐵 and �̅� are cancelled each other, and 𝐷 and �̅� are cancelled in the same manner. We can draw

the literals �̅�𝐶 from the circle. The second circle② takes a single column (�̅�𝐵) and two rows (𝐶̅𝐷, 𝐶𝐷),

where 𝐶 and 𝐶̅ are cancelled each other. We can draw the literals �̅�𝐵𝐷 from the circle. The third circle③

takes a single column (𝐴�̅�) and two rows (𝐶̅�̅�, 𝐶̅𝐷), where 𝐷 and �̅� are cancelled each other. We can

draw the literals 𝐴�̅�𝐶̅ from the circle. The last circle④ is located around the corner of edges and takes

two columns (�̅��̅�, 𝐴�̅�) and two rows (𝐶̅�̅�, 𝐶�̅�), where 𝐴 and �̅� are cancelled each other, and 𝐶 and 𝐶̅

are cancelled in the same manner. We can draw the literals �̅��̅� from the circle. These four implicants

(product of literals) are ORed, so we can draw the corresponding Boolean equation: 𝑌 = �̅�𝐶 + �̅�𝐵𝐷 +

𝐴�̅�𝐶̅ + �̅��̅� from Fig. 4-14.

Fig. 4-15 shows an example of 4-input K-map with “don’t cares (X)”. We need to circle every ‘1’ bit at

least once. We can also circle “don’t cares (X)” if they help minimize the equation by making the circle as

large as possible. If the don’t care (X) doesn’t help to maximize the circle, it can be considered as a ‘0’

bit. The first circle① takes two columns (𝐴𝐵, 𝐴�̅�) and four rows (𝐶̅�̅�, 𝐶̅𝐷, 𝐶𝐷, 𝐶�̅�), where all the literals

are cancelled each other (𝐵 and �̅�, 𝐶 and 𝐶̅, and 𝐷 and �̅�) except the literal 𝐴. We can draw the literal 𝐴

from the circle. The second circle② takes four columns (�̅��̅�, �̅�𝐵, 𝐴𝐵, 𝐴�̅�), two rows (𝐶𝐷, 𝐶�̅�), where all

the literals are cancelled each other (𝐴 and �̅�, 𝐵 and �̅�, and 𝐷 and �̅�) except the literal 𝐶. We can draw

the literal 𝐶 from the second. The last circle③ is located around the corner of edges and takes two

columns (�̅��̅�, 𝐴�̅�) and two rows (𝐶̅�̅�, 𝐶�̅�), where 𝐴 and �̅� are cancelled each other, and 𝐶 and 𝐶̅ are

cancelled in the same manner. We can draw the literals �̅��̅� from the circle. These three implicants

35

(product of literals) are ORed, so we can draw the corresponding Boolean equation: 𝑌 = 𝐴 + 𝐶 + �̅��̅�

from Fig. 4-15.

Fig. 4-15. 4-Input K-Map Representation with Don’t Cares

Exercise

Simply the Boolean equation with K-map:

CD AB 00 01 11 10

00 1 0 X 1

01 0 0 X 0

11 0 0 X X

10 1 1 X X

Answer: You can get the following equation: 𝑌 = 𝐶�̅� + �̅��̅�

36

4.3 Combinational Circuits

Combinational Circuits are circuits made up of different types of logic gates and produce outputs by

combining the values of the inputs at any given time. The circuits do not make use of any memory or

storage device.

Fig. 4-16. Combinational Circuit Description

For n input variables, there are 2n possible binary input combinations, and for each binary combination

of the input variables, there is one possible output.

The combinational circuit is like a black box but it can be described with the truth table, which gives one

possible output for each binary combination of the input variables. We will take a look at some popular

combinational circuits throughout this section.

1-Bit Half Adders

A 1-bit half adder is used for adding together the two least significant digits in a binary sum. It has two

inputs A and B, and two outputs, the sum S and the carryout Cout. The following table describe the 1-bit

half adder. The sum is the output of exclusive OR gate, which has 𝑆 = �̅�𝐵 + 𝐴�̅� = 𝐴⨁𝐵. The Cout

(carryout) is the output of AND gate, which has two inputs, A and B, i.e. 𝑆 = 𝐴 ∙ 𝐵.

Table 4-2. Truth Table of 1-bit Half Adder

A B Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

For the above truth table, we can fill the box of Fig. 4-16 with a combinational circuit of 1-bit half adder

in the following figure:

37

Fig. 4-17. Combinational Circuit of 1-bit Half Adder

Multiplexer

A multiplexer (or Mux), also known as a data selector, is a device that selects one of N analog or digital

inputs and forwards the selected input to a single output line. If the mux has the two inputs, it needs a

log2 2 control input. If the mux has N inputs, it needs log2 𝑁 control inputs. The following figure shows

a 2-to-1 multiplexer which has two inputs (D0 and D1), one output (Y), and a control input (S).

Fig. 4-18. 2-to-1 Multiplexer

If the control input S is 0, the input D0 is forwarded to the output Y. If the control input S is 1, the input

D1 is forwarded to the output Y. The following table describes the 2-to-1 multiplexer.

Table 4-3. Truth Table of 2-to-1 Multiplexer

S D1 D0 Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

38

We can simply draw the truth table as follows:

S Y

0 D0

1 D1

The multiplexer can have more than two inputs. The 4-to-1 multiplexer has four inputs (D0, D1, D2, and

D3), one output (Y), and two select inputs (S0 and S1), as shown in the following figure:

Fig. 4-19. 4-to-1 Multiplexer

The multiplexer operates as follows:

• If the select inputs S1 S0 is 00, the input D0 is forwarded to the output Y. In this case, the other

inputs D3, D2, and D1 don’t matter. Only the input D0 determines the output Y.

• If the select inputs S1 S0 is 01, the input D1 is forwarded to the output Y. In this case, the other

inputs D3, D2, and D0 don’t matter. Only the input D1 determines the output Y.

• If the select inputs S1 S0 is 10, the input D2 is forwarded to the output Y. In this case, the other

inputs D3, D1, and D0 don’t matter. Only the input D2 determines the output Y.

• If the select inputs S1 S0 is 11, the input D3 is forwarded to the output Y. In this case, the other

inputs D2, D1, and D0 don’t matter. Only the input D3 determines the output Y.

Accordingly, we can draw the truth table of 4-to-1 multiplexer as follows:

Table 4-4. Truth Table of 4-to-1 Multiplexer

S1 S0 D3 D2 D1 D0 Y

0 0 X X X 0 0

0 0 X X X 1 1

0 1 X X 0 X 0

0 1 X X 1 X 1

39

1 0 X 0 X X 0

1 0 X 1 X X 1

1 1 0 X X X 0

1 1 1 X X X 1

where ‘X’ represents the don’t care term.

Fig. 4-20 shows how the 4-to-1 multiplexer operates when the two select inputs S1S0 = 00. The input

sequence D0 = 11111111 is forwarded to the output Y. The other inputs don’t affect the sequence of the

output Y.

Fig. 4-20. 4-to-1 Multiplexer with S1S0 = 00

Fig. 4-21 shows how the 4-to-1 multiplexer operates when the two select inputs S1S0 = 01. The input

sequence D1 = 00001111 is forwarded to the output Y. The other inputs don’t affect the sequence of the

output Y.

Fig. 4-21. 4-to-1 Multiplexer with S1S0 = 01

40

Fig. 4-22 shows how the 4-to-1 multiplexer operates when the two select inputs S1S0 = 10. The input

sequence D2 = 11110000 is forwarded to the output Y. The other inputs don’t affect the sequence of the

output Y.

Fig. 4-22. 4-to-1 Multiplexer with S1S0 = 10

Fig. 4-23 shows how the 4-to-1 multiplexer operates when the two select inputs S1S0 = 11. The input

sequence D3 = 10101010 is forwarded to the output Y. The other inputs don’t affect the sequence of the

output Y.

Fig. 4-23. 4-to-1 Multiplexer with S1S0 = 11

The following figure shows the 8-to-1 multiplexer which has eight inputs, D0 through D7. Since it has 8

inputs, log2 8 = 3 select bits (select inputs) required.

Fig. 4-24. 8-to-1 Multiplexer

41

The output Y is determined by the three select inputs, i.e. S2, S1, and S0. The following table describes the

operation of the 8-to-1 multiplexer.

Table 4-5. Truth Table of 8-to-1 Multiplexer

S2 S1 S0 Y

0 0 0 D0

0 0 1 D1

0 1 0 D2

0 1 1 D3

1 0 0 D4

1 0 1 D5

1 1 0 D6

1 1 1 D7

Encoder

In general, encoders convert motion to an electrical signal that can be read by some type of control

devices. One of very popular encoders you know is a keyboard. When you press a button of the

keyboard, the keyboard coverts this motion to an 8-bit digital signal. Your computer can read the value

you pressed. The encoder is an inverse operation of a decoder. If you have 2N inputs, the encoder

produces a total of N outputs so that it generates the binary code corresponding to the input value.

The following figure shows a 4-to-2 encoder, where there are four inputs, i.e. D3, D2, D1, D0, and two

outputs (binary code), i.e. B1 and B0. In the encoder, only one input is high or “1” and the other inputs

are low or “0”.

Fig. 4-25. 4-to-2 Encoder

The encoder generates the binary code corresponding to the input value. For example, if the input D0 is

high and the other inputs are low, the encoder generates the binary code B1 B0 = 00. If the input D3 is

high and the other inputs are low, the encoder generates the binary code B1 B0 = 11. The following table

describe the operation of the 4-to-2 encoder.

42

Table 4-6. Truth Table of 4-to-2 Encoder

Inputs Outputs

D3 D2 D1 D0 B1 B0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

The following figure shows a 8-to-3 encoder, where there are eight inputs, i.e. D7 through D0, and three

outputs (binary code), i.e. B2, B1 and B0. This encoder operates in a similar manner. Only one input is

high or “1” and the other inputs are low or “0”.

Fig. 4-26. 8-to-3 Encoder

The encoder generates the binary code corresponding to the input value. For example, if the input D7 is

high and the other inputs are low, the encoder generates the binary code B2 B1 B0 = 111. If the input D4

is high and the other inputs are low, the encoder generates the binary code B2 B1 B0 = 100.

Table 4-7. Truth Table of 8-to-3 Encoder

Inputs Outputs

D7 D6 D5 D4 D3 D2 D1 D0 B2 B1 B0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1

43

Binary Decoder

The binary decoder translates the binary value into the decimal value. Fig. 4-27 shows a block diagram

of 2-bit binary decoder.

Fig. 4-27. Block Diagram of 2-bit Binary Decoder

The 2-bit binary decoder has the two inputs, A and B, and four output, Y0, Y1, Y2, and Y3. The following

table shows the truth table of the decoder.

Table 4-8. Truth Table of 2-bit Binary Decoder

A B Y0 Y1 Y2 Y3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

The following figure shows 3-to-8 binary decoder, where there are three inputs (binary code), i.e. A2, A1,

and A0, and eight outputs, i.e. Y7 through Y0.

Fig. 4-28. 3-to-8 Decoder

The decoder converts the binary code into a decimal value (outputs), where only one output is high or

“1” and the other outputs are low or “0”. The decoder generates a decimal value corresponding to the

input binary code. For example, if the binary inputs are A2 A1 A0 = 110, only the output Y6 is HIGH, and

the other outputs are all LOW. The following table describes the operation of the decoder.

44

Table 4-9. Truth Table of 3-to-8 Decoder

Inputs Outputs

A2 A1 A0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

Priority Circuit

This chapter introduced the priority circuit in Section 4.1. This section describes the priority circuit in

detail. Fig. 4-6 shows the truth table of the priority circuit. We will show how to design the circuit

hardware from the truth table using K-map.

The following figure shows the block of the priority circuit. If the inputs A3 A2 A1 A0 are “0000”, the

circuit produces the outputs Y3 Y2 Y1 Y0 = 0000.

Fig. 4-29. Priority Circuit with inputs: A3 A2 A1 A0 = 0000

In the following figure, the inputs A3 A2 A1 A0 are “0001”. Only A0 asserts TRUE and the other input

values are all FALSE. The circuit produces the outputs Y3 Y2 Y1 Y0 = 0001.

Fig. 4-30. Priority Circuit with inputs: A3 A2 A1 A0 = 0001

45

In the following figure, the inputs A3 A2 A1 A0 are “001X”, where the term ‘X’ represents ‘don’t care’. The

higher priority inputs A3 and A2 didn’t assert. Since only A1 asserts TRUE, the lower priority input A0

doesn’t matter whether it is TRUE or FALSE. Only the output Y1 is TRUE and the other outputs are all

FALSE.

Fig. 4-31. Priority Circuit with inputs: A3 A2 A1 A0 = 001X

In the following figure, the inputs A3 A2 A1 A0 are “01XX”, where the term ‘X’ represents ‘don’t care’. The

higher priority input A3 didn’t assert. Since the next higher priority A2 asserts TRUE, the lower priority

inputs A1 and A0 don’t matter whether they are TRUE or FALSE. Only the output Y2 is TRUE and the other

outputs are all FALSE.

Fig. 4-32. Priority Circuit with inputs: A3 A2 A1 A0 = 01XX

In the following figure, the inputs A3 A2 A1 A0 are “1XXX”, where the term ‘X’ represents ‘don’t care’. The

highest priority input A3 asserts TRUE. The lower priority inputs A2, A1 and A0 don’t matter whether they

are TRUE or FALSE. Only the output Y3 is TRUE and the other outputs are all FALSE.

Fig. 4-33. Priority Circuit with inputs: A3 A2 A1 A0 = 1XXX

46

We can summarize the operation of the priority circuit in the following table:

Table 4-10. Summary of Priority Circuit Operation

A3 A2 A1 A0 Y3 Y2 Y1 Y0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 1 0

0 1 0 1 0 0

1 1 0 0 0

where the symbol ‘X’ represents ‘don’t care”.

Let’s design the hardware from the truth table. The following figures show how to simplify the output Y3

with the input variables, A3, A2, A1, and A0. With the red circuit, we can simplify the Boolean equation

and draw the corresponding equation: 𝑌3 = 𝐴3.

Fig. 4-34. Priority Circuit Design of Y3 using K-map

The following figures show how to simplify the output Y2 with the input variables, A3, A2, A1, and A0. With

the red circuit, we can simplify the Boolean equation and draw the corresponding equation: 𝑌2 = 𝐴3
̅̅ ̅𝐴2.

Fig. 4-35. Priority Circuit Design of Y2 using K-map

47

The following figures show how to simplify the output Y1 with the input variables, A3, A2, A1, and A0. With

the red circuit, we can simplify the Boolean equation and draw the corresponding equation: 𝑌1 =

𝐴3
̅̅ ̅ 𝐴2

̅̅ ̅𝐴1.

Fig. 4-36. Priority Circuit Design of Y1 using K-map

The following figures show how to simplify the output Y0 with the input variables, A3, A2, A1, and A0. With

the red circuit, we can simplify the Boolean equation and draw the corresponding equation: 𝑌0 =

𝐴3
̅̅ ̅ 𝐴2

̅̅ ̅ 𝐴1
̅̅ ̅𝐴0.

Fig. 4-37. Priority Circuit Design of Y0 using K-map

With the above figures, from Fig. 4-34 to Fig. 4-37, we can design the priority circuit as follows:

• Input A3 directly connected to Y3

• AND1 gate produces the output Y2 with two inputs, A3 complement and A2

• AND2 gate produces the output Y1 with three inputs, i.e. A3 complement, A2 complement, and

A1

• AND3 gate produces the output Y0 with four inputs, i.e. A3 complement, A2 complement, A1

complement and A0

The following figure shows the priority circuit with logic gates.

48

Fig. 4-38. Priority Circuit with Logic Gates

where the bubble symbol at the input side of AND gates represents a complement.

49

Chapter 5: Binary Number Formats

In this chapter, we introduce fixed- and floating-point number systems that can represent rational

numbers. Fixed-point numbers are analogous to decimals; some of the bits represent the integer part,

and the rest represent the fraction. Floating-point numbers are analogous to scientific notation, with a

mantissa and an exponent.

Objectives

By the end of this chapter you should be able to:

• Use the fixed- and floating-point number systems to represent rational numbers.

• Demonstrate signed fixed- and floating-point numbers.

• Recall how to convert decimal numbers to binary numbers.

• Express rational numbers into scientific notations.

• Identify the biased exponent for IEEE 754 representation.

• Demonstrate the floating-point precision.

5.1 Number Systems for Binary Representations

Computers operate on both integers and fractions. So far, the numbers we can represent using binary

representations include positive and negative integer numbers. Positive integer numbers are

represented with unsigned binary numbers, whereas negative integer numbers are represented with

two’s complement and sign/magnitude numbers. How can we represent fractions? There are two

common notations to represent numbers with fractions; (1) fixed point notation and (2) floating point

notation. In fixed point notation, the location of decimal point is fixed and there are a fixed number of

digits after the decimal point. On the other hand, floating point number allows for a varying number of

digits after the decimal point, meaning that the decimal point floats to the right of the most significant

‘1’ bit.

5.2 Fixed-Point Number Representation

The decimal number can be expressed as the sum of the products of each digit times the weight for that

digit. Thus, the decimal number 123.4510, can be expressed as

123.4510 = (1 102) + (2 101) + (3 100) + (4 10-1) + (5 10-2)

The weight of digits moving towards left increases by a factor of 10, whereas the weight of digits moving

towards right decreases by a factor of 10.

50

Now, let’s look at binary number representation. The binary number can be expressed as the sum of the

products of each digit times the weight for that digit in a similar manner. Thus, the binary number

101.112, can be expressed as

101.112 = (1 22) + (0 21) + (1 20) + (1 2-1) + (1 2-2)

= 4 + 0 + 1 + 0.5 + 0.25 = 5.7510

In the binary number representation, the weight of digits moving towards left increases by a factor of 2,

whereas the weight of digits moving towards right decreases by a factor of 2.

For example, what decimal number does the binary number 1011.10112 represent? We can find the

decimal number value of the binary number 1011.10112 with the sum of the products of each digit times

the weight for that digit, such as 1011.10112 = 1×23+0×22+1×21+1×20+1×2-1+0×2-2+1×2-3+1×2-4 = 8 + 0 + 2

+ 1 + 0.5 + 0 + 0.125 + 0.0625 = 11.6875.

What about the reverse process? Let’s convert the decimal number 6.7510 to a fixed-point binary

number. First, we need to split the value into the integral part and the fractional part; integral 6 and

fractional 0.75. The integral part will be converted into the binary number by repeating the division, 6 =

110. The fractional part 0.75 will be converted into the binary number by repeating the multiplication as

shown below:

• 0.75 × 2 = 1.5 → remove overflow digit 1

• 0.50 × 2 = 1.0 → remove overflow digit 1

By collecting all the overflow digits from top to bottom, we can represent the decimal number 6.75 into

the binary number 110.112.

