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Chapter 1: Introduction 

In this chapter, we present an overview of basic computer organization and representation of data in 

computers. 

 

Objectives 
 

By the end of this chapter you should be able to: 

• Explain the decimal numbers and binary numbers systems. 

• Explain the number conversion among binary, decimal and hexadecimal numbers. 

• Understand a basic binary addition and the overflow due to a fixed number of bits. 

• Represent binary negative numbers to sign/magnitude numbers and two's complement numbers. 

• Demonstrate basic skill in taking two's complement numbers. 

 

1.1. Overview on Computing Hardware 
 

Basic Definitions 
 

Hardware: Physical parts of a computer. Everything you can touch. 

Transistor: A tiny electrically operated switch that can alternate between “on” and “off”. Fig. 1-1 shows 

a transistor which has three pins.  

 

Fig.  1-1. Transistor 

Chip (Microchip): A tiny piece of silicon that contains millions of transistors and other electronic 

components, as shown in Fig. 1-2. Your CPU (Central Processing Unit) is one of Microchips. 

 

Fig.  1-2. Chip (Microchip) 

Hardware Overview 
 

Typical Personal Computer System consists of lots of components, as shown in Fig. 1-3: 
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Fig.  1-3. Personal Computer System 

• System unit: Motherboard is the main circuit board for the computer, which includes CPU, 

memory, ports, etc. 

• Secondary storage devices can "permanently" hold data and information. Some examples include 

Floppy disk, hard disk drives, Magnetic tape, CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-R, DVD-RW. 

− CD-ROM stands for Compact Disc - Read Only Memory. 

− CD-R stands for Compact Disc - Recordable and can be written to only once. 

− CD-RW stands for Compact Disc - Re-writeable (or Read/Write). 

− DVD-ROM stands for Digital Versatile Disc - Read Only Memory. 

− DVD-R stands for Digital Versatile Disc - Recordable and can be written to only once. 

− DVD-RW stands for Digital Versatile Disc - Re-writeable (or Read/Write). 

• Input devices translate data into a form the computer can understand.  

− Keyboard, mouse, trackball, and touchpad 

• Output devices translate information into a form human can understand. 

− Monitor (or Display Screen), Printer, Speaker 

• Communications devices send/receive data to/from other computers 

−  Modem, network card  
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1.2. Digital Discipline 
 

Binary Values 
 

In digital discipline, there are two discrete values: 

• 1, TRUE, HIGH 

• 0, FALSE, LOW 

1 and 0 can be represented with voltage levels. If the voltage level is high, it represents 1 bit. If the 

voltage level is low, it represents 0 bit. The two discrete values can be also represented with rotating 

gears, fluid levels, etc. Digital circuits of your computer use voltage levels to represent 1 and 0. This is a 

binary digit so we simply call it “bit”. 

 

Number Systems 
 

Decimal numbers can be expressed as shown in Fig. 1-4. The rightmost digit represents 1’s column. As 

the digit moves forward to left-side, the weight of each digit increases as power of 10.  In the figure, we 

can read the number, as follows: five thousand, three hundred, seven ten, and four one.  

 

Fig.  1-4. Decimal number 

Binary number also can be expressed as shown in Fig. 1-5. Here, the rightmost digit represents 1’s 

column. As the digit moves forward to left-side, the weight of each digit increases as power of 2. In the 

figure, we have a binary number 1101. Each bit represents a different weight, the first bit (1) for 8’s 

column, the second one (1) for 4’s column, the third one (0) for 2’s column, and the last one (1) for 1’s 

column. 

 

 

Fig.  1-5. Binary number 
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Fig.  1-6. Number Conversion 

 

Let’s convert the decimal number 47 to a binary number. We can start to divide the number with the 

divisor, where the divisor is always 2. You will the quotient 23 and a remainder 1. Keep repeat this 

process until the dividend becomes zero, as shown in Fig. 1-6. Now let’s read the remainders from 

bottom to up, 101111 is the binary representation of the decimal number 47. 

  

1.3. Definitions 
 

The bit is the most basic unit of information in computing and digital communications.  

 1 0 0 1 0 1 1 0 

The above 8 bits show an example of the binary number. The first bit we call it most significant bit 

(msb), whereas the last bit we call it least significant bit (lsb). A group of 8-bit, we call it a byte.  

The large powers of two can be expressed as shown below: 

• 210 = 1 kilo: 210 (1024) is approximately equal to 1000 

• 220 = 1 mega: 220 (1,048,576) is approximately equal to 1 million 

• 230 = 1 giga: 230 (1,073,741,824) is approximately equal to 1 billion 

• 240 = 1 tera: 240 (1,099,511,627,776) is approximately equal to 1 trillion 

 

1.4. Signed Binary Numbers 
 

There are two ways of representation of signed numbers, i.e. sign-magnitude form and two’s 

complement form. 
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Sign-Magnitude 
 

The sign-magnitude binary format is the simplest conceptual format. To represent a number in sign-

magnitude, we simply use the leftmost bit to represent the sign, where 0 means positive and 1 means 

negative. The remaining bits represent the magnitude (absolute value). 

For example, let’s represent +6 and -6 with 4-bit sign-magnitude form. The absolute value for both 

numbers is equal to |6| = 110. The sign bit for +6 is 0, whereas the sign bit for -6 is 1. We can express 

both +6 and -6 as shown below: 

• +6 = 0110 

• -6 = 1110 

One of problem in this form is that the addition doesn’t work. If you add these two number as shown 

below, the result is not correct. 

  1110 

     + 0110 

     1 0100 (wrong~!) 

Another issue is that there are two representation of 0, i.e. 1000 (-0) and 0000 (+0). That reduces the 

possible number representation. 

 

Two’s Complement 
 

Two's complement is the most common method of representing signed integers on computers. The msb 

has value of -2N-1, where N is the total number of bits. for example, if you have 4-bit two’s complement, 

the most positive 4-bit number is 0111 that is equal to 7. The most negative 4-bit number is 1000 that is 

equal to -8. In contrast to sign-magnitude form, addition works in two’s complement form and there is 

single representation for 0.  

You can find some YouTube video how to convert the number into two’s complement number in the 

following link: 

 Two's Complement Representation of Negative Numbers 

  

https://www.youtube.com/watch?v=mRvcGijXI9w
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Chapter 2: Overview on Computing Hardware 

In this chapter, we explore basic logic gates that take one or more binary inputs and produce a binary 

output. In addition, we cover how CMOS transistors are used to implement logic gates. 

 

Objectives 
By the end of this chapter you should be able to: 

• Explain the basic logic gates and logic levels. 

• Explain what noise is and what noise margin is. 

• Understand two types of transistors and how to build logic gates from these transistors. 

• Demonstrate basic logic gates from the corresponding CMOS gates. 

 

2.1. Logic Gates 
Basically, logic gates perform logic functions in the computer system.  

 

Single-Input Logic Gates 
 

The single-input logic gates take a single input and produce an output, which include a logic NOT gate 

and a buffer. The logic NOT gate is the most basic of all the logic gates and flips an input value. If the 

input A is “0” or LOW, the NOT gate produces the output “1” or HIGH. If the input A is “1” or HIGH, then 

it produces the output “0” or LOW, giving us the Boolean expression of: 𝑌 = �̅�. The following figure 

shows the symbol and the truth table of the logic NOT gate.   

Symbol  Truth Table 

 

 A Y 

 0 1 

 1 0 
Fig.  2-1. Logic NOT gate 

 

A buffer is a basic logic gate that passes its input, unchanged, to its output. It just repeats the input 

signal, giving us the Boolean expression of: 𝑌 = 𝐴. The main purpose of a buffer is to regenerate the 

input, usually using a strong high and a strong low. The following figure shows the symbol and the truth 

table of the buffer. 

Symbol  Truth Table 

 

 A Y 

 0 0 

 1 1 
Fig.  2-2. Buffer gate 
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Two-Input Logic Gates 
 

For a two-input AND gate, the output Y is true if both input A and input B are “1” or HIGH, giving us the 

Boolean expression of: 𝑌 = 𝐴 ∙ 𝐵. Note that the Boolean expression for a two-input AND gate can be 

written as: 𝐴 ∙ 𝐵 or just simply 𝐴𝐵 without the point. The following figure shows the symbol and the 

truth table of the two-input AND gate. 

Symbol  Truth Table 

 

 A B Y 

 0 0 0 

 0 1 0 

 1 0 0 

 1 1 1 
Fig.  2-3. Two-input AND gate 

 

For a two-input OR gate, the output Y is true or HIGH if either input A or input B is “1” or HIGH, giving us 

the Boolean expression of: 𝑌 = 𝐴 + 𝐵. Note that it produces the output Y = 0 if only if both of inputs are 

“0” or LOW. The following figure shows the symbol and the truth table of the two-input OR gate. 

Symbol  Truth Table 

 

 A B Y 

 0 0 0 

 0 1 1 

 1 0 1 

 1 1 1 
Fig.  2-4. Two-input OR gate 

 

For a two-input XOR gate, the output Y is true or HIGH if either input A or input B is true, but not both, 

giving us the Boolean expression of: 𝑌 = 𝐴 ∙ �̅� + �̅� ∙ 𝐵 = 𝐴𝐵. The following figure shows the symbol 

and the truth table of the two-input XOR gate. 

Symbol  Truth Table 

 

 A B Y 

 0 0 0 

 0 1 1 

 1 0 1 

 1 1 0 
Fig.  2-5. Two-input XOR gate 

 

For a two-input NAND gate, the output Y is NOT true if both input A and input B are “1” or HIGH, giving 

us the Boolean expression of: 𝑌 = 𝐴 ∙ 𝐵̅̅ ̅̅ ̅̅ . The following figure shows the symbol and the truth table of 

the two-input NAND gate. 
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Symbol  Truth Table 

 

 A B Y 

 0 0 1 

 0 1 1 

 1 0 1 

 1 1 0 
Fig.  2-6. Two-input NAND gate 

 

For a two-input NOR gate, the output Y is true if both input A and input B are not true, giving us the 

Boolean Expression of:  𝑌 = 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ . The following figure shows the symbol and the truth table of the 

two-input NOR gate. 

Symbol  Truth Table 

 

 A B Y 

 0 0 1 

 0 1 0 

 1 0 0 

 1 1 0 
Fig.  2-7. Two-input NOR gate 

 

For a two-input XNOR gate, the output Y is true if both input A and input B are the same, either true or 

false, giving us the Boolean expression of: 𝑌 = (𝐴 ∙ 𝐵) + (�̅� ∙ �̅�) = 𝐴𝐵̅̅ ̅̅ ̅̅ .  The following figure shows 

the symbol and the truth table of the two-input XNOR gate. 

Symbol  Truth Table 

 

 A B Y 

 0 0 1 

 0 1 0 

 1 0 0 

 1 1 1 
Fig.  2-8. Two-input XNOR gate 

 

2.2. Noise 
Anything that degrades the signal can be noise. The noise includes resister, power supply noise, coupling 

to neighboring wires, etc. The following figure shows how the noise affect the signal strength. There are 

two buffers connected serially. The output of one buffer connected to the input of the other one. 

Assume the output voltage of the first one is 5V. The input voltage of the second one may be 4.5 V due 

to the wire noise which can degrade the signal strength. 
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Fig.  2-9. Noise between Driver and Receiver 

 

In a digital circuit or system, with logically valid inputs, every circuit element must produce logically valid 

outputs, called static discipline. Integrated circuits use limited ranges of voltages to represent discrete 

values as follows: 

The output characteristics: 

• The logic high output ranges from VDD to VOH 

• The logic low output ranges from VOL to GND 

The input Characteristics: 

• The logic high input ranges from VDD to VIH 

• The logic low input ranges from VIL to GND 

The voltage level difference between the logic output high (VOH) and the logic input high (VIH) is called 

the noise margin for the logic, whereas the voltage level difference between the logic input low (VIL) and 

the logic output low high (VOL) is called the noise margin for the logic. 

In 1970’s and 1980’s, VDD was 5V. Nowadays VDD has dropped so we can void frying tiny transistors and 

save the power in the computer system. When you connect chips with different supply voltages, you 

should be careful; otherwise, you may burn the chip! 

 

2.3. Transistors and Logic Gates 
We can build logic gates (AND, OR, XOR, etc.) from transistors. The transistor is a 3-ported voltage-

controlled switch with g: gate, d: drain, s: source. Two ports, i.e. drain and source, connected depending 

on the gate voltage. If the gate voltage is LOW, the switch is OFF. If the gate voltage is HIGH, the switch 

is on. 
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Fig.  2-10. Transistor with g = 0 and g = 1 

 

The Metal oxide silicon (MOS) transistor has the polysilicon (used to be metal) on the gate. The oxide 

(silicon dioxide) insulator isolates the substrate (p-type silicon: a positively charges silicon) from the 

polysilicon. 