Exercises

Represent the decimal number 12.6875 as the binary number using 4 integer bits and 4 fraction bits.

After splitting the decimal number into the integer part and the fractional part, we can get the integral

part as shown below:

• Integral part: 12 → 1100

The fractional part 0.6875 will be converted into the binary number by repeating the multiplication as

shown below:

• 0.6875 × 2 = 1.375 → remove overflow digit 1

• 0.375 × 2 = 0.75 → no overflow 0

• 0.75 × 2 = 1.5 → remove overflow digit 1

• 0.5 × 2 = 1.0 → remove overflow digit 1

By collecting all the overflow digits from top to bottom, we can represent the decimal number 12.6875

into the binary number 1100.10112.

51

Signed Fixed-Point Numbers

The fixed-point number can represent the positive and negative values with two’s complement and

sign/magnitude number systems.

For example, let’s represent the decimal number -7.510 as a signed fixed-point binary number using 4

integer and 4 fraction bits. In the sign/magnitude number system, the first bit always represents the

sign. Since the decimal number -7.510 is a negative value, the sign bit should be ‘1’. The rest of integer

bits can represent the integer value, so that we can convert the integer part 7 into the binary value 111.

The fractional part 0.5 will be converted into the binary number by repeating the multiplication, 0.5 × 2

= 1.0 (overflow digit: 1). The number -7.510 can be converted into the signed fixed-point number,

1111.1000, where the decimal point is fixed.

Now, let’s represent the decimal number -7.510 as a two’s complement number. First, we will find a

positive representation of the number and then we will negate the value, meaning that we convert the

positive value to the negative value. We can find a positive representation of the number 7.5, by

splitting the value into the integral part and the fractional part; integral 0111 and fractional 1000. Let’s

negate the positive representation 01111000 by inverting all the bits and adding 1 to lsb (least

significant bit), as shown below:

• +7.5: 01111000

• Invert bits: 10000111

• Add 1 to lsb: + 1

• -7.5: 10001000

In the two’s complement number system, the first digit always represents a negative value. The other

bits are regular binary numbers, as shown below:

Digits 1 0 0 0 1 0 0 0

Weights -8 4 2 1 0.5 0.25 0.125 0.0625

That means the first digit ‘1’ represents -8 and the fifth digit ‘1’ represents 0.5. the sum of these two

digits represents -7.5 (= -8 + 0.5) which we got from the above operation.

Exercises

Convert the following two’s complement binary fixed-point numbers to base 10. The implied binary

point is explicitly shown to aid in your interpretation.

• 0101.1000 =

52

The integer part is 0101, so that we can get the integer part as follows: 0 × -23 + 1 × 22 + 0 × 21 + 1 × 20 =

1 × 4 + 1 × 1 = 5. The fractional part is 1000, so that we can get the fractional part as follows: 1 × 2-1 + 0 ×

2-2 + 0 × 2-3 + 0 × 2-4 = 0.5. The sum of integer part and the fractional part is 5.5.

• 1111.1111 =

The integer part is 1111, so that we can get the integer part as follows: 1 × -23 + 1 × 22 + 1 × 21 + 1 × 20 =

 -8 + 4 + 2 + 1 = -1. The fractional part is 1111, so that we can get the fractional part as follows: 1 × 2-1 + 1

× 2-2 + 1 × 2-3 + 1 × 2-4 = 0.5 + 0.25 + 0.125 + 0.0625 = 0.9375. The sum of integer part and the fractional

part is -1 + 0.9375 = -0.0625.

• 1000.000 =

There is only the integer part 1000. We can get the integer value, -8.

5.3 Floating-Point Number Representation

In the floating-point number, the binary point position is assumed always just before the most

significant digit, which is very similar to decimal scientific notation. Before we dive into the binary

number, let’s look at a decimal number 27310. We can write the decimal number 27310 in scientific

notation: 273 = 2.73 × 102.

In general, a number is written in scientific notation as follows:

± 𝑀 × 𝐵𝐸

where the symbol 𝑀 defines the mantissa (fraction), the symbol 𝐵 defines the base, and the symbol 𝐸

defines the exponent. In the example, the mantissa 𝑀 is 2.73, the base 𝐵 is 10, and the exponent 𝐸 is 2.

The binary number can be written in scientific notation as shown above, where the base is 2. Once we

got the scientific notation, we can store the binary number in 32 bits, as shown in Fig. 5-1. The first bit

stores the sign. If the sign bit is 0, the number is positive; otherwise the number is negative. The next

exponent field (8 bits) stores the exponent value. The mantissa field (23 bits) stores all the digit of the

number.

Fig. 5-1. Floating-Point Number Representation

53

We will show you how to represent the decimal number 22810 using a 32-bit floating point

representation. There are three versions. The final version is called the IEEE 754 floating-point standard.

First, we need to convert the decimal number to the binary number.

• 22810 = 111001002

Second, we can write the binary number in “binary scientific notation”.

• 111001002 = 1.110012 × 27

where, we can identify the mantissa 𝑀 = 111001, the base 𝐵 = 2, and the exponent 𝐸 = 7. Let’s fill in

each field of the 32-bit floating point number:

• The sign bit is positive (0)

• The 8-bit exponent represents the value 7: 00000111

• The remaining 23 bits are the mantissa: 11100100000000000000000

Since the mantissa has a total of 6 digits in the given example. The rest of the mantissa will be filled with

‘0’. The following figure show the first representation of the floating-point number.

Fig. 5-2. Floating-Point Number Representation 1

The first bit of the mantissa is always ‘1’. The implicit leading one is not included in the 23-bit mantissa

for efficiency. We only store the fraction bits in 23-bit field except the leading one. The following figure

shows the second representation of the floating-point number.

Fig. 5-3. Floating-Point Number Representation 2

Notice that the first bit of the mantissa is gone. Now we only store the fraction.

The exponent needs to represent both positive and negative exponents. To do so, floating-point uses a

biased exponent, which is the original exponent plus a constant bias. 32-bit floating-point uses a bias of

127. The exponent of 7 is stored as a biased exponent that is equal to the sum of the bias (127) and the

original exponent (7), i.e., 127 + 7 = 134 = 100001102. The IEEE 754 32-bit floating-point representation

of 22810 is shown in the following figure:

54

Fig. 5-4. Floating-Point Number Representation 3 – IEEE 754

The hexadecimal representation of the number is 0x43640000.

Exercises

Write the decimal number -58.2510 in floating point of IEEE 754 format.

First, we need to convert the decimal number to the binary number, as shown below:

• 58.2510 = 111010.012

Second, we can write the binary number in “binary scientific notation”.

• 1.1101001 × 25

where, we can identify the mantissa 𝑀 = 11101001, the base 𝐵 = 2, and the exponent 𝐸 = 5. Let’s fill

in each field of the 32-bit floating point number:

• The sign bit is negative (1)

• The 8-bit biased exponent bits: (127 + 5) = 132 = 100001002

• 23 fraction bits: 110 1001 0000 0000 0000 0000

Note that the first bit of the mantissa is gone and we have 23 fraction bits.

Fig. 5-5. Floating-Point Number Representation with IEEE 754 Format

The hexadecimal representation of the number is 0xC2690000.

55

Special Cases

The IEEE 754 floating-point format has special cases to represent numbers such as zero, positive and

negative infinity, and illegal results. The following figure show special cases of these values.

Table 5-1. Special Cases of IEEE 754 Standard Format

Number sign Exponent (8 bits) Fraction (23 bits)

0 x 00000000 00000000000000000000000

 0 11111111 00000000000000000000000

- 1 11111111 00000000000000000000000

NaN x 11111111 Non-zero

We have showed 32-bit floating-point numbers. When you declare a float variable in your program

language, the variable is stored with the format we have discussed so far in the computer system. The

format is also called single-precision (float) or single. The IEEE 754 standard also defines 64-bit double-

precision numbers (also called doubles) that can provide greater precision and range.

The following table shows the number of bits used for the fields in each format.

Table 5-2. Single-Precision and Double-Precision Formats of IEEE 754 Standard

Format Total bits Sign bits Exponent bits Bias value Fraction bits

Single-Precision 32 1 8 127 23

Double-Precision 64 1 11 1023 52

Recall that a number overflows when its magnitude is too large to be represented. Likewise, a number

underflows when it is too tiny to be represented. Arithmetic results that fall outside of the available

precision must round to a neighboring number. The rounding modes are: round down, round up, round

toward zero, and round to nearest. The default rounding mode is round to nearest.

For example, round the value 1.100101 (1.578125) to only 3 fraction bits. If the round down mode is

applied, the value rounds ‘1.100’. If the round up mode is applied, the value rounds ‘1.101’. If the round

toward zero is applied, the value rounds ‘1.100’. If the round to a neighboring number is applied, the

value rounds ‘1.101’, because 1.62510 (1.1012) is closer to 1.57812510 (1.1001012) than 1.510 (1.12) is.

56

Chapter 6: Computer Arithmetic

In this chapter, we introduce arithmetic circuits which are the central building blocks of computers.

Computers and digital logic perform many arithmetic functions: addition, subtraction, comparisons,

shift, multiplication and division. This module describes hardware implementations for all of these

operations.

Objectives

By the end of this chapter you should be able to:

• Demonstrate knowledge of 1-bit half and full adders

• Demonstrate knowledge of four-bit adder and subtractor

• Recall how to operate four-bit adder-subtractor

• Evaluate the arithmetic operation with four-bit adder-subtractor

• Execute arithmetic logic operations with Arithmetic logic unit

• Differentiate logical shift and arithmetic shift

• Apply arithmetic and shift operations for multiplication and division

6.1 Boolean Addition

Let’s look at how the computer execute the Boolean addition, 5 + 6, with binary numbers.

We assume an 8-bit computer. The decimal number 5 will be converted to an 8-bit binary number, 0000

0101. The decimal number 6 will be converted to an 8-bit binary number, 0000 0110, as shown in the

below figure:

Fig. 6-1. Boolean Addition: 5 + 6

As we calculate the decimal addition, the rightest digits will be added first and then the next digits will

be executed. The sum of 1 and 0 is 1 with a carry 0. In the second column from the right side, the sum of

0, 1, and the carry 0 is 1 with a carry 0. In the third column from the right side, the sum of 1, 1 and the

carry 0 is 0 with a carry 1. In the fourth column, the sum of 0, 0, and the carry 1 is 1 with a carry 0.

57

We can execute the Boolean addition using 1-bit full adders. A 1-bit half adder is used for adding

together the two least significant digits in a binary sum. It has two inputs A and B, and two outputs, Sum

and Cout. But it lacks a Cin (carry) input.

1-Bit Full Adders

1-bit full adder can perform addition of numbers, where it has such as inputs and outputs:

• Inputs: A, B, Carry in (Cin)

• Outputs: Carry out (Cout), Sum (S)

Fig. 6-2. 1-Bit Full Adder

The following table describes the operation of the adder. Here, the sum S will be ‘1’ if the number of the

input ‘1’ is odd. For example, if the inputs A, B, and Cin are 001, the sum S is ‘1’. If the inputs A, B, and

Cin are 110, the sum S is ‘0’. The Cout will be ‘1’ if the number of the input ‘1’ is greater than or equal to

2. For example, if the inputs A, B, and Cin are 110, the Cout is ‘1’.

Table 6-1. Truth Table of 1-bit Full Adder

A B C
in

 S C
out

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

58

We can simplify the outputs S and Cout using K-map. The following figure shows K-map representation of

the output S.

Fig. 6-3. K-map representation of the output S

From the above figure, we can express the output S in terms of input variables as follows:

𝑆 = 𝐴�̅�𝐶�̅�𝑛 + �̅�𝐵𝐶�̅�𝑛 + �̅��̅�𝐶𝑖𝑛 + 𝐴𝐵𝐶𝑖𝑛 = 𝐴⨁𝐵⨁𝐶𝑖𝑛

In order to produce the output S, there are four AND gates and one OR gate needed as shown in Fig. 6-4:

Fig. 6-4. Logic gate circuit for the Output S

Each AND gate has the following inputs:

• AND1: 𝐴, �̅�, and 𝐶�̅�𝑛

• AND2: �̅�, 𝐵, and 𝐶�̅�𝑛

• AND3: �̅�, �̅�, and 𝐶𝑖𝑛

• AND4: 𝐴, 𝐵, and 𝐶𝑖𝑛

All outputs of the AND gates fed into the OR gate that produces the sum S.

The following figure shows K-map representation of the output Cout.

Fig. 6-5. K-map representation of the output Cout

59

From the above figure, we can express the output Cout in terms of input variables as follows:

𝐶𝑜𝑢𝑡 = 𝐴𝐶𝑖𝑛 + 𝐵𝐶𝑖𝑛 + 𝐴𝐵

In order to produce the output Cout, there are three AND gates and one OR gate needed as shown in Fig.

6-6:

Fig. 6-6. Logic gate circuit for the Output Cout

Each AND gate has the following inputs:

• AND5: 𝐴 and 𝐶𝑖𝑛

• AND6: B and 𝐶𝑖𝑛

• AND7: 𝐴 and 𝐵

All outputs of the AND gates fed into the OR gate that produces the carryout Cout.

By combining Figs. 6-4 and 6-6, we can draw the 1-bit full adder with the carryin Cin, as shown in the

following figure:

Fig. 6-7. Logic gate circuit for the 1-Bit Full Adder

60

In the above figure, the 1-bit full adder has three inputs, A, B and Cin; and two outputs, S and Cout. All the

logic gates for the outputs S and Cout placed in a single block. The sum S is produced with four AND gates

and one OR gate in the same way to generate the output S in Fig. 6-4. The Cout is produced with three

AND gates and one OR gate in the same way to generate the output Cout in Fig. 6-6.

Four-Bit Adders

How can we design four-bit adders? The four-bit adder is designed with four 1-bit full adders by

connecting them in a parallel manner. The carryout Cout of the first full adder connected to the carry in

Cin of the second full adder, Cout of the second full adder connected to Cin of the third fuller adder, and

Cout of the third full adder connected to Cin of the fourth fuller adder, as shown in the following figure:

Fig. 6-8. Four-bit Adder

where the binary input A includes A3, A2, A1 and A0, the binary input B includes B3, B2, B1 and B0, Cin is C0,

the output S includes S3, S2, S1 and S0, and the Cout is C4.

Exercises

Add 3 and 4 using the four-bit adder.

• 3 = 0011 (A), 4 = 0100 (B)

Inputs A (0011) and B (0100) are fed into 4-bit full adder. The sum of A0, B0 and C0 is 1 (S0), the sum of A1,

B1 and C1 is 1 (S1), the sum of A2, B2 and C2 is 1 (S2), and the sum of A3, B3 and C3 is 0 (S3). By collecting all

the bits S3 – S0, it produces 0111 (=7) which is the sum of 3 and 4.

61

Fig. 6-9. Add 3 and 4 using four-bit adder

6.2 Boolean Subtraction

Let’s look at how the computer execute the Boolean subtraction, 12 - 5, with binary numbers.

We assume an 8-bit computer. The decimal number 12 will be converted to an 8-bit binary number,

0000 1100. The decimal number 5 will be converted to an 8-bit binary number, 0000 0101, as shown in

the below:

0000 11002 (1210)

 − 0000 01012 (510)

 = 0000 01112 (710)

The logic operation of the above is not appreciate with the logic gates. Instead of the above operation,

the Boolean subtraction is converted to the addition by converting the subtracted value to negate using

two’s complement.

We can negate the number 5 by flipping all the bits and adding one to the lsb (least significant bit), as

shown below:

1111 10102

+ 1

1111 10112 (-510)

The Boolean subtraction is now converted to the addition, as shown below:

 1 1111 0000 carries

 0000 11002 (1210)

 + 1111 10112 (-510)

 = 0000 01112 (710)

62

The most left carry bit (9th bit) will be ignored because the operation is executed in an 8-bit computer.

The overflow may occur when there are insufficient bits in a binary number representation to portray

the result of an arithmetic operation.

Four-Bit Subtractor

Four-bit subtractor can be designed with 4-bit full adder, by adding NOT gates and carryin (Cin) = 1, as

shown in the below figure:

Fig. 6-10. Four-bit Subtractor

where the input bits A3 through A0 are fed into the full adder directly, the input bits B3 through B0 are

fed into the full adder after flipping the bits with NOT gates, and the first carryin C0 set to 1, C0 = 1. The

Boolean equation of the above block diagram is expressed as shown below:

𝑌 = 𝐴 − 𝐵 = 𝐴 + (�̅� + 1)

The subtractor produces the output Y, Y3 through Y0, and the carryout C4.

Let’s subtract 3 from 7 using the four-bit subtractor.

• 7 = 0111 (A); A3 = 0, A2 = 1, A1 = 1, A0 = 1,

• 3 = 0011 (B); B3 = 0, B2 = 0, B1 = 1, B0 = 1.

The binary inputs A and B (A3 – A0 and B3 – B0) are fed into the subtractor as shown below:

63

Fig. 6-11. Subtract 3 from 7

Starting from the rightest side, we can execute the full adder operation with 𝐴0 = 1, �̅�0 = 0, and 𝐶0 = 1,

producing the outputs 𝑌0 = 0 and 𝐶1 = 1, where 𝐶1 become the carryin for the next full adder. The

second full adder executes with the following inputs; 𝐴1 = 1, �̅�1 = 0, and 𝐶1 = 1, producing the outputs

𝑌1 = 0 and 𝐶2 = 1, where 𝐶2 become the carryin for the next full adder. The third and fourth full adders

execute in a similar manner: the inputs 𝐴2 = 1, �̅�2 = 1, and 𝐶2 = 1 produce the outputs 𝑌2 = 1 and 𝐶3 =

1; and the inputs 𝐴3 = 0, �̅�3 = 1, and 𝐶3 = 1 produce the outputs 𝑌3 = 0 and 𝐶4 = 1, where the carryout

𝐶4 will be ignored because this is a 4-bit computer system. The output bits 𝑌3𝑌2𝑌1𝑌0 (= 0100) is equal to

4.

6.3 Adder-Subtractor

The hardware configure of the adder is very similar to that of the subtractor. Since the hardware

configuration is related to the cost. We can design this two hardware by sharing some components, i.e.

full adders. A four-bit Adder-Subtractor can be designed with 4-bit full adder, four exclusive OR gates

and a mode bit M, as shown in the below:

Fig. 6-12. Four-bit Adder-Subtractor

where the input bits A3 through A0 are fed into the full adder directly, the input bits B3 through B0 are

fed into the full adder after executing exclusive OR operation with a mode bit M. The mode bit M

64

determines either an adder (M = 0) or a subtractor (M = 1). The Adder-Subtractor produces the output

bits S3 through S0, and the carryout C4, where the carryout C4 is used for overflow detection.