If the gate voltage is low, the polysilicon gate has the negative voltage and the substrate has the positive 

feature. There is nothing happened, meaning the source and the drain are not connected. If the gate 

voltage is HIGH, the polysilicon gate has the positive voltage and the substrate also has the positive 

feature. The positives push each other. It attracts the negative feature (electron) on the surface of the 

silicon dioxide insulator, which creates a channel to connect the source and the drain, meaning the 

source and the drain are connected. 

 

 

Fig.  2-11. Transistors: nMOS 

 

The following figure shows the pMOS transistor. The pMOS is working in a opposite manner. If the gate 

voltage is LOW, the switch is on, meaning that the source and the drain are connected. If the gate 

voltage is HIGH, the switch is off, meaning that the source and the drain are disconnected. 
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Fig.  2-12. Transistors: pMOS 

 

In summary, the nMOS transistor has the following features: 

• If the gate voltage is LOW, the switch is OFF, meaning that the source and the drain are 

disconnected. 

• If the gate voltage is HIGH, the switch is ON, meaning that the source and the drain are 

connected. 

The pMOS transistor has the following features: 

• If the gate voltage is LOW, the switch is ON, meaning that the source and the drain are connected. 

• If the gate voltage is HIGH, the switch is OFF, meaning that the source and the drain are 

disconnected. 

The nMOS transistor is a good component to pass 0’s, so the source port should be connected to GND. 

The pMOS transistor is a good component to pass 1’s, so the source port should be connected to VDD. 

The drain ports of both nMOS and pMOS transistors can be connected to the output port. 

 

Fig.  2-13. Transistor function 

If the gate voltages of both nMOS and pMOS transistors are HIGH (logic “1”), the pMOS transistor is OFF 

and the nMOS transistor is ON. The output port has the GND voltage (logic “0”). If the gate voltages of 

both nMOS and pMOS transistors are LOW (logic “0”), the pMOS transistor is ON and the nMOS 

transistor is OFF. The output port has the VDD voltage (logic “1”).  

The NOT logic gate can be designed by connecting two transistors, nMOS and pMOS transistors, as 

follows: 
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• The logic input A connected to the gate ports of both transistors. 

• The source port of the nMOS transistor connected to GND. 

• The source port of the pMOS transistor connected to VDD. 

• The drain ports of both transistors connected to the output port Y. 

 

Fig.  2-14. CMOS Gates: NOT Gate 

 

If the logic input A = 0, the gate voltage of nMOS transistor (N1) is LOW so that the nMOS transistor is 

OFF. On the other hand, the gate voltage of pMOS transistor (P1) is HIGH so that the pMOS transistor is 

ON. Since the pMOS transistor (P1) is ON, the logic output voltage has the VDD voltage. That means the 

logic output Y = 1. 

If the logic input A = 1, the gate voltage of nMOS transistor (N1) is HIGH so that the nMOS transistor is 

ON. On the other hand, the gate voltage of pMOS transistor (P1) is LOW so that the pMOS transistor is 

OFF. Since the nMOS transistor (N1) is ON, the logic output voltage has the GND voltage. That means the 

logic output Y = 0. 

 

The NAND logic gate can be designed by connecting four transistors, where two nMOS transistors (N1, 

N2) are connected serially and two pMOS transistors (P1, P2) are connected parallelly, as follows: 

• The logic input A connected to the gate ports of both pMOS transistor (P1) and nMOS transistor 

(N1). 

• The logic input B connected to the gate ports of both pMOS transistor (P2) and nMOS transistor 

(N2). 

• The source port of nMOS transistor (N1) connected to the drain port of nMOS transistor (N2). 

• The source port of the nMOS transistor (N2) connected to the GND. 

• The source ports of both pMOS transistors (P1, P2) connected to VDD. 

• The drain ports of both pMOS transistors (P1, P2) and the drain port of nMOS transistor (N1) 

connected to the output Y 
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Fig.  2-15. CMOS Gates: NAND Gate 

 

If the logic inputs A = 0 and B = 0, then 

• Both nMOS transistors (N1, N2) are OFF. The output port Y has no access to the GND voltage. 

• Both pMOS transistors (P1, P2) are ON. The output port Y has the voltage VDD (logic 1). 

If the logic inputs A = 0 and B = 1, then 

• One nMOS transistor (N1) is OFF and the other nMOS transistor (N2) is ON. Two transistors 

connected serially, the output port Y has no access to the GND voltage. 

• One pMOS transistor (P1) are ON and the other pMOS transistor (P2) is OFF. One of pMOS 

switches is on. The output port Y has the voltage VDD (logic 1). 

If the logic inputs A = 1 and B = 0, then 

• One nMOS transistor (N1) is ON and the other nMOS transistor (N2) is OFF. Two transistors 

connected serially, the output port Y has no access to the GND voltage. 

• One pMOS transistor (P1) are OFF and the other pMOS transistor (P2) is ON. One of pMOS 

switches is on. The output port Y has the voltage VDD (logic 1). 

If the logic inputs A = 1 and B = 1, then 

• Both nMOS transistors (N1, N2) are ON. Since two transistors connected serially, the output port Y 

can access the GND voltage (logic 0). 

• Both pMOS transistors (P1, P2) are OFF. The output port Y has no access to the voltage VDD. 

The following table summarizes the operation of all the transistors with respect to the two inputs: 

A B P1 P2 N1 N2 Y 

0 0 ON ON OFF OFF 1 

0 1 ON OFF OFF ON 1 

1 0 OFF ON ON OFF 1 

1 1 OFF OFF ON ON 0 

 

How do you build a two-input AND gate? 
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By connecting the output port of CMOS NAND logic gate to the input port of CMOS NOT logic gate, we 

can design AND gate, as shown in the following figure: 

 

 

Fig.  2-16. CMOS Gates: AND Gate 

 

The NOR logic gate can be designed by connecting four transistors, where two nMOS transistors (N1, 

N2) are connected parallelly and two pMOS transistors (P1, P2) are connected serially, as follows: 

• The logic input A connected to the gate ports of both pMOS transistor (P1) and nMOS transistor 

(N1). 

• The logic input B connected to the gate ports of both pMOS transistor (P2) and nMOS transistor 

(N2). 

• The source ports of both nMOS transistors (N1, N2) connected to GND. 

• The source port of the pMOS transistor (P1) connected to the VDD. 

• The drain port of pMOS transistor (P1) connected to the source of pMOS transistor (P2). 