The following figure shows the case when the mode bit M is equal to 0, executing the add operation.

Fig. 6-13. Four-bit Adder-Subtractor: M = 0

Since the mode bit M = 0, the outputs of exclusive OR gates are equal to B3, B2, B1 and B0. Then the four-

bit Adder-Subtractor produces the output bits, S3 through S0, and the carryout C4. It works as a 4-bit full

adder.

If the mode bit M = 1, as shown in Fig. 6-14, the outputs of exclusive OR gates are equal to �̅�3, �̅�2, �̅�1,

and �̅�0, where the carryin C1 of the first full adder is equal to 1.

Fig. 6-14. Four-bit Adder-Subtractor: M = 1

Then the four-bit Adder-Subtractor produces the output bits, S3 through S0, and the carryout C4. It

works as a 4-bit subtractor.

Let’s look at how this circuit works with the following example inputs;

• A = 5 (0101)

• B = 7 (0111)

• The mode bit M = 1

65

The input bits A3 through A0 are directly fed into the adders. On the other hand, the input bits B3

through B0 are fed into the exclusive OR gates. Since the mode bit M = 1, the outputs of the exclusive OR

gates are �̅� (B complement).

Fig. 6-15. Four-bit Adder-Subtractor with Example Inputs: A = 5, B = 7, and M = 1

From the rightest side of the above figure,

• Three inputs A0 = 1, �̅�0 = 0, carryin C0 = 1 fed into the first FA, and then produce S0 = 0 and

carryout C1 = 1.

• Three inputs A1 = 0, �̅�1 = 0, carryin C1 = 1 fed into the second FA and then produce S1 = 1 and

carryout C2 = 0.

• Three inputs A2 = 1, �̅�2 = 0, carryin C2 = 0 fed into the third FA, and then produce S2 = 1 and

carryout C3 = 0.

• Three inputs A3 = 0, �̅�3 = 1, carryin C3 = 0 fed into the fourth FA, and then produce S3 = 1 and

carryout C4 = 0.

Let’s collect all the sum bits, 𝑆3𝑆2𝑆1𝑆0 (= 1110), which is equal to -2 (two’s complete number).

Exercises

Eight-bit Adder-Subtractor can be designed with eight 1-bit full adders by connecting them in a parallel

manner.

Fig. 6-16. Eight-bit Adder-Subtractor

66

• Cout (C1) of the first full adder connected to Cin of the second fuller adder, Cout (C2) of the second

full adder connected to Cin of the third fuller adder, etc.

• Binary input A includes A7 through A0

• Binary input B includes B7 through B0

• Cin: C0

• Output S includes S7 through S0.

• Cout: C4

If A = 32 (00100000), B = 63 (00111111), and M = 1, what is the output S?

6.4 Comparators

A 1-bit comparator is designed with an exclusive OR gate, as shown in Fig. 6-17.

Fig. 6-17. Eight-bit Adder-Subtractor

There are two AND gates and one OR gate. AND1 gate has two inputs, A and �̅�. AND2 gate has also two

inputs, �̅� and B. The two outputs of AND gates are fed into the OR gate that produces the output Y.

Equality

1-bit equality comparator is simply designed with exclusive NOR gate. What about 4-bit equality

comparator? 4-bit equality comparator is designed by connecting 4 exclusive NOR gates parallelly, as

shown below:

Fig. 6-18. Four-bit Equality Comparator

Each XNOR gate compares the inputs A and B as follows:

67

• XNOR3 for two inputs A3 and B3

• XNOR2 for two inputs A2 and B2

• XNOR1 for two inputs A1 and B1

• XNOR0 for two inputs A0 and B0

The outputs of all XNOR gates are fed into 4-input AND gate, which produces the logic “1” if only if all

the inputs are “1”.

Less Than

The Less Than comparator can be designed with magnitude comparison by computing A – B and looking

at the sign bit (msb: most significant bit), as shown in the below:

Fig. 6-19. Less Than Comparator

where the term ‘N’ means the M-bit input or output, and [N-1] represents the sign bit, i.e. the most

significant bit. If the sign bit is 1, A is less than B. If the sign bit is 0, A is greater than or equal to B.

6.5 Arithmetic Logic Unit

An ALU (Arithmetic Logic Unit) combines a variety of mathematical and logical operations, e.g. addition,

subtraction, magnitude comparison, AND operation, OR operation, etc., into a single unit. The following

figure shows a simplified ALU.

Fig. 6-20. Simplified ALU

68

There are the two inputs A and B. Both of them are N bits. The operation of ALU determined by the

function bits, F2 F1 F0. For example, if F2 F1 F0 = 000, ALU executes AND operation. If F2 F1 F0 = 001, ALU

executes OR operation. The following table explains the operation of the ALU with the function bits.

Table 6-2. ALU Operation with Function Bits

F
2
 F

1
 F

0
 Function

0 0 0 A AND B

0 0 1 A OR B

0 1 0 A + B

0 1 1 Not used

1 0 0 A AND ~B

1 0 1 A OR ~B

1 1 0 A - B

1 1 1 SLT

N-bit ALU

The simplified N-bit ALU of Fig. 6-20 is designed with 2-to-1 Multiplexer, full adder, zero extend, NOT
gate, OR gate, AND gate, and 4-to-1 Multiplexor, as shown in Fig. 6-21, where all the units are N bits.

Fig. 6-21. Design of N-bit ALU

Input A (n-bit) directly is fed into the full adder, OR gate, or AND gate. Input B (n-bit) is fed into 2-to-1

Multiplexor with and without NOT gate, where 2-to-1 Multiplexor produce either B or �̅� depending on

the function bit F2 value. If the function bit F2 is true (F2 = 1), the multiplexor produces �̅�. If the function

bit F2 is false (F2 = 0), it produces B. The full adder has two inputs A and B (or �̅�). In a similar manner,

69

each logic OR or AND gate has two inputs A and B (or �̅�). Zero extend detects the most significant bit of

the full adder output (the sum S) and produces a total of N bits, where the other bits except the least

significant bit are filled with ‘0’.

4-to-1 Multiplexor has the following four inputs:

• the output of zero extend

• the output of the adder

• The output of OR gate

• The output of AND gate

It forward one of inputs to the output Y depending on the two function bits F1 F0.

Let’s look at an example how the ALU operates with the following inputs:

• Input A = 25

• Input B =32

• Function bits F2 F1 F0 = 111

where we assume this is a 32-bit ALU. Input A = 25 (32-bit) is directly fed into the full adder, whereas

input �̅� (32-bit) is fed into the full adder because 2-to-1 Multiplexor produces �̅� with F2 = 1. Here, the

full adder works as subtractor. Note that the carryin of the full adder is F2 = 1.

Fig. 6-22. SLT Operation of N-bit ALU

The output of the adder is -7, i.e. A – B = 25 – 32 = -7. The most significant bit (msb) S31 is equal to 1

because the output value of the adder is negative. The zero-extend extends the msb and produces

0x00000001. Since F1 F0 = 11, the output of zero-extend is forwarded to the output of 4-to-1

Multiplexer, i.e. Y = 0x00000001.

70

Exercises

Let’s execute the designed 32-bit ALU with the following inputs:

• Input A = 16

• Input B =31

• Function bits F2 F1 F0 = 110

where we assume this is a 32-bit ALU. Input A = 16 (32-bit) directly is fed into the full adder, whereas

input �̅� (32-bit) is fed into the full adder because 2-to-1 Multiplexor produces �̅� with F2 = 1. Here, the

full adder works as subtractor.

Fig. 6-23. Subtract Operation of N-bit ALU

The adder executes the following operation:

• Binary input A = 0000|0000|0000|0000|0000|0000|0001|0000

• Binary input �̅� = 1111|1111|1111|1111|1111|1111|1110|0000

• Carryin F2 = 0000|0000|0000|0000|0000|0000|0000|0001

• Binary output S = 1111|1111|1111|1111|1111|1111|1111|0001 (=-15)

Since two function bits F1 F0 = 10, the 4-to-1 Multiplexer forwards the binary output S to the output

value Y = S = 0xFFFFFFF1.

Logical Shift

A logical shift is a bitwise operation that shifts all the bits. The two base variants are the logical left shift

and the logical right shift. In the logic left shift, shift all the bits to left and fill empty spaces with 0’s:

 11001011 LSL 1 = 10010110

71

where the underlined zero is added to fill the empty spaces. The most significant bit is discarded.

In the logical right shift, shift all the bits to right and fill empty spaces with 0’s:

 11001011 LSR 2 = 00110010

where the underlined zeros are added to fill the empty spaces. The least significant bits are discarded.

Arithmetic Shift

An arithmetic shift is also a bitwise operation that shifts all the bits. The two base variants are the

arithmetic left shift and the arithmetic right shift. The operation of the arithmetic left shift is the same as

the logic left shift. The vacant least significant bit is fill with zero and the most significant bit is discarded.

 msb lsb
 7 6 5 4 3 2 1 0

Before ALS: 0 0 0 1 0 1 1 1 = 23

 2

After ALS: 0 0 1 0 1 1 1 0 = 46

The arithmetic left shift is equivalent to multiplication. After we execute ALS by 1 bit, the original value

is multiplied with 21-bit. For example, if you execute ALS by 1 bit with 00010111 (=23), the operation

returns 00101110 (= 46). If you execute ALS by 2 bits with 00010111 (=23), it returns 01011100

(=23 22 = 92).

The arithmetic right shift is equivalent to division. After we execute ARS by 1 bit, the original value is

divided by 21-bit. For example, if you execute ARS by 1 bit with 00010111 (=23), the operation returns

00001011 (=11), where the result is always round down.

 msb lsb
 7 6 5 4 3 2 1 0

Before ARS: 0 0 0 1 0 1 1 1 = 23

 2

After ARS: 0 0 0 0 1 0 1 1 = 11

where the vacant most significant bit is filled with a copy of the original msb zero, where the original

number is positive. If the number is negative, the vacant most significant bit is filled with one.

Let’s execute ARS by 1 bit with 11101001 (=-23). The operation returns 11110100 (-12), where the

vacant msb is filled with a copy of the original msb one. The result is always round down.

72

 msb lsb
 7 6 5 4 3 2 1 0

Before ARS: 1 1 1 0 1 0 0 1 = -23

 2

After ARS: 1 1 1 1 0 1 0 0 = -12

Exercises

Execute the logical shift operation of the following values:

• 11001 LSR 2 = 00110

The original value 11001 is shifted right. The vacant msb is filled with zero and the lsb is discarded.

• 11001 LSL 2 = 00100

The original value 11001 is shifted left. The vacant lsb is filled with zero and the msb is discarded.

Execute the arithmetic shift operation of the following values:

• 11001 ASR 2 = 11110

The original value 11001 is shifted right. The vacant msb is filled with a copy of the original msb.

• 11001 ASL 2 = 00100

The original value 11001 is shifted left. The vacant lsb is filled with a copy of the original lsb.

73

Chapter 7: Circuit Designs and Sequential Circuits

In this chapter, we introduce the most commonly used building blocks: multiplexer, decoder, and

encoder. The outputs of these combinational logic circuits depend on current input values, hiding the

unnecessary gate-level details to emphasize the function of the building block. This chapter also

introduces sequential logic circuits, which outputs depend on both current and prior values.

Objectives

By the end of this chapter you should be able to:

• Demonstrate knowledge of multiplexer, decoder, and encoder

• Simplify the Boolean equation with k-map

• Design combinational logic circuits with logic gates

• Differentiate combinational logic circuits and sequential logic circuits

• Recall basic knowledge of SR latch: set, reset, memory and invalid state

• Evaluate internal circuit operations of D latch and D flip-flop

7.1 Combinational Circuit Design

Multiplexer

A multiplexer (or Mux), also known as a data selector, is a device that selects one among N analog or

digital inputs and forwards the selected input to a single output line. If the mux has N inputs, it needs

log2 𝑁 control inputs. For example, if the mux has the two inputs, it needs a log2 2 (= 1) control input.

The following figure shows 2-to-1 multiplexer which has two inputs (D0 and D1), one output (Y), and a

control input (S).

Fig. 7-1. 2-to-1 Multiplexer

If the control input S is 0, the input D0 is forwarded to the output Y. If the control input S is 1, the input

D1 is forwarded to the output Y. The following table describes the 2-to-1 multiplexer.

74

Table 7-1. Truth Table of 2-to-1 Multiplexer

S D1 D0 Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

From the above table, we can notice that the value of the output Y is determined by two inputs, D1 and

D0, and the control input S. Let’s draw K-map to simplify the Boolean equation in terms of the output Y,

as shown in Fig. 7-2.

Fig. 7-2. 2-to-1 Multiplexer

The simplified equation is 𝒀 = 𝐷0𝑆̅ + 𝐷1𝑆 which allows us to design logic gates for2-to-1 multiplexer.

For the multiplexer design, there needs two AND gates and one OR gate in the block of Fig. 7-1.

Fig. 7-3. 2-to-1 Multiplexer

As shown in Fig. 7-3, AND1 gate has two inputs, D1 and S, whereas AND2 gate has two inputs, D0 and 𝑆̅.

The two outputs of the AND gates are fed into the OR gate which produces the output Y.

75

Decoder

The decoder translates the binary value into a decimal value. Fig. 7-4 shows a block diagram of 2-bit

binary decoder. The 2-to-4 decoder has two inputs A1 and A0, and four outputs Y3, Y2, Y1 and Y0.

Depending on the binary inputs A1 and A0, only one output will be TRUE and the other outputs will be

FALSE. For example, if the binary inputs A1A0 is equal to ‘11’, only one output Y3 is TRUE and the other

outputs Y2 Y1 Y0 are all FALSE.

Fig. 7-4. Block Diagram of 2-bit Binary Decoder

The following table shows the truth table of the decoder.

Table 7-2. Truth Table of 2-bit Binary Decoder

A1 A0 Y3 Y2 Y1 Y0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

The truth table of 2-to-4 binary decoder can be mapped to K-map and we can describe the output

variables in terms of input variables.

Fig. 7-5. K-Map Representation of 2-bit Binary Decoder

Each output value was expressed with input variables, as shown in the above figure. We can fill the box

of Fig. 7-4 with a combinational circuit of 2-bit binary decoder in the following figure:

76

Fig. 7-6. Combinational Circuit of 2-bit Binary Decoder

The 2-to-4 binary decoder has two inputs (A1, A0) and four outputs (Y3, Y2, Y1, and Y0). There are four

AND gates and two NOT logic gate in the block.

• AND3 gate produces the output Y3 with two inputs, 𝐴0 and 𝐴1.

• AND2 gate produces the output Y2 with two inputs, �̅�0 and 𝐴1.

• AND1 gate produces the output Y1 with two inputs, 𝐴0 and �̅�1.

• AND0 gate produces the output Y0 with two inputs, �̅�0 and �̅�1.

Encoder

The encoder is the inverse operation of a decoder. The operation is like the keyboard. Only one input is

TURE (press only one button) and the others are FALSE. It generates the binary code corresponding to

the input value. A 4-to-2 encoder has four inputs D3 D2 D1 D0 and two binary outs B1 B0, as shown in Fig.

7-7. Only one input is TRUE and the other inputs are FALSE. For example, if the input D3 is TRUE and the

others are FALSE, it generates the corresponding binary code B1 B0 = 11.

Fig. 7-7. 4-to-2 Encoder

The following table describe the operation of the 4-to-2 encoder.

77

Table 7-3. Truth Table of 4-to-2 Encoder

Inputs Outputs

D3 D2 D1 D0 B1 B0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

From the above table, we can notice that the outputs B1 and B0 are determined by four inputs, D3, D2, D1

and D0, respectively. Using the truth table of the encoder, we can create K-map which can simplify the

Boolean equation for the encoder.

To simplify the Boolean equation of the output B1, we have the following Boolean values:

• If the inputs D3 D2 D1 D0 are equal to ‘0 0 0 1’, the output B1 = 0

• If the inputs D3 D2 D1 D0 are equal to ‘0 0 1 0’, the output B1 = 0

• If the inputs D3 D2 D1 D0 are equal to ‘0 1 0 0’, the output B1 = 1

• If the inputs D3 D2 D1 D0 are equal to ‘1 0 0 0’, the output B1 = 1

To simplify the Boolean equation of the output B0, we have the following Boolean values:

• If the inputs D3 D2 D1 D0 are equal to ‘0 0 0 1’, the output B0 = 0

• If the inputs D3 D2 D1 D0 are equal to ‘0 0 1 0’, the output B0 = 1

• If the inputs D3 D2 D1 D0 are equal to ‘0 1 0 0’, the output B0 = 0

• If the inputs D3 D2 D1 D0 are equal to ‘1 0 0 0’, the output B0 = 1

The following figure shows the K-map representation of 4-to-2 encoder.

Fig. 7-8. K-map Representation of 4-to-2 Encoder with Empty Cells

The empty cells will be full with X (don’t care) notation, because we don’t care the outputs B1 and B0

(either 0 or 1) when the other input combinations of D3 D2 D1 D0 are fed into the encoder. It seems that

more than two buttons pressed simultaneously.

78

The K-map simplifies the Boolean equation of B1 and B0, as shown in Fig. 7-9. We can get the simplified

equation as follows:

• B1 = D3 + D2

• B0 = D3 + D1

Fig. 7-9. K-map Representation of 4-to-2 Encoder with X (don’t care) Notation

Let’s design logic gates for the encoder using the above figure:

Fig. 7-10. Designed Encoder with logic gates

4-to-2 encoder has four inputs, i.e. D3, D2, D1, D0, and two outputs (binary code), i.e. B1 and B0. There are

two OR gates in the block.

• OR1 gate has two inputs, D2 and D3, and produces the output B1.

• OR0 gate has two inputs, D1 and D0, and produces the output B0.

79

7.2 Sequential Circuits

So far, we take a look at the combinational circuit, in which the output is independent of time and only

relies on the current input at that particular instant. On the other hand, the sequential circuit is the type

of circuit where output not only relies on the current input but also depends on the previous output.

The sequential circuit consists of a combinational circuit and storage elements. The previous

input/output values are stored in storage elements.

Fig. 7-11. Sequential Circuit

As shown in the above figure, the inputs directly are fed into the combinational circuit block. The

combinational circuit produces outputs with current and prior input values. Some states of the

combinational circuit are stored in memory elements, e.g. Flip-flops, which will be used as the prior

input values. Storage elements maintain a binary state indefinitely as long as power is delivered to the

circuit. There are two types of the storage elements: 1) Latch – operated with signal levels, and 2) Flip-

Flop – controlled by a clock transition.

SR Latch

SR latch is the most fundamental building block using static gates, where S and R stand for set and reset.