• The drain port of pMOS transistor (P2) and the drain ports of both nMOS transistor (N1) and 

nMOS transistor (N2) connected to the output Y. 

  

Fig.  2-17. CMOS Gates: NOR Gate 

 

If the logic inputs A = 0 and B = 0, then 

• Both nMOS transistors (N1, N2) are OFF. The output port Y has no access to the GND voltage. 

• Both pMOS transistors (P1, P2) are ON. The output port Y has the voltage VDD (logic 1). 
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If the logic inputs A = 0 and B = 1, then 

• One pMOS transistor (P1) is ON and the other pMOS transistor (P2) is OFF. Two transistors 

connected serially, the output port Y has no access to the VDD voltage. 

• One nMOS transistor (N1) are OFF and the other nMOS transistor (N2) is ON. One of nMOS 

switches is on. The output port Y has the GND voltage (logic 0). 

If the logic inputs A = 1 and B = 0, then 

• One pMOS transistor (P1) is OFF and the other pMOS transistor (P2) is ON. Two transistors 

connected serially, the output port Y has no access to the VDD voltage. 

• One nMOS transistor (N1) are ON and the other nMOS transistor (N2) is OFF. One of nMOS 

switches is on. The output port Y has the GND voltage (logic 0). 

If the logic inputs A = 1 and B = 1, then 

• Both pMOS transistors (P1, P2) are OFF. The output port Y has no access to the VDD voltage. 

• Both nMOS transistors (N1, N2) are ON. The output port Y has the GND voltage (logic 0). 

 

The following table summarizes the operation of all the transistors with respect to the two inputs: 

A B P1 P2 N1 N2 Y 

0 0 ON ON OFF OFF 1 

0 1 ON OFF OFF ON 0 

1 0 OFF ON ON OFF 0 

1 1 OFF OFF ON ON 0 

 

How do you build a two-input OR gate? 

By connecting the output port of CMOS NOR logic gate to the input port of CMOS NOT logic gate, we can 

design OR gate, as shown in the following figure: 

 

Fig.  2-18. CMOS Gates: OR Gate 
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Chapter 3: Boolean Expressions 

In this chapter, we learn how to write a Boolean expression given a truth table and use Boolean algebra 

to simplify Boolean equations. De Morgan's Theorem is a particularly powerful tool in digital design, 

which explains that the complement of the product of all the term is equal to the sum of the 

complement of each term. 

 

Objectives 
 

By the end of this chapter you should be able to: 

• Explain how to derive a Boolean equation from any truth table. 

• Express a Boolean equation for any truth table by summing each of the minterms for the output. 

• Understand how to use Boolean algebra to simplify equations. 

• Demonstrate De Morgan's Theorem to simplify a Boolean equation. 

 

3.1. Boolean Equations 
A Boolean equation is a functional specification of outputs in terms of inputs, which are 

expressed as a logical statement that is either TRUE or FALSE. The following figure exemplifies a 

functional specification with two inputs A and B and the output Y. 

 

Fig.  3-1. Functional specification with two inputs A and B and the output Y 

 

Let’s assume that the functional specification of the above figure can be expressed as the following truth 

tables: 

 

Fig.  3-2. Boolean Equations with Truth Tables 

 

In the first truth table, the output Y is always equal to the input B regardless of the input A. We can 

simplify the Boolean equation with the truth table, such as 𝑌 = 𝐵. 
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In the second truth table, the output Y produces TRUE if only if both two inputs A and B are TRUE. Either 

input A or B is FALSE, the output Y is False. Here, the output Y values are equivalent to the AND 

operation with two inputs A and B. We can simplify the Boolean equation with the truth table, such as 

𝑌 = 𝐴 ∙ 𝐵 = 𝐴𝐵. 

In the last truth table, the output Y is always TRUE regardless of two inputs A and B. We can simplify the 

Boolean equation with the truth table, such as 𝑌 = 1. 

 

3.2. Boolean Algebra 
In mathematics and mathematical logic, Boolean algebra is the branch of algebra in which the 

values of the variables are the truth values true and false, usually denoted 1 and 0, respectively. You can 

simplify the Boolean equations using a variety of axioms and theorems. Like the regular algebra, the 

Boolean algebra has numerical operations, but it is simpler than the regular algebra because valuables 

have only two values, i.e. 1 or 0. The main operations of Boolean algebra are the AND operation, the OR 

operation and the negative or NOT operation. 

 

Boolean Axioms and Theorems 
 

Table 3-1 summarizes the Boolean axioms with its duality, where ANDs and ORs, 0’s and 1’s are 

interchanged. 

Table 3-1. Boolean Axioms with Its Duality 

 Axiom Dual Name 

(1) 𝐴 = 0 if 𝐴 ≠ 1 𝐴 = 1 if 𝐴 ≠ 0 Binary field 

(2) 0̅ = 1 1̅ = 0 NOT 

(3) 0 ∙ 0 = 0 1 + 1 = 1 AND/OR 

(4) 1 ∙ 1 = 1 0 + 0 = 0 AND/OR 

(5) 0 ∙ 1 = 1 ∙ 0 = 0 1 + 0 = 0 + 1 = 1 AND/OR 

 

(1) Since the Boolean algebra has the binary field, the value A will be 0 if the value A is not 1. If the value 

A is not 0, the value A will be 1. (2) The negative or NOT operation can be denoted as a bar over the 

variable. The negative operation is equivalent to the complement or inverse of the variable. 

    Axiom        Dual 

(3) 0 ANDed with O is equal to 0.   1 ORed with 1 is equal to 1. 

(4) 1 ANDed with 1 is equal to 1.  0 ORed with 0 is equal to 0. 

(5) 0 ANDed with 1 is equal to 0.  0 ORed with 1 is equal to 1. 

 

The identify theorem exists in the Boolean algebra. A variable 𝐴 ∈ {1, 0} ANDed with 1 is always equal to 

itself. This operation executes in AND gate, as follows: 

• A = 0 ANDed with 1 equal to Y = 0, 
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• A = 1 ANDed with 1 equal to Y = 1. 

In a similar manner, A variable 𝐴 ∈ {1, 0} ORed with 0 is always equal to itself. This operation executes 

in OR gate, as follows: 

• A = 1 ORed with 0 equal to Y = 1, 

• A = 0 ORed with 0 equal to Y = 0. 

 

The Fig. 3-3 visualizes the identify theorem. 

 

 

Fig.  3-3. Identify Theorem 

 

The null element theorem exists in the Boolean algebra. A variable 𝐴 ∈ {1, 0} ANDed with 0 is always 

equal to 0. This operation executes in AND gate, as follows: 

• A = 1 ANDed with 0 equal to Y = 0, 

• A = 0 ANDed with 0 equal to Y = 0. 

In a similar manner, A variable A  {1, 0} ORed with 1 is always equal to 1. This operation executes in OR 

gate, as follows: 

• A = 1 ORed with 1 equal to Y = 1, 

• A = 0 ORed with 1 equal to Y = 1. 

 

The Fig. 3-4 visualizes the null element theorem. 

 

 

Fig.  3-4. Null Element Theorem 

 

The idempotency theorem exists in the Boolean algebra. A variable 𝐴 ∈ {1, 0} ANDed with itself is 

always equal to the variable. This operation executes in AND gate, as follows: 

• A = 1 ANDed with itself (1) equal to Y = 1 
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• A = 0 ANDed with itself (0) equal to Y = 0 

In a similar manner, A variable 𝐴 ∈ {1, 0} ORed with itself is always equal to the variable. This operation 

executes in OR gate, as follows: 

• A = 1 ORed with itself (1) equal to Y = 1, 

• A = 0 ORed with itself (0) equal to Y = 0. 

 

The Fig. 3-5 visualizes the idempotency theorem. 

 

 

Fig.  3-5. Idempotency Theorem 

 

The complement theorem exists in the Boolean algebra. A variable 𝐴 ∈ {1, 0} ANDed with its 

complement �̅� is always equal to 0. This operation executes in AND gate, as follows: 

• A = 1 ANDed with its complement (�̅� = 0) is always equal to 0, 

• A = 0 ANDed with its complement (�̅� = 1)  is always equal to 0. 

In a similar manner, A variable 𝐴 ∈ {1, 0} ORed with its complement �̅� is always equal to 1. This 

operation executes in OR gate, as follows: 

• A = 1 ORed with its complement (�̅� = 0) is always equal to 1, 

• A = 0 ORed with its complement (�̅� = 1) is always equal to 1. 

 

The Fig. 3-6 visualizes the complement theorem. 

 

 

Fig.  3-6. Complement Theorem 

 

The double complement law exists in the Boolean algebra. The double complement (negation) of a 

variable 𝐴 ∈ {1, 0} is always equal to the variable. This operation executes with by connecting two NOT 

gates serially, as follows: 
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• A = 0 double complement is always equal to 0, 

• A = 1 double complement is always equal to 1. 

 

The Fig. 3-7 visualizes the double complement law. 

 

Fig.  3-7. Double Complement Law 

 

The commutative law exists in the Boolean algebra. 

• 𝐴 ∙ 𝐵 = 𝐵 ∙ 𝐴;   A ANDed with B is equal to B ANDed with A 

• 𝐴 + 𝐵 = 𝐵 + 𝐴;   A ORed with B is equal to B ORed with A 

 

The associative law exists in the Boolean algebra. When we execute AND or OR gates with more than 2 

inputs, the order doesn’t matter. 

• 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶;   A ANDed with BC is equal to C ANDed with AB.  

• 𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶; A ORed with (B+C) is equal to C ORed with (A+B). 

 

The distributive law exists in the Boolean algebra. 

• 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶;  A ANDed with (B+C) is equal to AB ORed with AC. 

 

The absorption law exists in the Boolean algebra.  

• 𝐴 + 𝐴𝐵 = 𝐴 

With the distributive law, the left-hand side of the equation can be expressed as follows:  

𝐴 + 𝐴𝐵 = 𝐴(1 + 𝐵), where the round bracket is further simplified as (1 + 𝐵) = 1 due to the identify 

theorem. A variable A ANDed with 1 is equal to A (𝐴 ∙ 1 = 𝐴), which is identical to the right-hand side of 

the above equation. 

• 𝐴(𝐴 + 𝐵) = 𝐴 

With the distributive law, the left-hand side of the equation can be expressed as follows: 

𝐴(𝐴 + 𝐵) = 𝐴𝐴 + 𝐴𝐵, where 𝐴𝐴 is equal to 𝐴 (𝐴𝐴 = 𝐴) due to the idempotency theorem. Now the 

above equation is expressed as 𝐴 + 𝐴𝐵 = 𝐴. You can also simplify the equation by drawing the truth 

table, as follows: 
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𝐴 𝐵  𝐴 + 𝐵 𝐴(𝐴 + 𝐵) 

0 0 0 0 

0 1 1 0 

1 0 1 1 

1 1 1 1 

 

Exercises 
 

Simplifying the following Boolean Equations: 

(1) 𝑌 = 𝐴𝐵 +  �̅�𝐵  

Answer: 

𝑌 = 𝐴𝐵 +  �̅�𝐵 = 𝐵(𝐴 + �̅�) = 𝐵 (1) = 𝐵 

 

(2) 𝑌 = 𝐴(𝐴𝐵 + 𝐴𝐵𝐶) 

 Answer: 

𝑌 = 𝐴(𝐴𝐵 + 𝐴𝐵𝐶) 

    = 𝐴(𝐴𝐵(1 + 𝐶))  // distributive law 

    = 𝐴(𝐴𝐵(1))   // identify theorem 

    = 𝐴(𝐴𝐵) 

    = (𝐴𝐴)𝐵 

    = 𝐴𝐵 

 

(3) 𝑌 = 𝐴𝐵 + 𝐴(𝐵 + 𝐶) + 𝐵(𝐵 + 𝐶) 

Answer:  

𝑌 = 𝐴𝐵 + 𝐴(𝐵 + 𝐶) + 𝐵(𝐵 + 𝐶) 

    = 𝐴𝐵 + 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐵 + 𝐵𝐶  // distributive law 

    = 𝐴𝐵 + 𝐴𝐵 + 𝐴𝐶 + 𝐵 + 𝐵𝐶   // idempotency theorem 

    = 𝐴𝐵 + 𝐴𝐶 + 𝐵 + 𝐵𝐶   // 𝐵 + 𝐵𝐶 = 𝐵 

    = 𝐴𝐵 + 𝐴𝐶 + 𝐵    // 𝐴𝐵 + 𝐵 = 𝐵 

    = 𝐵 + 𝐴𝐶 
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3.3. De Morgan's Theorems 
De Morgan's Theorems are a pair of transformation rules that are both valid rules of inference. The rules 

can be expressed as: 

• The complement of the intersection of two sets is the same as the union of their complements; 

and 

• the complement of the union of two sets is the same as the intersection of their complements, 

where the intersection and union operations are expressed as AND and OR gates respectively in the 

digital logic systems. In the Boolean algebra, these are written formally as follows: 

• 𝐴 ∙ 𝐵̅̅ ̅̅ ̅̅ = �̅� + �̅� 

 

• 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ = �̅� ∙ �̅� 

 

 

Bubble pushing is a technique to apply De Morgan's theorem directly to the logic diagram. There are 

two steps to use the bubble pushing, as follows: 

• Change the logic gate (AND to OR and OR to AND). 