SR latch can be designed with two NOR gates. The inputs S and R are fed into each NOR gate, and the

output of one NOR gate recursively is fed into the input of the other NOR gate, as shown below:

Fig. 7-12. SR Latch

The outputs 𝑄 and �̅� represent the value of the stored state and its complement, respectively. In SR

latch, there are four possible input cases:

80

• Case 1: S = 1, R = 0

Let’s look at the case when the inputs S = 1 and R = 0. The ‘1’ bit is the dominant input of the NOR gate.

Since one of the inputs, S = 1, is TRUE, the NOR gate (N2) produces the output FALSE which is fed into

one of the inputs in the other NOR gate (N1). Both two inputs of NOR gate N1 are FALSE and the NOR

gate N1 produces the output TRUE.

Fig. 7-13. SR Latch When the inputs S = 1 and R = 0

• Case 2: S = 0, R = 1

Let’s look at the case when the inputs S = 0 and R = 1. The ‘1’ bit is the dominant input of the NOR gate.

Since one of the inputs, R = 1, is TRUE, the NOR gate (N1) produces the output FALSE which is fed into

one of the inputs in the other NOR gate (N2). Both two inputs of NOR gate N2 are FALSE and the NOR

gate N2 produces the output TRUE.

Fig. 7-14. SR Latch When the inputs S = 0 and R = 1

81

• Case 3: S = 0, R = 0

Let’s look at the case when both inputs S and R are FALSE. Since both of inputs are FALSE, we need to

consider the case whether the previous output 𝑄𝑝𝑟𝑒𝑣 is FALSE or TRUE. In the former case when the

previous output 𝑄𝑝𝑟𝑒𝑣 is FALSE, both inputs of the NOR gate N2 are FALSE and the gate produces the

output TRUE. Both inputs of the other NOR gate N1 has TRUE and FALSE, the gate produces the output

FALSE. In the latter case when the previous output 𝑄𝑝𝑟𝑒𝑣 is TRUE, both inputs of the NOR gate N1 are

FALSE and the gate produces the output TRUE. Both inputs of the other NOR gate N2 has TRUE and

FALSE, the gate produces the output FALSE.

Fig. 7-15. SR Latch When the inputs S = 0 and R = 0

In summary, if the inputs S = 0, R = 0, and 𝑄𝑝𝑟𝑒𝑣 = 0, then the output 𝑄 = 0. If the inputs S = 0, R = 0, and

𝑄𝑝𝑟𝑒𝑣 = 1, then the output 𝑄 = 1. In this case, the latch memorizes the previous state.

• Case 4: S = 1, R = 1

Let’s look at the case when both inputs S and R are TRUE. Both NOR gates have a dominant input ‘1’ and

both outputs 𝑄 and �̅� are equal to 0. This is an invalid state. The values of 𝑄 and �̅� should be different.

We should avoid this state.

Fig. 7-16. SR Latch When the inputs S = 1 and R = 1

SR latch stores one bit of state (𝑄). The following figure shows the SR latch symbol.

82

Fig. 7-17. SR Latch Symbol

D Latch

SR latch has an invalid state. We must do something to avoid the invalid state. D latch allows us to avoid

this invalid state, where the D latch has two inputs CLK and D. The CLK input controls when the output

changes, and the data input D controls what the output changes to. The function of D latch is as follows:

• When CLK = 1, D passes through to 𝑄: called it a state of “transparent”

• When CLK = 0, 𝑄 holds its previous value: called it a state of “opaque”

(a) Internal Circuit (b) Symbol

Fig. 7-18. D Latch, (a) Internal circuit and (b) Symbol

As shown in the above figure, D Latch Internal Circuit consists of NOT gate, two AND gates, and SR latch.

There are two inputs, CLK and D, and two outputs 𝑄 and �̅�. The inputs, CLK and �̅�, are fed into one AND

gate, and the gate produces the internal value R. On the other hand, the inputs, CLK and D, are fed into

the other AND gate, and the gate produces the internal value S. The following table summarizes the

internal states of the D latch.

Table 7-4. Internal States of D Latch

CLK D �̅� S R 𝑸 �̅�

0 X �̅� 0 0 𝑄
prev

 �̅�
prev

1 0 1 0 1 0 1

1 1 0 1 0 1 0

• If CLK = 0, both of AND gates produce “0”. That means two internal inputs S and R are “0”. The

latch produces 𝑄
prev

 and �̅�
prev

, meaning that the current output 𝑄 is equal to 𝑄
prev

.

83

• If CLK = 1 and D = 0, the internal input S has a value of “0” and the internal input R has a value of

“1”. The latch produces 𝑄 = 0 and �̅� = 1.

• If CLK = 1 and D = 1, the internal input S has a value of “1” and the internal input R has a value of

“0”. The latch produces 𝑄 = 1 and �̅� = 0.

The way to respond to the clock signal is slightly different in Latch and Flip-Flop. The latch updates its

state when the clock level is positive, as shown in the following figure:

Fig. 7-19. Latch Respond to Positive Level

On the other hand, the flip-flop updates its state when the clock level is in a transitional state, i.e. edge

triggered, as shown in the following figure:

Fig. 7-20. Flip-Flop Respond to Positive or negative-edge in the Clock Cycle

That means that the flip-flop changes the state when the clock level is changed from low to high,

referred to as a positive-edge response, or from high to low, referred to as a negative-edge response.

84

D Flip-Flop

The D flip-flop is created by connecting two gated D latches serially, and inverting the CLK input to one

of them. There are two inputs, CLK and D, and it produces the output values 𝑄 and �̅�. The following

figure shows the symbols of D flip-flop.

Fig. 7-21. D Flip-Flop Symbols

In D flip-flop, D (data) passes through to 𝑄 when CLK rises from 0 to 1 (or from 1 to 0); otherwise, 𝑄

holds its previous value. 𝑄 value changes only on rising edge of CLK (from 0 to 1), called edge-triggered,

which was represented in the inverted triangle of the above figure.

The internal circuit of D Flip-flop composes of two latches (L1: Master, and L2: Slave) and NOT gate, as

shown in the following figure:

Fig. 7-22. D Flip-Flop Internal Circuit - Master Enabled

CLK value is directly fed into L2, but connected to L1 after flipping CLK with NOT gate. The input D is

directly fed into L1. The output 𝑄 of L1 is directly connected to the internal input N1 of L2. When the CLK

value is zero, L1 Latch is enabled (transparent) and the input D value can pass through L1. On the other

hand, L2 Latch is disabled (opaque) and the internal input N1 cannot pass through L2.

85

Fig. 7-23. D Flip-Flop Internal Circuit - Slave Enabled

When the CLK value is one, L2 Latch (Slave) is enabled (transparent) and the internal input N1 can pass

through L2. On the other hand, L1 Latch (Master) is disabled (opaque) and the input D cannot pass

through L1, as shown in the above figure.

Thus, when the CLK value rises from 0 to 1 (on the edge of the clock), the D value passes through 𝑄

value.

Since D flip-flop keeps one-bit information, we can design a 4-bit register with four D flip-flops, as

follows:

Fig. 7-24. 4-bit Register

• D Flip-Flop0 has the input D0 and the output Q0.

• D Flip-Flop1 has the input D1 and the output Q1.

• D Flip-Flop2 has the input D2 and the output Q2.

• D Flip-Flop3 has the input D3 and the output Q3.

Notice that each edge clock CLK of D Flip-Flop is connected to the common CLK individually.

86

Chapter 8: Basic CPU Organization

In this chapter, we introduce the basic CPU organization and instructions. This module also shows how a

CPU is made, what's inside a CPU, how computer memory works, and how a CPU works.

Objectives

By the end of this chapter you should be able to:

• Recognize the history of Intel microprocessors

• Recall how a CPU is made from sand to chip

• List what’s inside a CPU

• Demonstrate knowledge of computer memory integrating with a CPU

8.1. Hardware Overview

Typical personal computer systems consist of lots of input/output devices, storage devices and

communication interface. The input device includes keyboard, mouse. The output device includes

monitor, printer, and speaker. Storage devices include CD-R/RW, DVD, and Hard disk. When you open a

desktop computer case, you can see lots of electronic components in the main board. The key

components of your main board are CPU and Memory.

History of Intel Processors

The early computers that used vacuum tubes were huge. The ENIAC occupied a whole room. Vacuum

also took a long time to warm up and they produce a lot of excess heat and then came transistors. The

transistor was invented at Bell Laboratories on December 23, 1947. The following show the history of

intel processors (https://www.youtube.com/watch?v=Qu2njWY3Hjk):

Year Processors # of Transistors Clock rate Memory Feature size

1971 Intel 4004 2,300 740 KHz Up to 4,096 bytes 10 microns

1972 Intel 8008 3,500 0.2 to 0.8 MHz Up to 16 kB 10 microns

1964 Intel 8080 4,500 2 MHz Up to 64 kB 6 microns

1978 Intel 8086 29,000 5 to 10 MHz Up to 1 MB 3 microns

1979 Intel 8088 29,000 5 to 10 MHz Up to 1 MB 3 microns

1982 Intel 80186 55,000 6 to 25 MHz Up to 1 MB 3 microns

1982 Intel 80286 134,000 6 to 25 MHz Up to 16 MB 1.5 microns

1985 Intel 80386 275,000 12 to 40 MHz Up to 4 GB 1.5 microns

1989 Intel 80486 1,180,235 16 to 150 MHz Up to 4 GB
Cache – 8 to 16 kB

1 micron

87

The list of Intel microprocessors can be found in the following link:

https://en.wikipedia.org/wiki/List_of_Intel_microprocessors

1993 Intel
Pentium
80501

3.1 to 3.3
million

60 to 66 MHz Up to 4 GB
Cache – 8 kB
instruction cache, 8
kB cache

0.35 to 0.8
microns

1995 Intel
Pentium Pro

5.5 million 150 – 200 MHz Up to 64 GB
L1 Cache – 8 kB
instruction cache &
8 kB data cache
LS Cache – 512 kB

0.35 to 0.5
microns

1997 Intel
Pentium II

7.5 million 233, 266 or 300
MHz

Up to 64 GM
L1 Cache – 32 kB
L2 Cache – 512 kB

0.35 microns

1999 Intel
Pentium II
(Dixon)

27.4 million 400 MHz Up to 64 GB
L1 Cache – 32 kB
L2 Cache – 256 kB

180 nm

1999 Intel
Pentium 3
Katmai

9.5 million 450 to 600
MHz

L1 Cache – 16 kB
instruction cache &
16 kB data cache
L2 Cache – 512 kB
(50% of CPU
speed)

250 nm

2001 Intel
Pentium 3
Tualatin

45 million 1000 to 1400
MHz

L1 Cache – 16 kB
instruction cache 7
16 kB data cache
L2 Cache – 256 kB
or 512 kB (full
speed)

130 nm

2000 Intel
Pentium 4
Willamette

42 million 1300 to 2000
MHz

L1 Cache – 20 kB
L2 Cache – 256 kB

180 nm

2002 Intel
Pentium 4
Northwood

55 million 1600 to 2800
MH

L2 Cache – 512 kB 130 nm

2004 Intel
Pentium 4
Prescott

112 million 2400 to 3067
MHz

L2 Cache – 1024 kB 90 nm

2005 Intel
Pentium 4
Prescott 2M

169 million 2.8 to 4.00 GHz L2 Cache – 2 MB 90 nm

2006 Intel
Pentium 4
Cedar Mill

184 million 3 to 3.6 GHz L2 Cache – 2 MB 65 nm

https://en.wikipedia.org/wiki/List_of_Intel_microprocessors

88

How A CPU Is Made

Your CPU made with sand (silicon), UV light, fire (high temperature), and water (cleaning). Intel released

all the major steps in a process that normally takes hundreds of stages to complete. See the link to see

that Intel shows how a CPU is made: https://www.tomshardware.com/picturestory/514-intel-cpu-

processor-core-i7.html

8.2. CPU Organization

What’s inside a CPU

Inside every computer is a central processing unit and inside every CPU are small components that carry

out all the instructions for every program you run. These components include AND gates, OR gates, NOT

gates, Clock, Multiplexer, ALU (arithmetic logic unit), etc. Data bus performs data transfer within a CPU

and a computer. As shown in Fig. 8-1, CPU is organized with Program Counter (PC), Instruction Register

(IR), Instruction Decoder, Control Unit, Arithmetic Logic Unit (ALU), Registers, and Buses. PC holds the

address of the next instruction to be fetched from Memory. IR holds each instruction after it is fetched

from Memory. Instruction Decoder decodes and interprets the contents of the IR, and splits a whole

instruction into fields for the Control Unit to interpret. Control Unit co-ordinates all activities within the

CPU, has connections to all parts of the CPU, and includes a sophisticated timing circuit. ALU carries out

arithmetic and logical operations, exemplified with addition, comparison, Boolean AND/OR/NOT

operations. Within ALU, input registers hold the input operands and output register holds the result of

an ALU operation. Once completing ALU operation, the result is copied from the ALU output register to

its final destination.

Fig. 8-1. CPU Organization

https://www.tomshardware.com/picturestory/514-intel-cpu-processor-core-i7.html
https://www.tomshardware.com/picturestory/514-intel-cpu-processor-core-i7.html

89

General-purpose registers are available for the programmer to use in their programs within CPU.

Typically, the programmer tries to maximize the use of these registers in order to speed program

execution. Busses serve as communication highways for passing information in the computer.

The computer has memory which memorize data in a similar way we remember the past events. The

register is the fastest memory which is located within CPU of the computer.

Fig. 8-2. CPU Overview

The above figure shows CPU overview which consists of PC, instruction memory, registers, ALU, and

Data memory. PC always holds the address of the next instruction to be fetched from Memory.

Instruction, e.g. add $t1, $t2, $t3, is fetched into instruction memory. Register operands are used by an

instruction in registers, where $t1 is the first source operand, $t2 is the second source operand, and $t3

is the storage of the result. ALU executes an arithmetic operation, e.g. Sum of $t1 and $t2. The result

from the ALU or memory is written back into the register file ($t3). In the figure, ALU results and the

output of data memory can't just join wires together. The red dash-dot line can be designed with the

multiplexer to put the wires together.

The following figure shows CPU control with multiplexers. The first multiplexer controls what value

replaces the PC (PC + 4 or the branch destination address), where the Mux is controlled by the AND gate

with the Zero output of ALU and a control signal. The second multiplexer steers the output of the ALU or

the output of the data memory. The third one determines whether the second ALU input is from the

registers or from the offset field of the instruction (for a load or store).

90

Fig. 8-3. CPU Control with Multiplexer

91

Chapter 9: Instruction Set Architecture

In this chapter, we introduce the instruction set architecture. The architecture is the programmer's view

of a computer, which is defined by instruction set (language) and operand locations (registers and

memory). We look at the computer's vocabulary (called the instruction set). Computer instructions

indicate both the operation to perform and the operands to use. we look at the operands which come

from memory, from registers, or from the instruction itself. This chapter also shows how to interpret

assembly language into machine language.

Objectives

By the end of this chapter you should be able to:

• Recognize Assembly language and machine language

• Demonstrate knowledge of MIPS Assembly architecture

• Differentiate the operation to perform and the operands to use

• Summarize features of word-addressable memory

• Deconstruct different types of instructs, i.e. R-type, I-type and J-type

• Translate assembly language into machine code

9.1. Instructions

An instruction is a single operation of a processor defined by the processor instruction set. The size of

length of an instruction depends on the processor. The instruction can be written in human-readable

formats or computer-readable formats. Assembly language is the human-readable format of

instructions, whereas machine language is the computer-readable format (1’s and 0’s).

Once you’ve learned one architecture, it’s easy to learn others. MIPS (Microprocessor without

Interlocked Pipelined Stages) architecture was developed by John Hennessy and his colleagues at

Stanford in the 1980’s, and used in many commercial systems, including Silicon Graphics, Nintendo, and

Cisco. Underlying architecture design principles, as articulated by Hennessy and Patterson are as

follows:

• Simplicity favors regularity

• Make the common case fast

• Smaller is faster

• Good design demands good compromises

Let’s look at the following instructions for the addition:

High-level Code MIPS assembly code
a = b + c add a, b, c

92

where add is a mnemonic which indicates operation to perform. b and c are source operands on which

the operation is performed. a is a destination operation to which the result is written.

The next instructions show the subtractions in High-Level Code and MIPS assembly code.

High-level Code MIPS assembly code
a = b - c sub a, b, c

The subtraction is similar to addition, only mnemonic changes.

As shown in the above instructions, MIPS assembly code shows consistent instruction format, has the

same number of operands (two source operands and one destination operand), and is easy to encode

and handle in hardware. This is the first design principle: Simplicity favors regularity.

More complex code is handled by multiple MIPS instructions. For example, the following High-Level

Code can be interpreted into multiple MIPS instructions, as follows:

High-level Code MIPS assembly code
a = b + c - d add t, b, c # t = b + c

sub a, t, d # a = t - d

MIPS assembly code includes only simple, commonly used instructions. With this feature, hardware to

decode and execute instructions can be simple, small, and fast. More complex instructions (that are less

common) are performed using multiple simple instructions. This is the second design principle: Make

the common case fast.

Operands

An instruction operates on operands. The instructions need a physical location from which to retrieve

the binary data. Operand can be stored in the following locations:

• Registers that is located in CPU. The instruction in registers can be accessed quickly.

• Memory is located outside of CPU in the computer. It provides large capacity but operate slowly.

• Constant (also called immediate) expressions indicate inline values of the instruction.

93

Fig. 9-1. CPU Organization

As shown in the above figure, CPU is organized with Program Counter (PC), Instruction Register (IR),

Instruction Decoder, Control Unit, Arithmetic Logic Unit (ALU), general registers, and buses. MIPS has 32

32-bit general registers, which is called the register set or register file. The fewer the registers, the faster

they can be accessed. This is related to the third design principle: Smaller is faster. In terms of volume,

the registers are much smaller than memory, and located within CPU. That’s why the registers are faster

than memory. MIPS is also called “32-bit architecture” because it operates on 32-bit data.

The operands are positioned on registers. Typically, the register comes with the symbol $ before their

name. For example, we read the symbol $0 in “register zero”, “dollar zero”. The registers are used for

specific purposes. The register $0 always holds the constant value 0. The saved registers, $s0 - $s7,

are used to hold variables. The temporary registers, $t0 - $t9, are used to hold intermediate values

during a larger computation process. The following table show the register usage in MIPS assembly

system.