• Add bubbles to the inputs and outputs where there were none, and remove the original bubbles. 

For example, the backward bubble pushing is applied to NAND gate, pushing the bubble in the output 

side back to input side. After changing AND gate to OR gate, add bubbles to two inputs A and B, as 

shown in the following figures: 

 
Fig.  3-8. Backward Bubble Pushing 

 

The forward bubble pushing is applied to the logic gate which has the bubbles at all the inputs, by 

pushing the bubbles at the input side A & B to the output side Y. After changing OR gate to AND gate, 

add a bubble to the output Y, as shown in the following figures: 

 
Fig.  3-9. Forward Bubble Pushing 

 



23 
 

There are rules for the bubble pushing, as listed: 

• Begin at output, then work toward inputs 

• Push bubbles on final output back  

• Draw gates in a form so bubbles cancel 

 

There are four inputs, A, B, C, and D in Fig. 3-10. Two inputs A & B are fed into NOR gate. It’s output and 

the input C are fed into a NAND gate. The output of NAND gate and the input D are fed into another 

NAND gate, and those two inputs produce the output Y. 

 
Fig.  3-10. Bubble Pushing Example 

 

The last NAND gate can be changed with the backward bubble pushing, as shown in Fig. 3-11. 

• Body changes from AND to OR gate. 

• Adds bubbles to inputs. No bubble at the output. 

 
Fig.  3-11. Bubble Pushing Example - No Output Bubble-1 

 

Two bubbles, i.e. the output bubble of NAND gate and the input bubble produced with backward, are 

now put in the same line. These two bubbles canceled each other, because the double complement of a 

variable is always equal to the variable. 

NOR gate with two inputs A & B can be changed with De Morgan's Theorems, as shown in Fig. 3-12: 

• Body changes from OR to AND gate. 

• Adds bubbles to inputs. No bubble at the output. 
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Fig.  3-12. Bubble Pushing Example - No Output Bubble-2 

 

From the above figure, we can draw the following Boolean equation: 𝑌 = �̅� ∙ �̅� ∙ 𝐶 + �̅�. Note that we 

will get the Boolean equation 𝑌 = 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝐷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 without De Morgan's theorems.  

 

Exercise 
 

1) There are five inputs, A, B, C, D, and E with four NAND gates, as shown in Fig. 3-13: 

 
Fig.  3-13. Quiz 1 Figure 

 

• NAND_1 gate has two inputs A and B. NAND_2 gate has two inputs C and D. 

• The two outputs of NAND gates fed into NAND_3 gate. 

• The out of the NAND_3 gate and input E fed into the NAND_4 gate, produce the output Y. 

Simply the logic gates with De Morgan's theorems and write the corresponding Boolean equation. 

 

2) There are five inputs, A, B, C, D, and E with three NAND gates and one NOR gate, as shown in Fig. 3-

14: 

 
Fig.  3-14. Quiz 2 Figure 
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• NAND_1 gate has two inputs A and B. NAND_2 gate has two inputs C and D. 

• The two outputs of NAND gates fed into NAND_3 gate. 

• The out of the NAND_3 gate and input E fed into the NOR_4 gate, produce the output Y 

Simply the logic gates with De Morgan's theorems and write the corresponding Boolean equation. 

 

3) There are four inputs, A, B, C, and D with three NAND gates, as shown in Fig. 3-15: 

 
Fig.  3-15. Quiz 3 Figure 

 

• One NAND gate has two inputs A and B. Another NAND gate has two inputs C and D. 

• The two outputs of NAND gates fed into the other NAND gate, and produce output Y. 

Simply the logic gates with De Morgan's theorems and write the corresponding Boolean equation. 

 

4) Simplify the following Boolean expression to a minimum number of literals:  

𝑌 = �̅��̅� + �̅�𝐵𝐶̅ + (𝐴 + 𝐶̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Answer) 

𝑌 = �̅��̅� + �̅�𝐵𝐶̅ + (𝐴 + 𝐶̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

= �̅��̅� + �̅�𝐵𝐶̅ + �̅�𝐶   (De Morgan) 

= �̅�(�̅� + 𝐵𝐶̅ + 𝐶) 

= �̅�(�̅� + 𝐵𝐶̅ + 𝐶(�̅� + 𝐵)) 

= �̅�(�̅� + 𝐵𝐶̅ + �̅�𝐶 + 𝐵𝐶) 

= �̅�(�̅�(1 + 𝐶) + 𝐵(𝐶̅ + 𝐶)) 

= �̅�(�̅� + 𝐵) = �̅� 
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Chapter 4: Boolean Expressions and Combinational Circuits 

In this chapter, we learn how to express Boolean equation with combinational circuits, circuit 

schematics rules for combinational circuits, and one of the multiple-output circuits - priority circuit. By 

understanding the meanings of Contention X (don't care) and floating Z, we can apply the rules of 

Karnaugh maps for simplifying Boolean equations. 

 

Objectives 
 

By the end of this chapter you should be able to: 

• Express Boolean equation with combinational circuits. 

• Recognize circuit schematics rules for combinational circuits. 

• Recall multiple-output circuits - priority circuit. 

• Demonstrate the meanings of Contention X (don't care) and floating Z. 

• Summarize the rules of Karnaugh maps. 

• Apply Karnaugh maps for simplifying Boolean equations. 

 

4.1 Circuit Schematics Rules 
Digital systems are constructed by using logic gates which are abstract representations of real devices. 

We can represent the Boolean algebra with two-level logic, ANDs followed by ORs. For example, we 

have a Boolean equation: 𝑌 = �̅� ∙ �̅� ∙ 𝐶̅ + 𝐴 ∙ �̅� ∙ 𝐶̅ + 𝐴 ∙ 𝐵 ∙ 𝐶̅. This equation can be designed with logic 

gates, as shown in the following figure: 

 

Fig.  4-1. From Logic to Gates 

 

In Fig. 4-1, There are three AND gates. These AND gates have the following inputs, 

• AND_1: A complement, B complement, C complement 

• AND_2: A, B complement, C complement 
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• AND_3: A, B, C complement 

The outputs of the three AND gates feed into OR gate. The OR gate produces the output Y. 

There are some rules for circuit schematics. Wires always connect at a T junction, as shown in Fig. 4-2. A 

dot where wires cross indicates a connection between the wires. Wires crossing without a dot make no 

connection. 

 

Fig.  4-2. Circuit Schematics Rules 

 

The following figures show that there are T junctions between the wires. That means the wires are 

connected. 

 

Fig.  4-3. Some examples of Junction 

The following figures show that there is no T junction between the wires. That means the wires are not 

connected. 

 

Fig.  4-4. Some examples of No Junction 

 

The following figure, Fig. 4-5, designed a Boolean equation. There are five AND gates. These AND gates 

have the following inputs,  

• AND_1: A complement, D 

• AND_2: B, D 

• AND_3: A, C complement, D 

• AND_4: A, B complement, C 

• AND_5: A, B, C, D 
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The outputs of four AND gates (AND_1, AND_3, AND_4, AND_5) feed into OR gate. The OR gate 

produces the output Y. We can express the corresponding Boolean equation as follows: 𝑌 = �̅� ∙ 𝐷 + 𝐴 ∙

𝐶̅ ∙ 𝐷 + 𝐴 ∙ �̅� ∙ 𝐷 + 𝐴 ∙ 𝐵 ∙ 𝐶 ∙ 𝐷. 

 
Fig.  4-5. Some examples of Boolean equation 

 

Multiple-Output Circuits 
 

Circuits that we have previously discussed have only one output. Here we will discuss how multiple 

output systems are analyzed. A priority encoder is a circuit or algorithm that compresses multiple binary 

inputs into a smaller number of outputs. The priority circuit produces an output asserted corresponding 

to the most significant TRUE input. The following figure shows the truth table and the hardware design 

of the priority circuit. 
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Fig.  4-6. Truth Table and Hardware Design of Priority Circuit 

 

The priority circuit has: 

•  Input A3 directly connected to Y3 

• AND_1 gate produces the output Y2 with two inputs, A3 complement and A2 

• AND_2 gate produces the output Y1 with three inputs, i.e. A3 complement, A2 complement, and 

A1 

• AND_3 gate produces the output Y0 with four inputs, i.e. A3 complement, A2 complement, A1 

complement and A0 

where the bubble symbol represents a complement. The above truth table can be simplified as the 

following table.  

 

Table 4-1. Truth Table of Priority Circuit with Don’t Cares (X) 

A3 A2 A1 A0 Y3 Y2 Y1 Y0 

0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 

0 0 1 X 0 0 1 0 

0 1 X X 0 1 0 0 

1 X X X 1 0 0 0 
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Let’s look at the case when the output Y1 is TRUE. A3 and A2 didn’t assert, meaning that both A3 and A2 

are FALSE. In this case, A1 has a priority among the input values. Once A1 asserts TRUE, the input A0 

doesn’t matter whether it is TRUE or FALSE. Only Y1 is TRUE and the other outputs are all FALSE. 

Let’s look at the case when the output Y2 is TRUE. A3 didn’t assert, meaning that A3 is FALSE. In this case, 

A2 has a priority among the input values. Once A2 asserts TRUE, the two inputs A0 and A1 don’t matter 

whether they are TRUE or FALSE. Only Y2 is TRUE and the other outputs are all FALSE. 

In the last case where the output Y3 is TRUE, A3 has a priority among the input values. Once A3 asserts 

TRUE, the other inputs A0, A1 and A2 don’t matter whether they are TRUE or FALSE. Only Y3 is TRUE and 

the other outputs are all FALSE. Here, a don't-care term (X) for a function is an input-sequence (a series 

of bits) for which the function output does not matter.  

With the contention X, circuit tries to drive an output to 1 and 0.  The actual value of the contention 

could be 0, 1, or in forbidden zone. That might change with voltage, temperature, time and noise. The 

contention often causes excessive power dissipation. However, the contention usually indicates a bug. 

The symbol, X, is used for “don’t care” and contention. With this don’t care, we can find out some way 

to simplify the Boolean equation when we design the digital circuits. 

The floating Z, high impedance, is driven neither HIGH nor LOW. The floating Z might be 0, 1 or 

somewhere in between. The tristate buffer is one of example of this floating Z which has three possible 

output states: HIGH (1), LOW (0) and floating (Z). 

The output Y determined by both the input A and the enable E.  

• If enable E = 0, then the tristate buffer outputs floating Z regardless of the value of input A. 

• If enable E = 1, then the tristate buffer outputs the same as the value of input A. 

 

Fig.  4-7. Tristate Buffer 

 

The floating nodes are used in tristate busses, where many different drivers use the shared bus with 

processor, video, Ethernet, memory, etc.  

 

4.2 Karnaugh Maps (K-Maps) 
 

The Karnaugh map (K-map) is a graphical method of simplifying Boolean algebra expressions, where the 

Boolean expressions can be minimized by combining terms.  

Let’s look at a truth table, where the output Y is TRUE if only if the two inputs are A = 0 and B = 1, or A = 

1 and B = 1.  
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A B Y 

0 0 0 

0 1 1 

1 0 0 

1 1 1 

 

The above table can be expressed in the K-map as the following figure, where each value of the squares 

is corresponding to the value of Y:  

• If A = 0 and B = 0, Y = 0 (i.e., 𝑌 = �̅��̅�).  

• If A = 0 and B = 1, Y = 1 (i.e., 𝑌 = �̅�𝐵). 

• If A = 1 and B = 0, Y = 0 (i.e., 𝑌 = 𝐴�̅�). 

• If A = 1 and B = 1, Y = 0 (i.e., 𝑌 = 𝐴𝐵). 

 

 

Fig.  4-8. K-Map Representation 

 

In order to simplify the Boolean expression with K-map, we can circle 1’s in adjacent squares, where the 

most left column and the first row represent the input variables, inputs A and B. 

In the following figure, the circle is located in the most right column, whose literal corresponds to the 

input B. Let’s look closely at the circle to draw the corresponding literal. The circle takes two rows (𝐴, �̅�), 

i.e. one for the input 𝐴 and another for the input �̅�. These two literals, 𝐴 and �̅�, are cancelled each. We 

can only write the literal B, 𝑌 = 𝐵 that simplify the Boolean equation.  