Table 9-1. Register Usage

Register number Register name Usage

0 zero Always zero

1 $at Reserved for the assembler

2 – 3 $v0 - $v1 Function return value

4 – 7 $a0 - $a3 The first four parameters passed to a procedure. (Function arguments)

8 – 15 $t0 - $t7 Temporary variables. Can be overwritten by callee

16 - 23 $s0 - $s7 Saved variables. Must be saved/restored by callee

24 - 25 $t8 - $t9 Temporary variables. Can be overwritten by callee

26 - 27 $k0 - $k1 Reserved for kernel usage (operating system)

28 $gp Global pointer for static data (pointer to global area)

29 $sp Stack pointer

30 $fp Frame pointer

31 $ra Function return address

Now, we can interpret the instructions with registers. The following High-Level codes can be converted

to MIPS assembly codes with designated register names:

94

Example 1)

High-Level code MIPS assembly code
a = b + c; # $s0=a, $s1=b, $s2=c

add $s0, $s1, $s2

Example 2)

High-Level code MIPS assembly code
a = b + c - d; # $s0=a, $s1=b, $s2=c, $s3=d

sub $t0, $s2, $s3 // t = c - d

add $s0, $s1, $t0 // a = b + t

Word-addressable Memory

When we execute instructions, there are too much data to fit in only 32 registers. The memory has a lot

of capacities to store data. The register file is small and fast, whereas memory is large and slow, because

the memory is located outside the CPU. Only commonly used variables are kept in registers. The rest of

them are kept in memory for a future processing. As shown in the below, each 32-bit data word has a

unique 32-bit address. This is called word-addressable memory. Both the 32-bit word address and the

32-bit data value are written in hexadecimal.

Fig. 9-2. Word-addressable Memory

Exercises

Translate the following high-level code into assembly language. Assume variables a – c are held in

registers $s0 - $s2 and f – j are in $s3-$s7.

a = b – c;

f = (g + h) – (i + j);

95

Answer)

MIPS assembly code

$s0=a, $s1=b, $s2=c, $s3=f, $s4=g, $s5=h, $s6=i, $s7=j

 sub $s0, $s1, $s2 # a = b – c

 add $t0, $s4, $s5 # $t0 = g + h

 add $t1, $s6, $s7 # $t1 = i + j

 sub $s3, $t0, $t1 # f = (g + h) – (i + j)

9.2. Machine Languages

Assembly language is convenient for humans to read. However, digital circuits understand only 1’s and

0’s. Therefore, a program written in assembly language is translated from mnemonics to a

representation using only 1’s and 0’s called machine language. The small number of formats allows

some regularity among all the types, and thus simpler hardware, while it can also accommodate

different instructions needs.

MIPS Assembly language uses 32-bit instructions that makes the compromise of defining three

instruction formats: R-type, I-type, and J-type. This is the fourth design principle: Good design demands

good compromises. In MIPS assembly language, multiple instruction formats allow flexibility. For

example, add and sub use 3 register operands, whereas lw and sw use 2 register operands and a

constant. The number of instruction formats kept small to adhere to design principles 1 and 3.

R-type Instruction Format

The name R-type is short for register-type. The following figure shows the R-type instruction fields.

Fig. 9-3. R-type Instruction fields

• opcode: operation code (zero value for all R-type)

• rs: first source register number

• rt: second source register number

• rd: destination register number

• shamt: shift amount (00000 for now)

• function: function code (extends opcode)

96

Now, let’s look at how the computer can interpret a MIPS instruction, add $s0, $s1, $s2, into a

machine language. In the R-type instruction, the operation code field is all zero. The function field

extends the operation code value that define the add mnemonic in the function field. The rs and rt

fields are filled with the two source operands, $s1 and $s2. The rd field is filled with the destination

operand $s0. For the add mnemonic, the shift amount is unused for now. This field is filled with all 0’s,

as shown below.

Fig. 9-4. R-type Instruction field with add $s0, $s1, $s2

Each instruction set architecture has its own function definition in the following table.

Table 9-2. References for Operation code and Function field

The register number for the register usage is defined in Table 9-1. We can define the register numbers,

such as the decimal value 17 for $s1, the decimal value 18 for $s2, and the decimal value 16 for $s0.

The R-type instruction field of the add instruction is filled with all those decimal values, as shown

below:

Fig. 9-5. R-type Instruction field with Decimal Representation

The decimal representation is expressed with the binary number representation, i.e. machine code as

shown below:

97

Fig. 9-6. R-type Instruction field with Binary Number Representation

We can express this binary number in the hexadecimal representation: 0232802016.

Let’s look at another example with the sub instruction, sub $t0, $t3, $t5, and interpret it into a

machine language. Since the sub instruction is one of R-type instructions as shown in Table 9-2, the

operation code field is all zero. The function field extends the operation code value that define the sub

mnemonic in the function field. The rs and rt fields are filled with the two source operands, $t3 and

$t5. The rd field is filled with the destination operand $t0. For the sub mnemonic, the shift amount is

unused. This field is filled with all 0’s, as shown below.

Fig. 9-7. R-type Instruction field with sub $t0, $t3, $t5

As shown with the register number in Table 9-1. We can define the register numbers, such as the

decimal value 11 for $t3, the decimal value 13 for $t5, and the decimal value 8 for $t0. The R-type

instruction field of the sub instruction is filled with all those decimal values, as shown below:

Fig. 9-8. R-type Instruction field with Decimal Representation

The decimal representation is expressed with the binary number representation, i.e. machine code as

shown below:

Fig. 9-9. R-type Instruction field with Binary Number Representation

We can express this binary number in the hexadecimal representation: 016D402216.

I-type Instruction Format

Although multiple formats complicate the hardware, we can reduce the complexity by keeping the

formats similar. Any instruction that comes with a constant (off) value or memory address can be

accommodated with the I-type instruction format. That means the I-type instruction format can be used

for the load/store word instruction and the immediate arithmetic instructions which include a constant

value. The following figure shows the I-type instruction fields.

98

Fig. 9-10. I-type Instruction Fields

• The first three fields, op, rs, and rt, are like those of R-type instructions.

• rs and imm are always used as source operands.

• rt is used as a destination (addi and lw) or another source (sw)

• Constant (imm): −215 to 215−1

• Address: offset added to base address in rs

Now, let’s look at how the computer can interpret the following I-type instructions into machine

languages.

• Assembly Code

addi rt, rs, imm → addi $s0, $s1, 5

addi rt, rs, imm → addi $t0, $s3, -12

lw rt, imm(rs) → lw $t2, 32($0)

sw rt, imm(rs) → sw $s1, 4($t1)

The addi is a I-type instruction, where rt is used for the destination register address, rs is the base

address, and imm is the 16-bit immediate value. The opcode field of the addi is the decimal value 8

(00100) defined in Table 9-2. Both the load word (lw) and the store word (sw) instructions are I-type

instructions. The data positioned in the memory can be loaded to the (destination) register with the load

word (lw) instruction.

The opcode field of the lw instruction is the decimal value 35. For the lw instruction, the memory

address is calculated with the sum of the base register address and the offset value. In the above

example, the base register address is $0 and the offset value is 32. The calculated memory address is

32. After finding the data that is located in the memory (memory address: 32), the data is loaded into

the destination register address ($t2).

The opcode field of the sw instruction is the decimal value 43. The data positioned in the register file

can be stored to the memory with the store word (sw) instruction. For the sw instruction, the memory

address is calculated in the same way to the lw instruction. In the above example, the base register

address $t1 is and the offset value is 4. The memory address is the sum of the value in $t1 and the

offset value, $t1 + 4. The value located in the register $s1 is stored in the memory address $t1 +

4.

The following figure shows the field values of the above examples:

99

Fig. 9-11. I-type Instruction fields with Decimal Representation

The decimal representations are expressed with binary number representations, i.e. machine code, as

shown below:

Fig. 9-12. I-type Instruction field with Binary Number Representation

J-type Instructions

The J-type instruction is used to jump the target of the address. The following figure shows the J-type

instruction field.

Fig. 9-13. J-type Instruction Fields

Jump instruction uses word address and updates PC with concatenation of the following values (total of

32 bits):

• Top 4 bits of old PC (4 bits)

• 26-bit jump address (26 bits)

• 00 (2 bits)

The following example codes show how the Jump instruction is used in the assembly code.

 addi $s0, $0, 4 # $s0 = 4

100

 addi $s1, $0, 1 # $s1 = 1

 j target # jump to target

 addi $s1, $s1, 1 # not executed

 sub $s1, $s1, $s0 # not executed

target:

 add $s1, $s1, $s0 # $s1 = 1 + 4 = 5

The first two addi instructions execute the immediate arithmetic operations, where the destination

register address $s0 holds the sum of $0 and 4 ($s0=4), and the destination register address $s1

holds the sum of $0 and 1 ($s1=1). The jump instruction jumps the target of the address and then

executes the last add instruction. The destination register address $s1 holds the sum of two register

values 1 and 4.

Instruction Fetch and PC

Program Counter (PC) is a 32-bit register which holds the address of the next instruction to be fetched

from the memory. PC value is increased by 4 for the next instruction, as shown in the following figure.

The instruction memory fetches the instruction from the memory, and forward the instruction to the

next step.

Fig. 9-14. Instruction Fetch and PC Increment

Exercises

1) Translate the following assembly language into machine language.

add $t0, $s4, $s5 // $t0->8, $s4->20, $s5->21

Answer)

101

• Decimal representation (field values):

• Binary number representation (Machine Code):

000000101001010101000000001000002 = 0295402016

2) Translate the following I-type instruction into machine code.
 // lw opcode value: 35

lw $s3, -24($s4) // $s3 and $s4 are #19 and #20.

Answer)

• Decimal representation (field values):

• Binary number representation (Machine Code):

100011101001001111111111111010002 = 8E93FFE816

3) Convert the following machine language into MIPS assembly language.
0x01094020

Answer)

0000 0001 0000 1001 0100 0000 0010 0000 (32 bits)

0000 0001 0000 1001 0100 0000 0010 0000

 0 8 9 8 0 32

 Opcode src src dst shmt func

 add $t0 $t0 $t1

102

Chapter 10: Assembly

In this chapter, we introduce the assembly language which is the human-readable representation of the

computer's native language. We also introduce simple arithmetic instructions and show how these

operations are written in Assembly language. We then define the MIPS instruction operands: registers,

memory, and constants.

Objectives

By the end of this chapter you should be able to:

• Demonstrate knowledge of word-addressable and memory

• Differentiate word-addressable and byte-addressable memories

• Summarize features of the stored program

• Recall different types of machine code

• Demonstrate knowledge of logic operations

• Carry out conditional operations with arithmetic instructions

10.1. Assembly Languages

Read Word-Addressable Memory

An instruction operates on operands. In MIPS assembly architecture, there are only 32 registers which

are not good enough to hold all the data. We can store more data in memory. The register file is small

and fast, whereas memory is large and slow. The instructions are stored in memory. Only commonly

used variables are kept in registers.

When we store the data in memory, each 32-bit data word has a unique address, as shown below:

Fig. 10-1. Word-Addressable Memory

103

We can read the data in memory and load it to one register using the load word (lw) instruction, as

indicated with the red arrow in the above figure.

The following instruction exemplifies the format of the lw instruction.

• lw $s0, 5(t1)

where $s0 is the register address that will hold the data after loading the data from memory. The

memory address is calculated by adding the base address ($t1) to the offset value (5), i.e. $t1 + 5.

After executing the lw instruction, the register address $s0 holds the value at the memory address

$t1 + 5. Any register can be used as the base address.

Let’s read a word of data at the memory address 1 into the register address $s3. If the $0 is used for

the base address, the memory address is calculated by adding the zero value ($0) to the offset (1), as

shown below:

• lw $s3, 1($0) # read memory word 1 into $s3

As a result of this instruction, the register address $s3 holds the data 0xF2F1AC07 as shown in the

figure below:

Fig. 10-2. Load data from Memory to Register with lw instruction

The above figure shows the register address $s3 holds the word of data at the memory address 1 after

executing the instruction lw $s3, 1($0).

Write Word-Addressable Memory

We can store the data located at a register into memory with the store word (sw) instruction.

The following instruction exemplifies the format of the sw instruction.

• sw $t4, 0x7($0)

where $t4 is the register address. We can store the data located at the register address $t4 into the

memory, where the memory address is calculated by adding the base address ($0) to the offset value

(7), i.e. $0 + 7.

104

Let’s store the value of the register address $t4 into the memory address 7. If the $0 is used for the

base address, the memory address is calculated by add the zero value ($0) to the offset (7), as shown

below:

• sw $t4, 0x7($0) # write the value of $t4 into memory word 7

where the offset can be written in decimal (default) or hexadecimal. As a result of this instruction, the

memory address 7 holds the value 0x6A049C04 of the register address $t4, as shown below:

Fig. 10-3. Store the value of Register into Memory with sw instruction

Byte-Addressable Memory

Each data byte has unique address. We can load/store words or single bytes with load byte (lb) and

store byte (sb). Since we are using 32-bit word that is 4 bytes, the word address is increased by 4. That

means the address of a memory word must now be multiplied by 4. For example, the address of

memory word 2 is 2 4 = 8 and the address of memory word 10 is 10 4 = 40 (0x28). Keep in mind

that MIPS is byte-addressed, not word-addressed.

Power of the Stored Program

Both 32-bit instructions and data are stored in memory. The only difference between two applications is

the sequence of instructions. We do not require large amounts of time and effort to reconfigure or

rewire hardware to run a new program. We only require writing the new program to memory. When

executing program, the processor fetches (reads) instructions from memory to instruction register in

sequence and performs the specific operation. Even large and complex programs are simplified to a

series of memory reads and instruction executions.

For example, the assembly code and the corresponding machine code are given as below:

Assembly Code Machine Code
lw $t2, 32($0)

add $s0, $s1, $s2

addi $t0, $s3, -12

sub $t0, $t3, $t5

0x8C0A0020

0x02328020

0x2268FFF4

0x016D4022

105

 The whole machine codes are stored in memory, as shown in Fig. 10-4. In this example, the first

instruction is stored at the memory address 0x00400000. The next instruction is stored at the

memory address 0x00400004, etc. Note that the memory address is increased by 4 because it is a

byte address (4 8 = 32). The program counter in the processor keeps track of current instruction. Each

instruction is executed in sequence.

Fig. 10-4. Stored Program

The processor starts to interpreting machine code. The first six bits (opcode) tell how parse the rest of

them. If opcode is all 0’s, the function field tells the arithmetic/logic operation; otherwise it tells

operation.

Exercises

1) The data values in the memory address are drawn below. MIPS Assembly code is given as follows:

lw $s0, 0($0)

lw $s1, 8($0)

lw $s2, 0xC($0)

What are the register values in $s0, $s1, and $s2?

Fig. 10-5. Data Values in Memory Address

Answer)

106

lw $s0, 0($0) # read data word 0(0xABCDEF78) into $s0

lw $s1, 8($0) # read data word 2(0x01EE2842) into $s1

lw $s2, 0xC($0) # read data word 3(0x40F30788) into $s2

2) Translate the following machine language code into assembly language.
0x2237FFF1

Answer) the machine language code 0x2237FFF1 is expanded into as below:

 2 2 3 7 F F F 1 (hexadecimal)

0010 0010 0011 0111 1111 1111 1111 0001 (binary, 32 bits)

0010 0010 0011 0111 1111 1111 1111 0001

 8 17 23 -15

Opcode rs rt imm

The corresponding assembly code: addi $s7, $s1, -15.

3) What is the assembly language statement corresponding to this machine instruction?
0x00AF8020

Answer)

Convert hexadecimal to binary

0 0 A F 8 0 2 0

0000 0000 1010 1111 1000 0000 0010 0000

Referring to the Table 9-2.

 op rs rt rd shamt funct

000000 00101 01111 10000 00000 100000

→ add $s0, $a1, $t7

107

10.2. Logic Operations

MIPS instructions execute bitwise manipulation as shown below:

Table 10-1. Instructions for Bitwise Manipulation

Logic operations C operators Java operators MIPS instruction

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

The instructions in the above table are useful for extracting and inserting groups of bits in a word.

Shift Operations

The shift operation is a R-type instruction and the field value is shown below:

Fig. 10-6. The field Value of Shift Operations

where the field shamt tells how many positions to shift.

There are two logic shifts, i.e., the shift left logic (sll) and the shift right logic (srl). The sll shifts the

bits left and fills the empty bits with 0 bits. sll by i bits is equivalent to multiply by 2i. The srl shifts

the bits right and fills the empty bits with 0 bits. srl by i bits is equivalent to divide by 2i (unsigned

only).

Let’s look at how the shift operations work with some example. The MIPS assembly codes and field

values are shown below:

Fig. 10-7. Examples of Shift Operation

The source register address $s1 has the following field value:

108

After executing the above MIPS assembly code, the target register addresses $t0 and $s0 have the

following field values:

AND Operations

AND operation is useful to mask bits in a word. When executing AND operation, some bits are selected if

both bits are TRUE; otherwise, it clears others to 0.

For example, let’s execute AND operation of the values located in the register addresses $t1 and $t2,

and store the result in the register address $t0:

• and $t0, $t1, $t2

Only the selected bits are set to TRUE (1’s), whereas the other bits are set to all FALSE (0’s), as shown

below:

Fig. 10-8. Examples of AND Operation

OR Operations

OR operation is useful to include bits in a word. When executing OR operation, it sets some bits to TRUE

(1’s) and leaves others unchanged.

For example, let’s execute OR operation of the values located in the register addresses $t1 and $t2,

and store the result in the register address $t0:

• or $t0, $t1, $t2

As shown below, some bits are set to TRUE highlighted in blue. The other bits are unchanged.

Fig. 10-9. Examples of OR Operation

109

NOT Operations

NOT operation is useful to invert bits in a word. That means it change 0 bit to 1 bit, and 1 bit to 0 bit.

MIPS has a NOR 3-operand instruction that has the same function as the NOT instruction.

• a NOR b == NOT (a OR b)

we can invert bits in a word using NOR 3-operand instruction, as shown below:

• nor $t0, $t1, $zero

Since the register 0 always holds zero value, the NOR 3-operand instruction can execute the above

instruction and return the result of NOT operation as shown below:

Fig. 10-10. Examples of NOT Operation

Exercises

1) The source register addresses $s1 and $s2 are given below:

We would like to execute the following MIPS assembly code:

AND $s3, $s1, $s2

OR $s4, $s1, $s2

NOR $s5, $s1, $s2

XOR $s6, $s1, $s2

What field values do the target register addresses, i.e., $s3, $s4, $s5, and $s6, hold?

110

10.3. Conditional Operation

The conditional operations are used to branch to a labeled instruction if a condition is true. If the

condition is false, the instructions are executed sequentially.

The following instructions show the conditional operations:

• beq rs, rt, L1

The branch on equal (beq) tests the equality of the condition. It branches to the instruction labeled L1

if the condition (rs == rt) is true.

• bne rs, rt, L1

The branch on not equal (bne) tests the inequality of the condition. It branches to the instruction

labeled L1 if the condition (rs != rt) is true.

• j L1

In the jump (j), it jumps to the instruction labeled L1 unconditionally.

Let’s look at an example how the conditional branch instruction beq is used with the following MIPS

assembly code:

 addi $s0, $0, 4 # $s0 = 0 + 4 = 4

 addi $s1, $0, 1 # $s1 = 0 + 1 = 1

 sll $s1, $s1, 2 # $s1 = 1 << 2 = 4

 beq $s0, $s1, target # $s0 == $s1, so branch is taken

 addi $s1, $s1, 1 # not executed

 sub $s1, $s1, $s0 # not executed

Target:

 add $s1, $s1, $s0 # $s1 = 4 + 4 = 8
Fig. 10-11. Examples of conditional instruction beq

The first two instructions set the values of the register addresses, $s0 to 4 and $s1 to 1. The value of

the register address $s1 is multiplied by 4 (=22) using the instruction sll. Since the equality of the

conditional instruction beq is true, the branch is taken. Two instructions, addi and sub, are not

executed. The value of the source register $s1 is set to 8.

Let’s look at the following example how the conditional branch bne is used with MIPS assembly codes:

 addi $s0, $0, 4 # $s0 = 0 + 4 = 4

 addi $s1, $0, 1 # $s1 = 0 + 1 = 1

 sll $s1, $s1, 2 # $s1 = 1 << 2 = 4

 bne $s0, $s1, target # $s0 == $s1, so branch is not taken

 addi $s1, $s1, 1 # $s1 = 4 + 1 = 5

 sub $s1, $s1, $s0 # $s1 = 5 – 4 = 1

target:

 add $s1, $s1, $s0 # $s1 = 1 + 4 = 5
Fig. 10-12. Examples of conditional instruction bne

111

The first three instructions (two addi and an sll) set the values of the register addresses, $s0 to 4

and $s1 to 4. Since the inequality of the conditional instruction bne is false, the branch is not taken.

Two instructions, addi and sub, are executed. The value of the source register address $s1 is set to 5

in this case.

Let’s look at an example how the unconditional branch j is used with the following MIPS assembly

codes:

 addi $s0, $0, 4 # $s0 = 4

 addi $s1, $0, 1 # $s1 = 1

 j target # jump to target

 addi $s1, $s1, 1 # not executed

 sub $s1, $s1, $s0 # not executed

target:

 add $s1, $s1, $s0 # $s1 = 1 + 4 = 5
Fig. 10-13. Examples of unconditional branch j

The first two instructions set the values of the register addresses, $s0 to 4 and $s1 to 1. The

unconditional branch j jumps to the target of the instruction. Two instructions, addi and sub, are not

executed in this case. The value of the source register address $s1 is set to 5 with the last instruction.

The unconditional branch, Jump register (jr) is used to jump to the address held in a register. The

following MIPS assembly code includes the unique address:

0x00002000 addi $s0, $0, 0x2010 # $s0 = 0x2010

0x00002004 jr $s0 # jump to 0x00002010

0x00002008 addi $s1, $0,1 # not executed

0x0000200c sra $s1, $s1, 2 # not executed

0x00002010 lw $s3, 44($s1) # executed after jr
Fig. 10-14. Examples of unconditional branch jr

The fist instruction sets the value of the register address $s0 to 0x2010. The second instruction, Jump

register (jr) jumps to the address 0x00002010 that was held in the register $s0.

Conditional Statements

There are conditional statements commonly used in high-level languages, as shown below:

• if statements

• if/else statements

• while loops

• for loops

Let’s look at how those conditional statements are translated into MIPS assembly code.

112

if statements

The high-level code with if statement is shown below:

if (i == j)

 f = g + h;

f = f – i;

If the condition is true, the code executes the add operation, followed by the subtract operation. If the

condition is false, it won’t execute the add operation. It only executes the subtract operation. Since all

the instruction is executed in sequence, the if conditional statement is translated into the MIPS

assembly code with bne instruction.

$s0 = f, $s1 = g, $s2 = h

$s3 = i, $s4 = j

 bne $s3, $s4, L1 # if i j
 add $$s0, $s1, $s2 # f = g + h

L1:

 sub $s0, $s0, $s3 # f = f - i

The conditional branch bne is taken if the register value $s3 is not equal to $s4, and then jumps to the

target of the instruction sub. If the two register values are same, the conditional branch bne is not

taken. Both add and sub instructions are executed.

if/else statements

The high-level code with if/else statement is shown below:

if (i == j)

 f = g + h;

else

 f = f – i;

If the condition is true, the code executes the add operation; otherwise it executes the subtract

operation. That means it executes either add or sub operation. This conditional statement is translated

into MIPS assembly code with both bne and j instructions.

$s0 = f, $s1 = g, $s2 = h

$s3 = i, $s4 = j

 bne $s3, $s4, else # if i j
 add $$s0, $s1, $s2 # f = g + h

 j done # skip else

else:

 sub $s0, $s0, $s3 # f = f - i

done:

113

The conditional branch bne is taken if the register value $s3 is not equal to $s4, and then jumps to the

target of the instruction line else. After executing the instruction sub, the program is terminated.

If the two register values are same, the conditional branch bne is not taken. It executes the next

instruction add in sequence, followed by the unconditional branch j that jumps to the end of this

program.

while loops

The high-level code with while loop is shown below:

int pow = 1;

int x = 0;

while(pow != 128)

{

 pow = pow * 2;

 x = x + 1;

}

If the condition of the while statement is true, the code executes all the instructions within the curly

bracket {}; otherwise it terminate the program. This statement is translated into MIPS assembly code

with both beq and j instructions.

$s0 = pow, $s1 = x

 addi $s0, $0, 1 # pow = 1

 addi $s1, $0, 0 # x = 0

 addi $t0, $0, 128 # $t0 = 128

while: # comparison

 beq $s0, $t0, done # if pow=128

 sll $s0, $s0, 1 # pow=pow*2

 addi $s1, $s1, 1 # x = x + 1

 j while

done:

The conditional branch beq is taken if the register value $s0 is equal to $t0, and then jumps to the

target of the instruction line done. If the register value $s0 is not equal to $t0, the branch is not

taken and it executes the next instructions in sequence, followed by the unconditional branch j that

jumps to the target of the instruction while of this program.

for loops

The high-level code with for loop is shown below:

int sum = 0;

114

for(i=0;i!=10;i=i+1)

{

 sum = sum + i;

}

The integer variable sum is initialized with 0. In the for loop, there are three instructions, as shown

below:

1) index i initialized with 0; i = 0;

2) the condition of for loop; i != 10;

3) increment/decrement of the index i; i = i + 1

After initializing the index i, the statement checks the condition. If the condition is true, it executes all

the instructions within the curly bracket { }. After increasing the value of the index i by 1, the statement

checks the condition again. If the condition is false, it terminates the program. If the condition is true, it

repeats all the previous steps until the condition becomes false. This statement is translated into MIPS

assembly code with both beq and j instructions.

$s0 = i, $s1 = sum

 addi $s1, $0, 0 # sum = 0

 addi $s0, $0, 0 # i = 0

 addi $t0, $0, 10 # $t0 = 10

for:

 beq $s0, $t0, done # if i == 10

 add $s1, $s1, $s0 # sum=sum+i

 addi $s0, $s0, 1 # i = i + 1

 j for

done:

The first three instructions initialize the register values, i.e., $s0, $s1 and $t0. If the register value

$s0 is equal to $t0, the conditional branch beq is taken, and then jumps to the target of the

instruction line done. If the register value $s0 is not equal to $t0, the branch is not taken and then it

executes the next instructions, i.e., add and addi instructions in sequence. The add instruction

updates the register value $s1 that is equivalent to the integer variable sum. The addi instruction

increases the value of the index i by 1. The unconditional branch j jumps to the target of the

instruction line for of this program.

Loops using slt

The high-level code with for loop is shown below:

int sum = 0;

for(i=1;i<101;i=i*2)

{

 sum = sum + i;

115

}

The integer variable sum is initialized with 0. In the for loop, there are three instructions, as shown

below:

1) index i initialized with 1; i = 1;

2) the condition of for loop; i < 101;

3) increment/decrement of the index i; i = i * 2

After initializing the index i, the statement checks the condition. If the condition is true, it executes all

the instructions within the curly bracket { }. After multiplying the value of the index i with 2, the

statement checks the condition again. If the condition is false, it terminates the program. If the

condition is true (the value of the index i is less than 101), it repeats all the previous steps until the

condition becomes false. Since there is the less than condition in the loop, this statement is translated

into MIPS assembly code with slt, beq, and j instructions, where the set less than (slt) instruction

sets the destination register value to 1 if the first register operand is less than the second register

operand.

$s0 = i, $s1 = sum

 addi $s1, $0, 0 # sum = 0

 addi $s0, $0, 1 # i = 1

 addi $t0, $0, 101 # $t0 = 101

loop:

if (i < 101) $t1=1, else $t1 = 0

 slt $t1, $s0, $t0

 beq $t1, $0, done # if $t1=0

 add $s1, $s1, $s0 # sum = sum + i

 sll $s0, $s0, 1 # i = i * 2

 j loop

done:

After initializing the register values, there comes the instruction line loop. In the slt instruction, the

register value $s0 is compared with the register value $t0. If $s0 is less than $t0, it sets the value of

the register $t1 to 1; otherwise sets to 0. The beq instruction compares the register value $t1 with

$0. If the register value $t1 is 1 ($s0 < $t0), the branch is not taken and it executes the next

instructions in sequence and updates the variables sum and i, followed by the unconditional branch j

that jumps to the target of the instruction loop of this program. If the register value $t1 is 0 ($s0 =>

$t0), the branch is taken and it terminates the program.

116

Chapter 11: Pipeline

In this chapter, we introduce microarchitecture, which is the connection between logic and architecture.

Microarchitecture is the specific arrangement of registers, ALUs, finite state machines, memories, and

other logic building blocks needed to implement an architecture. We also define instruction pipelining,

hazards, pipelined datapath, and pipelined control.

Objectives

By the end of this chapter you should be able to:

• Identify five stages in MIPS pipeline

• Recognize structure hazards, data hazard, and control hazard

• Demonstrate knowledge of pipelined datapath

• Clarify pipeline usage in a single-clock cycle

• Clarify pipeline operation in multi-cycle pipeline diagram

11.1. Instruction Pipelining

R-Type Instruction

The instruction is fetched from memory, and the PC is incremented by 4 in the instruction fetch (IF)

stage, as shown in Fig. 11-1. The fetched instruction is used by other parts of the datapath. Program

Counter (PC) always holds the next memory address to be fetched, where PC is a byte address, not bit

address. PC value is updated by adding 4 to the previous PC value.

Fig. 11-1. Instruction Fetch Stage of R-Type Instruction

117

Fig. 11-2 shows the instruction decode (ID) stage of R-Type Instruction. The two elements needed to

implement R-format ALU operations are the register file and the ALU. The register file contains all the

registers and has two read ports and one write port. The register file always outputs the contents of the

registers corresponding to the Read register inputs on the outputs; no other control inputs are needed.

The inputs (RS and RT) carrying the register number to the register file are all 5-bit wide, whereas the

lines carrying data values are 32-bit wide. The operation to be performed by the ALU is controlled with

the ALU operation signal, which will be 4-bit wide.

Fig. 11-2. Instruction Decode Stage of R-Type Instruction

The arithmetic operations are executed in the execute (EX) stage, as shown in Fig. 11-3. Two 32-bit wide

inputs from register files are fed into ALU to execute logic operations.

Fig. 11-3. Execute Stage of R-Type Instruction

There is nothing happening in memory access stage in R-type instruction.

118

In the write back (WB) stage of Fig. 11-4, the result from the ALU is written into the register file using

bits 15:11 of the instruction to select the destination register.

Fig. 11-4. Write Back Stage of R-Type Instruction

Load Instruction

In load instruction of Fig. 11-5, the instruction is fetched from memory, and PC value is increased by 4,

which is the same as R-type instruction.

Fig. 11-5. Instruction Fetch Stage of Load Instruction

The fetched instruction is used by other parts of the datapath. Program Counter (PC) always holds the

next memory address to be fetched, where PC is a byte address, not bit address. PC value is updated by

adding 4 to the previous PC value.

119

Fig. 11-6 shows the ID stage of Load instruction. In this stage the instruction field value [25 – 21] is fed

into the register files and produces Read data 1 (32 bits), whereas the instruction field value [15 – 0] is

fed into sign-extend function and produces a 32-bit constant/address value.

Fig. 11-6. Instruction Decode Stage of Load Instruction

The memory address is calculated with two 32-bit values in the execute stage of Fig. 11-7.

Fig. 11-7. Execute Stage of Load Instruction

120

Fig. 11-8. Memory Access Stage of Load Instruction

Fig. 11-8 shows the memory access stage of Load instruction. In this stage, the control bit for MemWrite

is set to 1. Data memory contents designated by the address input are replaced by the value on the

Write data input.

As shown in the following figure, the control bit for MemtoReg is set to 1 in the write back stage. The

value fed to the register Write data input comes from the data memory.

Fig. 11-9. Write Back Stage of Load Instruction

Performance Issues

Historically early computers with very simple instruction sets did use this implementation technique.

Pipelining improves efficiency by executing multiple instruction simultaneously.

121

The longest delay determines clock period in the pipeline. In the MIPS instruction sets, the load

instruction is the critical path because it includes the following stage:

• Instruction memory (IF) → register file (ID) → ALU (EX) → data memory (MEM) → register file

(WB)

It is not feasible to vary period for different instructions, because that violates design principle, making

the common case fast. We can improve performance by pipelining, meaning that each instruction is

executed in a different stage simultaneously in the processor.

With pipeline, we can overlap the execution. It is the similar concept to improve the performance with

parallelism. The laundry analogy exemplified this parallelism. Ann, Brian, Cathy, and Don each have

dirty clothes to be washed, dried, folded, and put away. Assume there are total four laundries and four

steps for each laundry, i.e. washer, dryer, folding clothes, and clothes closet. Each step needed 30

minutes to complete. A sequential laundry takes 8 hours for 4 loads of wash, i.e. 4 loads 2 hours,

whereas a pipelined laundry takes just 3.5 hours, i.e. 1.5 hours + 30 minutes 4).

MIPS pipeline has five stages, one step per stage:

• IF: Instruction fetch from memory

• ID: Instruction decode & register read

• EX: Execute operation or calculate address

• MEM: Access memory operand

• WB: Write result back to register

Let’s assume that the time for stages is as follows:

• 100 ps for register read or write

• 200 ps for other stages

In the following table, we can compare the total time of the pipelined datapath with a single-cycle

datapath:

Table 11-1. Pipelined DataPath

Instruction
Instruction

fetch
Register

read
ALU op

Memory
access

Register
Write

Total
Time

lw 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

sw 200 ps 100 ps 200 ps 200 ps

700 ps

R-format 200 ps 100 ps 200 ps

100 ps 600 ps

beg 200 ps 100 ps 200 ps

500 ps

122

The load instruction includes all the pipeline stage so that the total time of the pipelined datapath is 800

ps, whereas the R-type instruction has a total time of 700 ps because it doesn’t include the memory

access stage.

Fig. 11-10. Nonpipelined Execution of Three Load Word Instruction

Fig. 11-11. Pipelined Execution of Three Load Word Instruction

Figs. 11-10 and 11-11 compare nonpipelined and pipelined execution of three load word instructions. In

the nonpipelined execution, a single-cycle is 800ps, thus the total time to execute three load instructions

is 3 × 800 ps or 2400 ps in the nonpipelined design. On the other hand, in the pipelined execution, a

clock cycle is 200 ps, and the pipelined execution clock cycle must have the worst-case clock cycle of 200

ps, even though some stages take only 100 ps. The total time to execute three load instructions is 200 ps

 5 + 200 ps 2 or 1400 ps. Notice that the pipelined execution time (1400 ps) is faster than the

nonpipelined execution time (2400 ls).

What would happen if we added 1,000,000 instructions in the pipelined and non-pipelined process in

the above examples?

For the pipelined process, each instruction adds 200 ps to the total execution time. The total time will be

as follows:

• 1,000,000 × 200 ps + 1400 ps = 200,001,400 ps

For the nonpipelined process, each instruction adds 800 ps to the total execution time. The total time

will be as follows:

• 1,000,000 × 800 ps + 2400 ps = 800,002,400 ps

The ratio of total execution times for real programs on nonpipelined to pipelined processors will be like

800,002,400 𝑝𝑠

200,002,400 𝑝𝑠
≅

800 𝑝𝑠

200 𝑝𝑠
= 4.00

If all stages are balanced, i.e., all stage take the same time, the total time of the pipelined process can be

faster (number of stages) than the total time of the nonpipelined process. If all stages are not

123

balanced, speedup is less. Note that this speedup is due to the increased throughput. The time for each

instruction (latency) doesn’t decrease.

Fig. 11-12. MIPS Pipelined Datapath

As shown in the above figure, MIPS Pipelined Datapath has IF (Instruction fetch), ID (Instruction

decode/register file read), EX (Execute/address calculation), MEM (Memory access), and WB (Write

back). Each step of the instruction can be mapped onto the datapath from left to right.

The update of the PC and the write-back step sends either the ALU result or the data from memory to

the left to be written into the register file.

124

11.2. Pipelined Datapath

The pipelined datapath needs registers between stages. The pipeline registers separate each pipeline

stage, as shown in the following figure.

Fig. 11-13. Pipeline Registers

The pipeline registers are labeled by the stages that they separate; for example, the first is labeled IF/ID

because it separates the instruction fetch and instruction decode stages. The registers must be wide

enough to store all the data corresponding to the lines that go through them. For example, the IF/ID

register must be 64 bits wide, because it must hold both the 32-bit instruction fetched from memory

and the incremented 32-bit PC address. The pipeline operates cycle-by-cycle flow of instructions

through the pipelined datapath. The single-clock-cycle pipeline diagram shows pipelined usage in a

single cycle and highlight resources used in the pipeline, whereas the multi-clock-cycle diagram shows

the graph of operation over time.

Let’s look at “single-clock-cycle” diagrams for load and store instructions.

Single-clock-cycle Pipeline Diagram

Fig. 11-14 shows the instruction being read from memory using the address in the PC and then being

placed in the IF/ID pipeline register.

125

Fig. 11-14. Instruction Fetch Stage for Load and Store

The PC address is incremented by 4 and then written back into the PC to be ready for the next clock

cycle. This incremented address is also saved in the IF/ID pipeline register in case it is needed later for an

instruction, such as beq. The computer cannot know which type of instruction is being fetched, so it

must prepare for any instruction, passing potentially needed information down the pipeline.

Fig. 11-15. Instruction Decode Stage for Load and Store

Fig. 11-15 shows the instruction portion of the IF/ID pipeline register supplying the 16-bit immediate

field, which is sign-extended to 32 bits, and the register numbers to read the two registers. All three

values are stored in the ID/EX pipeline register, along with the incremented PC address. We again

transfer everything that might be needed by any instruction during a later clock cycle.

126

Fig. 11-16. Execute Stage for Load

Fig. 11-16 shows that the load instruction reads the contents of register 1 and the sign-extended

immediate from the ID/EX pipeline register and adds them using the ALU. That sum is placed in the

EX/MEM pipeline register.

Fig. 11-17 shows the load instruction reading the data memory using the address from the EX/MEM

pipeline register and loading the data into the MEM/WB pipeline register.

Fig. 11-17. Memory Access Stage for Load

127

Fig. 11-18. Write Back Stage for Load

Fig. 11-18 shows the final step: reading the data from the MEM/WB pipeline register and writing it into

the register file in the middle of the figure. When the processor executes WB stage of Load instruction,

the write register number is not corresponding to the load instruction, because other instructions were

executed for the ID stage.

Fig. 11-19. Corrected Datapath for Load

Fig. 11-19 shows the corrected datapath for Load instruction. The write register number now comes

from the MEM/WB pipeline register along with the data. The register number is passed from the ID pipe

stage until it reaches the MEM/WB pipeline register, adding five more bits to the last three pipeline

registers. This new path is shown in Red color in the following figure:

128

Fig. 11-20. Execute Stage for Store

Fig. 11-20 shows the execute stage of Store instruction. Unlike the third stage of the load instruction,

the second register value is loaded into the EX/MEM pipeline register to be used in the next stage.

Although it wouldn’t hurt to always write this second register into the EX/MEM pipeline register, we

write the second register only on a store instruction to make the pipeline easier to understand.

Fig. 11-21. Memory Access Stage for Store

Fig. 11-21 shows the memory access stage of Store instruction, where the data is written into data

memory for the store. Note that the data comes from the EX/MEM pipeline register and that nothing is

changed in the MEM/WB pipeline register.

Once the data is written in memory, there is nothing left for the store instruction to do, so nothing

happens in the last (WB) stage.

129

Multi-Cycle Pipeline Diagram

Fig. 11-22 shows the multiple-clock-cycle pipeline diagram for five instructions. Time advances from left

to right across the page in these diagrams, and instructions advance from the top to the bottom.

A representation of the pipeline stages is placed in each portion along the instruction axis, occupying the

proper clock cycles. These stylized datapaths represent the five stages of our pipeline graphically. In the

figure, IM represents the instruction memory and PC in the instruction fetch stage and DM represents

data memory.

Fig. 11-22. Multi-Cycle Pipeline Resource Usage

Fig. 11-23 shows the more traditional version of the multiple-clock-cycle pipeline diagram. The previous

figure shows the physical resources used at each stage, while This figure uses the name of each stage.

Fig. 11-23. Multi-Cycle Pipeline Resource Usage

130

Exercises

Assume that individual stages of the datapath have the following latencies:

IF ID EX MEM WB

260 ps 360 ps 170 ps 310 ps 220 ps

1) What is the clock cycle time in a pipelined and non-pipelined processor?

• Pipelined processor: Clock cycle time = 360 ps

• Non-pipelined processor: Clock cycle time = 260 + 360 + 170 + 310 + 220 = 1320 ps

2) What is the total latency of seven LW instructions in a pipelined and non-pipelined processor

(assume no stalls or hazards)

• Pipelined processor: Total latency = 360 × 5 + 360 × 6 = 3960 ps

• Non-pipelined processor: Total latency = 1320 ps × 7= 9240 ps

131

11.3. Pipelined Controls

In the pipeline, there are lots of control signals. Depend on the control signals enabled or disabled, the

components of the pipeline are executed to complete each stage. The following figure shows that what

control signals are used for each stage:

Fig. 11-24. Simplified Pipelined Control

• IF: If PCSrc set to 0, the PC value increased by 4; otherwise, a specific address forwarded from a

branch instruction.

• ID/register file read: the same thing happens at every clock cycle. No optional control lines.

• Execution/address calculation: the signals, i.e. RegDst, ALUOp, and ALUSrc, are set. Note that we

now need the 6-bit funct field (function code) of the instruction in the EX stage as input to ALU

control, so these bits must also be included in the ID/EX pipeline register.

• Memory access: the control lines, i.e. Branch, MemRead, and MemWrite are set.

• Write Back: two control lines, MemtoReg and RegWrite.

The effect of each control signal is summarized in the following table:

132

Table 11-2. Effect of Each Control Signal

Signal name Effect when reasserted Effect when asserted

RegDst The register destination number for the Write
register comes from the rt field (bits 20:16)

The register destination number for the Write register
comes from the rd field (bits 15:11)

RegWrite None The register on the Write input is written with the value
of the Write data input

ALUSrc The second ALU operand comes from the
second register file output (Read data 2)

The second ALU operand is the sign-extended, lower 16
bits of the instruction

PCSrc The PC is replaced by the output of the adder
that computes the value of PC + 4

The PC is replaced by the output of the adder that
computes the branch target

MemRead None Data memory contents designated by the address input
are put on the Read data output

MemWrite None Data memory contents designated by the address input
are replaced by the value on the Write data input

MemtoReg The value fed to the register Write data input
comes from the ALU

The value fed to the register Write date input comes
from the data memory

The control signals are derived from the instruction, as shown in the following figure:

Fig. 11-25. Pipelined Control Signal

Since the control lines start with the EX stage, the control information, i.e. total nine control signals, can

be created during ID stage. Four of the nine control lines are used in the EX stage, with the remaining

five control lines passed on to the EX/MEM pipeline register extended to hold the control lines. Three

are used during the MEM stage, and the last two are passed to MEM/WB pipeline register for use in the

WB stage.

133

Example – Pipeline Control

Let’s look at some example what control signals are created in a given instruction and how these signals

are used for each pipeline stage with the following instructions, where we assume that there are no

hazard illustrations:

lw $10, 20($1)

sub $11, $2, $3

and $12, $4, $5

or $13, $6, $7

add $14, $8, $9

Fig. 11-26. Pipeline Control – Click 1

Fig. 11-26 shows that the LW instruction is fetched in the instruction memory of IF stage. At the end of

the clock cycle, the LW instruction is in the IF/ID pipeline registers. Note that since there is no control

signal created in this stage, all the control signals are set to 0.

134

Fig. 11-27. Pipeline Control – Click 2

Fig. 11-27 shows the second clock cycle, where the LW instruction moves to the ID stage, and sub

instruction enters in the IF stage.

Note that the values of the instruction fields and the selected source registers are shown in the ID stage.

Hence register $1 and the constant 20, the operands of LW, are written into the ID/EX pipeline register.

The number 10, representing the destination register number of LW, is also placed in ID/EX. Bits 15–11

are 0, but we use the symbol X to show that a field plays no role in a given instruction.

135

Fig. 11-28. Pipeline Control – Click 3

LW instruction enters the EX stage in the third clock cycle, adding $1 and 20 to form the address in the

EX/MEM pipeline register.

At the same time, the SUB instruction (sub $11, $2, $3) enters ID stage, reading registers $2 and

$3, and the AND instruction (and $12, $4, $5) starts IF stage.

136

Fig. 11-29. Pipeline Control – Click 4

In the fourth clock cycle, LW instruction moves into MEM stage, reading memory using the value in

EX/MEM as the address.

In the same clock cycle, the ALU subtracts $3 from $2 and places the difference into EX/MEM pipeline

registers, reads registers $4 and $5 during ID stage, and the OR instruction (or $13, $6, $7)

enters IF stage.

137

Fig. 11-30. Pipeline Control – Click 5

The final instruction, an ADD instruction in this example, enters IF stage in the datapath. All instructions

are engaged in the fifth clock cycle. By writing the data in MEM/WB into the write register 10, LW

instruction completes and both the data and the register number are in MEM/WB.

In the same clock cycle, SUB instruction sends the difference in EX/MEM to MEM/WB, and the rest of

the instructions move forward.

138

Fig. 11-31. Pipeline Control – Click 6

In the sixth clock cycle, SUB instruction selects the value in MEM/WB to write to the write register

number 11, again found in MEM/WB.

The remaining instructions play follow-the-leader: the ALU calculates the OR of $6 and $7 for the OR

instruction in the EX stage, and registers $8 and $9 are read in the ID stage for the ADD instruction.

The instructions after ADD are shown as inactive just to emphasize what occurs for the five instructions

in the example.

139

Fig. 11-32. Pipeline Control – Click 7

In the seventh clock cycle, the ADD instruction brings up the rear, adding the values corresponding to

registers $8 and $9 during the EX stage.

The result of the OR instruction is passed from EX/MEM to MEM/WB in the MEM stage, and the WB

stage writes the result of the AND instruction in MEM/WB to the write register $12.

Note that the control signals are deasserted (set to 0) in the ID stage, since no instruction is being

executed.

140

Fig. 11-33. Pipeline Control – Click 8

In the eighth clock cycle, the WB stage writes the result to the write register $13, thereby completing

OR instruction, and the MEM stage passes the sum of the ADD instruction from EX/MEM to MEM/WB.

The instructions after ADD instruction are shown as inactive for pedagogical reasons.

141

Fig. 11-34. Pipeline Control – Click 9

The WB stage writes the sum in MEM/WB into the write register $14, completing all five-instruction

sequences including ADD instruction. The instructions after ADD instruction are shown as inactive for

pedagogical reasons.

142

Fig. 11-35. Summary of Pipelined Control

Fig. 11-35 summarized the pipeline control. The control values for the last three stages are created

during the instruction decode stage and then placed in the ID/EX pipeline register. All the control values

are as follows for each stage:

• EX stage: ALUSrc, ALUOp, and RegDst

• MEM stage: Branch, MemWrite, PCSrc, and MemRead

• WB stage: MEMtoReg and RegWrite

The control lines for each pipe stage are used, and remaining control lines are then passed to the next

pipeline stage.

143

Chapter 12: Memory

In this chapter, we introduce memory hierarchy and cache memory. Computer system performance

depends on the processor microarchitecture as well as the memory system. The current memory

systems are slower than processors. The increasing gap between processor and memory speeds

demands increasingly ingenious memory systems to try to approximate a memory that is as fast as the

processor. We introduce memory hierarchy to mitigate the increasing gap between them. We also

introduce SRAM and DRAM technologies and flash and disk storages.

Objectives

By the end of this chapter you should be able to:

• Demonstrate knowledge of memory hierarchy

• Recall how the (temporal and spatial) locality to make memory access fast

• Clarify knowledge of the terms, i.e. hit, hit rate, miss, miss rate in the memory hierarchy

• Differentiate memory techniques; SRAM and DRAM technologies, and flash and disk storages

• Evaluate efficiency of direct-mapped cache

12.1. Memory Hierarchy

Computer performance depends on processor performance and memory system performance.

Fig. 12-1. Memory Interface

As shown in the above figure, the processor frequently needs to access and read the data in the

memory. If the memory system performance to read the data is not fast as much as the processor

performance, the overall performance will be degraded due to the memory performance.

The process performance was similar to the memory performance in 1980, as shown below. But it hasn’t

been true since the 1980’s. A technological improvement raises the performance of the processor. On

the other hand, the memory performance was not improved as much as the processor performance.

The memory performance is not good as much as the processor performance and We call this gap as the

processor-memory performance gap.

144

Fig. 12-2. Gap between Processor and Memory Speeds

Since the memory system is not fast as much as the processor performance, we should make memory

system appear as fast as processor. We can use memory hierarchy to make the memory system fast as

much as the processor speed.

The ideal memory has the following characteristics: 1) it should be fast and cheap (inexpensive); and 2)

it should have a large capacity to store data in term of volume. But in reality, we cannot choose the one

that meets all the requirement. If we choose one of the fastest one, it will be expensive and have limited

capacity. If we choose one with the largest capacity, it will be slow.

There are three memory types in the memory hierarchy, i.e. cache, main memory, virtual memory, as

shown below:

Fig. 12-3. Memory Hierarchy Pyramid

The cache memory (SRAM) is fast but it can only keep small amount of data. SRAM (Static RAM) needs a

lot more transistors in order to store a certain amount of memory. That’s why it is very expensive. On

the other hand, the virtual memory (SSD: solid state drive, and HDD: hard disk drive) is very slow but it

can store unlimited data in the storage. The main memory (DRAM) is located in between the cache

memory and the virtual memory. In term of cost, it is cheaper than the cache memory. But in term of

speed, it is faster than the virtual memory. DRAM (Dynamic RAM) requires the data to be refreshed

periodically in order to retain the data.

145

Locality

The memory hierarchy uses the locality to speed up the performance of the memory. There are two

types of locality; one is temporal locality, and the other one is spatial locality.

Temporal Locality uses the locality in time. If the data is used recently, the processor may use it again

soon. By keeping recently accessed data in higher levels of memory hierarchy, the processor can access

the data immediately.

Spatial locality uses the locality in space. If the data is used recently, the processor is most likely to use

neighboring data soon. When the processor access data, the memory system brings nearby data into

higher levels of memory hierarchy too. The process can access the neighboring data immediately.

We take advantage of principle of locality by implementing the memory of a computer as a memory

hierarchy.

Fig. 12-4. Principle of Locality

As shown in the above figure, the faster memories are more expensive per bit than the slower

memories and thus are smaller. The computer systems store everything on hard disk drive (virtual

memory). The memory systems copy recently accessed items in the main memory and copy more

recently accessed items in the cache memory.

When the memory systems make a copy from low levels to high levels of memory hierarchy, it copies

chunk of data, not a single line of data. When the data is found in that level of memory hierarchy, it is

called as hit. The fraction or percentage of accesses that result in a hit is called the hit rate, expressed as

the following equation:

𝐻𝑖𝑡_𝑟𝑎𝑡𝑒 =
ℎ𝑖𝑡𝑠

𝑚𝑒𝑚𝑜𝑟𝑦_𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠

When the data is not found in that level of memory hierarchy, it is called as miss. It may take time to go

to the next level, called as miss penalty. The fraction or percentage of accesses that result in a miss is

called the miss rate, expressed as the following equation:

𝑀𝑖𝑠𝑠_𝑟𝑎𝑡𝑒 =
𝑀𝑖𝑠𝑠𝑒𝑠

𝑚𝑒𝑚𝑜𝑟𝑦_𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠
= 1 − ℎ𝑖𝑡_𝑟𝑎𝑡𝑒

146

It follows that the sum of the hit rate and the miss rate is equal to 1.0 (100%).

The system makes a copy from the virtual memory to the main memory with a unit of data, called as a

page. The system makes a copy from the main memory to the cache memory with a unit of data, called

as a block.

SRAM and DRAM Technologies

SRAMs are Integrated circuits that are memory arrays with (usually) a single access port. SRAM has a

fixed access time to any datum. It doesn’t need to refresh and so the access time is very close to the

cycle time. Typically, it uses six to eight transistors per bit to prevent the information from being

disturbed when reading the data. It costs a lot.

DRAMs store data as a charge in a capacitor, where a single transistor is used to access the charge.

That’s why it is much denser and cheaper per bit than SRAM. However, the data cannot be kept

indefinitely and must periodically be refreshed, call ‘dynamic’.

Table 12-1. DRAM Generations

Year
introduced

Chip size $ per GB
Total access time

to a new row/column
Average column access

time to existing row

1980 64 Kbit $1,500,000 250 ns 150 ns

1983 256 Kbit $500,000 185 ns 100 ns

1985 1 Mbit $200,000 135 ns 40 ns

1989 4 Mbit $50,000 110 ns 40 ns

1992 16 Mbit $15,000 90 ns 30 ns

1996 64 Mbit $10,000 60 ns 12 ns

1998 128 Mbit $4,000 60 ns 10 ns

2000 256 Mbit $1,000 55 ns 7 ns

2004 512 Mbit $250 50 ns 5 ns

2007 1 Gbit $50 45 ns 1.25 ns

2010 2 Gbit $30 40 ns 1 ns

2012 4 Gbit $1 35 ns 0.8 ns

[source] Computer Organization and Design, Fifth Edition: The Hardware/Software Interface (The Morgan Kaufmann Series in Computer Architecture and Design)

The above table shows how DRAM generations gradually developed from 1980s.

147

Disk Storage

Disk storage (also sometimes called drive storage) is a general category of storage mechanisms where

data is recorded by various electronic, magnetic, optical, or mechanical changes to a surface layer of one

or more rotating disks.

Fig. 12-5. Disk Storage

In the disk storage, a sector is a subdivision of a track on a magnetic disk. Each sector stores a fixed

amount of user-accessible data, traditionally 512 bytes for hard disk drives (HDDs) and 2048 bytes for

CD-ROMs and DVD-ROMs. The data area contains the sync bytes, user data and an error-correcting code

(ECC) that is used to check and possibly correct errors that may have been introduced into the data.

Access to a sector involves

• Queuing delay if other accesses are pending

• Seek time: move the heads

• Rotational latency

• Data transfer

• Controller overhead

For example, disks rotate at 5400 RPM to 15,000 RPM. What is the average rotational latency at 5400

RPM?

The average rotational latency is calculated as follows: 0.5 rotation/5400 RPM = 0.5 rotation/(5400

rotation/60 seconds) = 30/5400 seconds = 5.6 ms

Exercises

1) A program has 2,000 load and store instructions. There exists 1,250 of these data values in cache

and the rest of them supplied by other levels of memory hierarchy. What are the hit and miss rates

for the cache?

148

Answer)

• Hit_rate = 1250/2000 = 0.625

• Miss_rate = 750/2000 = 0.375 = 1 – Hit_rate

2) Disk Access

Given: 512B sector, 15,000 RPM, 1 ms average seek time, 100 MB/s transfer rate,

0.2 ms controller overhead, idle disk.

What is the average read time?

Answer)

• No queuing delay because of idle disk

• Seek time: 1 ms

• Rotational latency: 0.5/(15,000/60) = 2 ms

• Data transfer time: 512 B / 100 MB/s = 0.005 ms

• Controller overhead: 0.2 ms

The sum of the above items is 3.205 ms.

12.2. Cache Memory

Cache memory is located in the highest level of memory hierarchy. It is fast, and typically takes 1 clock

cycle to access the data in the cache memory. Ideally it supplies most data to a processor. It usually

holds most recently accessed data.

Caches first appeared in research computers in the early 1960s and in production computers later in

that same decade. Every general-purpose computer built today, from servers to low-power embedded

processors, includes caches.

When designing cache, the following questions are considered:

• What data is held in the cache?

• How is data found?

• What data is replaced?

Although we focus on data cache loads, the same principles apply for fetches from an instruction cache.

Ideally, cache anticipates needed data and puts it in the cache memory, but it is impossible to predict

the future demanding with perfect accuracy. Instead, the cache uses the past pattern to predict future

demanding with temporal and spatial localities:

• Temporal locality: copy newly accessed data into cache

• Spatial locality: copy neighboring data into cache too

149

Before diving into the detail description, let’s look at the cache terminology.

• Capacity (C): number of data bytes in cache

• Block size (b): bytes of data brought into cache at once

• Number of blocks (B = C/b): number of blocks in cache: B = C/b

• Degree of associativity (N): number of blocks in a set

• Number of sets (S = B/N): each memory address maps to exactly one cache set

The cache is organized into S sets. Each memory address maps to exactly one set. The caches are

categorized by # of blocks in a set:

• Direct mapped: 1 block per set

• N-way set associative: N blocks per set

• Fully associative: all cache blocks in 1 set

We exemplified the cache parameters as follows:

• C = 8 words (capacity)

• b = 1 word (block size)

• So, B = C/b = 8 (# of blocks)

It is ridiculously small, but will illustrate organizations with these simple parameters in the next

subsection.

Direct Mapped Cache

In the direct mapped cache, the cache memory assigns the location of the cache for each work based on

the address of the word (block) in the main memory. Since there is only one choice to put the data of

memory into the blocks of the cache memory, it is called as ‘Directed mapped’, and the block number is

calculated with the following modulo operation:

• (block address) modulo (# blocks in cache)

Let’s find out where the data at addresses 0x00000004, 0x00000024,…, 0xFFFFFFE4 map to. The

following figure illustrates a direct mapped cache with a capacity of eight words (C = 8 words) and a

block size of one word (b = 1 word). The number of blocks in cache is a power of 2 (B = C/b = 8).

The cache has eight sets, each of which contains a one-word block. The two rightmost bits of the

address are always 00, because they are word aligned. The next three rightmost bits (log2 8 = 3 bits)

indicate the set (cache index) onto which the memory address maps. Thus, the data at addresses

0x00000004, 0x00000024, . . . , 0xFFFFFFE4 map to the set number 1. Likewise, data at addresses

0x00000010 and 0xFFFFFFF0 map to set 4, and so forth. Each main memory address maps to exactly one

set in the cache.

150

Fig. 12-6. Mapping of Main Memory to a Direct Mapped Cache

The following figure shows the direct mapped cache hardware. The cache is constructed with an eight-

entry SRAM. Each entry, or set, contains one line consisting of 1 valid bit, 27 bits of tag, and 32 bits of

data, as shown in the right side of Fig. 12-7. The cache is accessible using the 32-bit (memory) address

that consists of the tag field (27 bits), the set bits (3 bits) and the byte offset (2 bits), as indicated in the

top left of Fig. 12-7.

Fig. 12-7. Direct Mapped Cache Hardware

151

The set bits specify the entry or set in the cache. Using the set value, the system finds out the cache

index number. The system compares two values, the tag value of the memory address and the tag value

in the cache. If the two values are identical and the valid bit is set to ‘1’, the memory system will get

‘hit’, and the data in the cache can be returned to the processor. Otherwise, the cache misses and the

memory system must fetch the data from main memory.

The system knows whether a requested block is in the cache or not through tag values. The tags contain

the address information required to identify whether a block (a word) in the cache corresponds to the

requested block (word). The tag needs only to contain the upper portion of the address. Then what if

there is no data in a location? The system indicates whether an entry contains a valid address through a

valid bit. If the valid bit is one, there exists a valid address; otherwise there is no valid address in that

entry. It is initially set to 0.

Let’s look at how the cache memory is utilized when executing the following MIPS assembly codes:

 # MIPS assembly code

 addi $t0, $0, 5

loop: beg $t0, $0, done

 lw $t1, 0x4($0)

 lw $t2, 0xC($0)

 lw $t3, 0x8($0)

 addi $t0, $t0, -1

 j loop

done:

The program contains a loop that repeats for five iterations. Each iteration involves three memory

accesses (loads), resulting in 15 total memory accesses. We assume that the cache is initially empty. The

first two instructions (addi and beq) require no memory access. Since the cache is initially empty, there

is no data in the memory. The third instruction, lw $t1, 0x4($0), got missed, where the memory

address consists of the tag (00…00), the set value (001) and the byte offset (00). The system makes a

copy the data from memory and the entry of index number 1 is filled with the data including the valid bit

(1) and the tag value (00…00), as shown below:

Table 12-2. Temporal Locality with a Direct Mapped Cache with lw $t1, 0x4($0)

V Tag Data

0

Set 0 (000)

1 00…00 Mem(0x00…04) Set 1 (001)

0

Set 2 (010)

0

Set 3 (011)

0

Set 4 (100)

0

Set 5 (101)

0

Set 6 (110)

0

Set 7 (111)

152

The fourth instruction, lw $t2, 0xc($0), got missed because there is no data in the memory. The

memory address of the instruction consists of the tag (00…00), the set value (011) and the byte offset

(00). The system makes a copy the data from memory in the same way. The entry of index number 3 is

filled with the data including the valid bit (1) and the tag value (00…00), as shown below:

Table 12-3. Temporal Locality with a Direct Mapped Cache with lw $t2, 0xc($0)

V Tag Data

0

Set 0 (000)

1 00…00 Mem(0x00…04) Set 1 (001)

0

Set 2 (010)

1 00…00 Mem(0x00…0C) Set 3 (011)

0

Set 4 (100)

0

Set 5 (101)

0

Set 6 (110)

0

Set 7 (111)

The fifth instruction, lw $t3, 0x8($0), got missed again because there is no data in the memory. The

memory address of the instruction consists of the tag (00…00), the set value (010) and the byte offset

(00). The system makes a copy the data from memory in the same way before. The entry of index

number 2 is filled with the data including the valid bit (1) and the tag value (00…00), as shown below:

Table 12-4. Temporal Locality with a Direct Mapped Cache with lw $t3, 0x8($0)

V Tag Data

0

Set 0 (000)

1 00…00 Mem(0x00…04) Set 1 (001)

1 00…00 Mem(0x00…08) Set 2 (010)

1 00…00 Mem(0x00…0C) Set 3 (011)

0

Set 4 (100)

0

Set 5 (101)

0

Set 6 (110)

0

Set 7 (111)

No memory access is required for the last two instructions, addi and j. The first time the loop executes,

the cache is empty and the data must be fetched from main memory locations 0x4, 0xC, and 0x8 into

cache sets 1, 3, and 2, respectively. The processor jumps to the instruction line loop. However, the next

four times the loop executes, the data is found in the cache. We can calculate the miss rate, 3/15 = 20%.

153

Now let’s assume that we have the memory addresses 0x4 and 0x24 in a loop, as shown below:

• 0x4 : tag (00…00), the set value (001) and the byte offset (00).

• 0x24 : tag (00…01), the set value (001) and the byte offset (00).

Both memory addresses map to the set number 1. During the initial execution of the loop, data at

address 0x4 is loaded into set 1 of the cache. Then data at address 0x24 is loaded into set 1, evicting the

data from address 0x4. Upon the second execution of the loop, the pattern repeats and the cache must

refetch data at address 0x4, evicting data from address 0x24. The two addresses conflict, and the miss

rate is 100% in this case.

N-Way Set Associative Cache

An N-way set associative cache reduces conflicts by providing N blocks in each set, where data mapping

to that set might be found. The following figure shows the hardware for a C = 8-word, N = 2-way set

associative cache. The cache now has only S = 4 sets rather than 8. Thus, only log2 4 = 2 set bits are used

to select the set.

Fig. 12-8. 2-way Set Associative Cache

The number of tag bits increases from 27 to 28 bits. 2-way set associative cache has two options to store

the tag value and the data. Each way consists of a data block and the valid and tag bits. When the

memory address is searched as noticed in the top left of the above figure, the tag value in memory

address is compared with the tag value in the cache. The cache reads blocks from both ways in the

selected set and checks the tags and valid bits for a hit. If a hit occurs in one of the ways, a multiplexer

selects data from that way.

Let’s look at how the 2-way set associative cache is utilized when executing the following MIPS assembly

codes:

154

 # MIPS assembly code

 addi $t0, $0, 5

loop: beq $t0, $0, done

 lw $t1, 0x4($0)

 lw $t2, 0x24($0)

 addi $t0, $t0, -1

 j loop

done:

The program contains a loop that repeats for five iterations. Each iteration involves two memory

accesses (loads), resulting in 10 total memory accesses. We assume that the cache is initially empty.

The first load instruction, lw $t1, 0x4($0), got missed because there is no data in the cache memory.

The memory address of the instruction consists of the tag (00…00), the set value (01) and the byte offset

(00). The system makes a copy the data from memory to cache and the way 0 entry of the set number 1

(01) is filled with the data including the valid bit (1) and the tag value (00…00), as shown below:

Table 12-5. 2-way Set Associative Cache with lw $t1, 0x4($0)

Way 1 Way 0

V Tag Data V Tag Data

0

0

Set 3 (11)

0

0

Set 2 (10)

0

1 00…00 Mem[0x00…04] Set 1 (01)

0

0

Set 0 (00)

The second load instruction, lw $t2, 0x24($0), got missed again because there is no data in the

memory. The memory address of the instruction consists of the tag (00…10), the set value (01) and the

byte offset (00). The system makes a copy the data from memory to cache in the same way. In this time,

the way 1 entry of the set number 1 is filled with the data including the valid bit (1) and the tag value

(00…10), as shown below:

Table 12-6. 2-way Set Associative Cache with lw $t2, 0x24($0)

Way 1 Way 0

V Tag Data V Tag Data

0

0

Set 3 (11)

0

0

Set 2 (10)

1 00…10 Mem[0x00…24] 1 00…00 Mem[0x00…04] Set 1 (01)

0

0

Set 0 (00)

155

Both memory accesses, to addresses 0x4 and 0x24, map to the set number 1. However, the cache has

two ways, so it can accommodate data from both addresses. During the first loop iteration, the empty

cache misses both addresses and loads both words of data into the two ways of the set number 1. On

the next four iterations, the cache hits. Hence, the miss rate is 2/10 = 20%.

Full Associative Cache

A fully associative cache allows a given block to go in any cache entry. The cache is expensive to build

because it requires all entries to be searched at once. But it can reduce conflict misses.

Fig. 12-9. Fully Associative Cache

Exercises

1) The modulo operation finds the remainder after division of one number by another. For example, 5

modulo 2, where 5 is the dividend and 2 is the divisor, would evaluate to 1 because 5 divided by 2

leaves a quotient of 2 and a remainder of 1. What are the results of the following modulo

operations?

• 9 modulo 3 =

• 000012 modulo 23 =

• 100012 modulo 23 =

156

Chapter 13: Virtual Memory

In this chapter, we introduce virtual memory. Most modern computer systems use a hard driver

made of magnetic or solid-state storage as the lowest level in the memory hierarchy. The virtual

memory is located in the lowest level of the memory hierarchy while still provide the speed of

faster memory for most accesses. Processors can access data anywhere using virtual addresses

that specify the location in virtual memory. We also introduce virtual memory definitions and

show how to translate the virtual address into the physical address.

Objectives

By the end of this chapter you should be able to:

• Differentiate virtual and physical addresses

• Identify the difference between virtual memory analogue and cache memory analogue

• Recognize the address translation in virtual address

• Carry out the address translation from virtual address to physical address

• Demonstrate knowledge of page table

• Identify features of translation lookaside buffer

13.1. Virtual Memory Address

There are three memory types in the memory hierarchy, i.e. cache, main memory, virtual memory, as

shown in the following figure. As we discuss in the cache memory, the cache memory (SRAM) is fast but

it can only keep small amount of data because it is very expensive. The virtual memory gives the illusion

of bigger memory. Ideally, we have no limitation to store data in the virtual memory, where the main

memory (DRAM) acts as cache for hard disk. That means we can make a copy a chunk of data from

virtual memory to main memory.

Fig. 13-1. Memory Hierarchy Pyramid

157

The following table describes the cache and virtual memory analogues.

Table 13-1. Cache/Virtual Memory Analogues

Cache Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number

When the system makes a copy data from main memory to cache memory, it does in a unit of block,

where cache memory is exactly a memory unit. When the system makes a copy data from virtual

memory to main memory, it does in a unit of page. Virtual memory is not a memory unit, it is a

technique. The page size is the amount of memory transferred from hard disk (Virtual memory) to

DRAM at once. The typical page size is between 1 KB and 8 KB and is generally 4 KB for 32-bit systems.

The page number is the number of bits required to represent the pages in Virtual Address Space, where

the page offset is the number of bits required to represent particular word in a page or page size of

Virtual Address Space or word number of a page.

The data is stored in virtual memory and processors use virtual addresses when they execute. The entire

virtual address space is stored on a hard drive and only subset of virtual address data moves in physical

memory (DRAM). Accordingly, CPU translates virtual addresses into physical addresses (DRAM

addresses) so that it can find the physical location of data in DRAM. If data is not in DRAM fetched from

hard drive, it is called “page fault”, which is a similar concept of “miss”. As shown in the following figure,

the address translation determines physical address from virtual address, where the page table is used

as a lookup table to translate virtual addresses to physical addresses.

Fig. 13-2. Virtual and Physical Addresses

As shown in the above figure, Virtual memory is divided into virtual pages, typically 4 KB in size. Physical

memory is likewise divided into physical pages of the same size (4 KB). A virtual page may be located in

158

physical memory (DRAM) or on the disk. Some virtual pages are present in physical memory, and some

are located on the disk. The process of determining the physical address from the virtual address is

called address translation. When we execute a program, we expect that most memory accesses got hit

in physical memory. But what if the program size is bigger than DRAM size? In this case, we cannot move

all the programs to the physical memory. The programs can have the large capacity in virtual memory.

The programmer no longer needs to worry about the amount of physical memory available. All the

programs will be stored in the virtual memory with virtual memory address. The system only makes a

copy required data from virtual memory to physical memory.

Address Translation

The following figure illustrates how to translate a virtual address to a physical address. In this example,

we assume that the system has the following specification:

• Virtual memory size: 2 GB = 231 bytes

• Physical memory size: 128 MB = 227 bytes

• Page size: 4 KB = 212 bytes

Fig. 13-3. Address Translation

In the figure above, the least significant 12 bits indicate the page offset and require no translation. The

upper 19 bits of the virtual address specify the virtual page number (VPN) and are translated to a 15-bit

physical page number (PPN).

We can extract the following values for the give system:

• Virtual address: 31 bits

• Physical address: 27 bits

• Page offset: 12 bits = 3 hexes

• # Virtual pages = 231/212 = 219 (VPN = 19 bits)

• # Physical pages = 227/212 = 215 (PPN = 15 bits)

159

The following figure shows the virtual page number 5 mapping to the physical page number 1, virtual

page number 0x7FFFC mapping to physical page number 0x7FFE, and so forth. For example, virtual

address 0x53F8 (an offset of 0x3F8 within virtual page 5) maps to physical address 0x13F8 (an offset of

0x3F8 within physical page 1). The least significant 12 bits of the virtual and physical addresses are the

same (0x3F8) and specify the page offset within the virtual and physical pages. Only the page number

needs to be translated to obtain the physical address from the virtual address.

Fig. 13-4. VPN Mapping to PPN

Exercises

1) Let’s assume we have the virtual memory system with the given Fig. 13-4. What is the physical

address of the virtual address 0x0000247C?

Answer)

• VPN = 0x00002

• VPN 0x00002 maps to PPN 7FFF

• 12-bit page offset = 0x47C

• Physical address = 0x7FFF47C

2) Consider a virtual memory system that can address a total of 232 bytes. You have unlimited hard

drive space, but are limited to only 8 MB of semiconductor (Physical) memory. Assume that virtual

and physical pages are each 4 KB in size. Configuration of the virtual and physical memory

addresses, as follows:

160

The virtual memory address consists of virtual page number (VPN) and page offset. The physical

memory address consists of physical page number (PPN) and page offset.

The lengths of page offset are same.

The total number of the virtual page: 232 / 212 = 220. That means a total of 20 bits are used for the

virtual page number.

The total number physical page: 8 MB / 4 KB = 223 / 212 = 211. That means a total of 11 bits are used

for the physical page number.

13.2. Page Table

Let’s look at how to perform translation with the page table. The page table has the entry for each

virtual page, where entry fields have the following information:

• Valid bit (V): set to 1 if the page is in physical memory

• Physical page number (PPN): where the page is located in the main memory

Fig. 13-5. Page Table Translation

As shown in left side of Fig. 13-5, the virtual address consists of virtual page number (VPN) and page

offset. The VPN 0x00002 is translated into physical page number (PPN) 0x7FFF using the given page

table. If the PPN 0x7FFF is already in the page table and the valid bit set to 1, then the system will get

“hit”. The PPN 0x7FFF in page table is mapped to the PPN in physical address. The page offset of

virtual address is directly translated into the page offset of physical address.

161

Translation Lookaside Buffer (TLB)

The page table is large and is usually located in physical memory. If a processor executes load or store

instruction, the system requires two accesses of the main memory:

• one for translation (page table read)

• another to access data (after translation)

These accesses eventually degrade the memory performance in half, unless we get clever way to access

the memory.

Translation Lookaside Buffer (TLB) is small cache of most recent translations, and reduces the number

of memory accesses for most loads/stores from 2 to 1.

Fig. 13-6. Paging Hardware With TLB

The CPU only looks at the virtual (logical) address which consists of VPN and PO. If the corresponding

PPN is already in Translation look-aside buffers, the system will get TLB hit. VPN is directly translated

into PPN using TLB located within CPU. In this case, only one memory access is required.

If the page number is not in the TLB (TLB miss), the system searches the page table which is located in

the main memory. After getting PPN in the main memory, it can translate VPN into PPN, and then access

the data located in the memory. In this case, two memory accesses are required.

When we run multiple processes (programs) at once, each process has its own page table. Each process

can use entire virtual address space. A process can only access physical pages mapped in its own page

table.

162

Virtual Memory Settings

In the Window Search window, type “Advanced System Settings” and click it. You can see the following

figure. Then Click “Setting”.

In the System Properties window, click the Advanced tab. You can check the virtual memory size.

Virtual Memory for 64-bit versions of Windows

• How to determine the appropriate page file size for 64-bit versions of Windows

https://docs.microsoft.com/en-US/windows/client-management/determine-appropriate-page-file-size

163

Exercises

1) What is the physical address of virtual address 0x00005F20 with the given page table? (assume

12-bit page offset)

Answer) The least significant 12 bits of the virtual and physical addresses are the same (0xF20) and

specify the page offset both the virtual and physical pages. According, the virtual page number 5 is

mapping to the physical page number 1 in the page table. The virtual address 0x00005F20 is

translated into the physical address 0x0001F20, as shown below:

2) What is the physical address of virtual address 0x000073E0 with the given page table? (assume

12-bit page offset)

164

Answer) The least significant 12 bits of the virtual specify the page offset. According, the virtual page

number (VPN) is 7. The corresponding physical page number is not valid (blank) in the page table. If the

processor attempts to access a virtual address that is not in physical memory, a page fault occurs, and

the operating system loads the page from the hard disk into physical memory.

3) What is the physical address of virtual address 0x7FFFCA20 with the given page table? (assume

12-bit page offset)