 

Fig.  4-9. K-Map Representation with a Circle 

 

The following figure shows that the circles must span a power of 2.  
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Fig.  4-10. K-Map Representation with a Circle 

Fig. 4-10 has two red circles, one located at the most right column and another located at the last row. 

The first circle takes a single column (𝐵) and two rows (𝐴, �̅�), where 𝐴 and �̅� are cancelled each other. 

We can draw only the literal 𝐵 from this circle. The latter circle takes a single row (𝐴) and two columns 

(𝐵, �̅�), where 𝐵 and �̅� are cancelled each other. We can draw only the literal 𝐴 from the circle. These 

two literals are ORed, so we can draw the corresponding Boolean equation:  𝑌 = 𝐴 + 𝐵 from Fig. 4-10. 

The 3-input K-Map can be drawn in the following figure: 

 

Fig.  4-11. 3-Input K-Map Representation 

 

In this K-map, the first row and the most left column represent the input variables. 

• First row: inputs A and B 

• Most-left column: input C 

In the first row, we can identify four different combinations of two inputs; AB=00, AB=01, AB=11, and 

AB=10, where only one-bit change in value from one adjacent column to the next column is allowed. 

Let’s see how to use this 3-input K-Map to simplify the Boolean equation. The following truth table can 

be mapped to K-map, as shown in Fig. 4-12. 

 

Fig.  4-12. 3-Input K-Map Representation with Circles 



33 
 

In the K-map of Fig. 4-12, we can identify only 3 squares filled with ‘1’ bit; mapping to �̅�𝐵𝐶̅ , �̅�𝐵𝐶, and  

𝐴𝐵𝐶. We can circle 1’s in adjacent squares, and have two red circles; one located at the second column 

of the squares and another located at the last row of the squares. The first circle takes a single column 

(�̅�𝐵) and two rows (𝐶, 𝐶̅), where 𝐶 and 𝐶̅ are cancelled each other. We can draw the literal �̅�𝐵 from the 

circle. The latter circle takes a single row (𝐶) and two columns (�̅�𝐵, 𝐴𝐵), where 𝐴 and �̅�  are cancelled 

each other, leaving only the literal 𝐵. We can draw the literals 𝐵𝐶 from the circle. These two implicants 

(product of literals) are ORed, so we can draw the corresponding Boolean equation:  𝑌 = �̅�𝐵 + 𝐵𝐶 from 

Fig. 4-12.  

When we draw a circle in the K-map, we need to draw a circle as big as possible so that the 

corresponding implicant can be minimized. We called a prime implicant whose implicant corresponding 

to the largest circle in a K-map. 

 There are some rules when we draw a circle in a K-map: 

• Every 1 must be circled at least once  

• Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction 

• Each circle must be as large as possible 

• A circle may wrap around the edges 

• A “don't care” (X) is circled only if it helps minimize the equation 

 

Let’s look at another example of 3-input K-map in Fig. 4-13. 

 

Fig.  4-13. 3-Input K-Map Representation with wrap around edges 

In Fig. 4-13, we have the two circles, one for the column 𝐴𝐵 and another for the bottom edges of the 

squares. The first circle takes a single column (𝐴𝐵) and two rows (𝐶, 𝐶̅), where 𝐶 and 𝐶̅ are cancelled 

each other. We can draw the literals 𝐴𝐵 from the circle. The latter circle takes a single row (𝐶) and two 

columns (�̅��̅�, 𝐴�̅�), where 𝐴 and �̅�  are cancelled each other, leaving only the literal �̅�. We can draw the 

literals �̅�𝐶 from the circle. These two implicants (product of literals) are ORed, so we can draw the 

corresponding Boolean equation:  𝑌 = 𝐴𝐵 + �̅�𝐶 from Fig. 4-13. 

The following table shows a 4-input truth table. From the truth table, we can fill out K-map. In the K-

map, the first row and the most left column represent the input variables. 

• First row: inputs A and B have four different combinations AB=00, AB=01, AB=11, and AB=10, 

where only one-bit change in value from one adjacent column to the next column is allowed. 

• Most-left column: inputs C and D have four different combinations CD=00, CD=01, CD=11, and 

CD=10, where only one-bit change in value from one adjacent column to the next column is 

allowed. 
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Fig.  4-14. 4-Input K-Map Representation 

 

Let’s see how to use this 4-input K-Map to simplify the Boolean equation. We can draw four circles in 

the above figure using the rules. The first circle① takes two columns (�̅��̅�, �̅�𝐵) and two rows (𝐶𝐷, 𝐶�̅�), 

where 𝐵 and �̅� are cancelled each other, and 𝐷 and �̅�  are cancelled in the same manner. We can draw 

the literals �̅�𝐶 from the circle. The second circle② takes a single column (�̅�𝐵) and two rows (𝐶̅𝐷, 𝐶𝐷), 

where 𝐶 and 𝐶̅ are cancelled each other. We can draw the literals �̅�𝐵𝐷 from the circle. The third circle③ 

takes a single column (𝐴�̅�) and two rows (𝐶̅�̅�, 𝐶̅𝐷), where 𝐷 and �̅� are cancelled each other. We can 

draw the literals 𝐴�̅�𝐶̅ from the circle. The last circle④ is located around the corner of edges and takes 

two columns (�̅��̅�, 𝐴�̅�) and two rows (𝐶̅�̅�, 𝐶�̅�), where 𝐴 and �̅� are cancelled each other, and 𝐶 and 𝐶̅  

are cancelled in the same manner. We can draw the literals �̅��̅� from the circle. These four implicants 

(product of literals) are ORed, so we can draw the corresponding Boolean equation:  𝑌 = �̅�𝐶 + �̅�𝐵𝐷 +

𝐴�̅�𝐶̅ + �̅��̅� from Fig. 4-14.  

 

Fig. 4-15 shows an example of 4-input K-map with “don’t cares (X)”. We need to circle every ‘1’ bit at 

least once. We can also circle “don’t cares (X)” if they help minimize the equation by making the circle as 

large as possible. If the don’t care (X) doesn’t help to maximize the circle, it can be considered as a ‘0’ 

bit. The first circle① takes two columns (𝐴𝐵, 𝐴�̅�) and four rows (𝐶̅�̅�, 𝐶̅𝐷, 𝐶𝐷, 𝐶�̅�), where all the literals 

are cancelled each other (𝐵 and �̅�, 𝐶 and 𝐶̅, and 𝐷 and �̅�) except the literal 𝐴. We can draw the literal 𝐴 

from the circle. The second circle② takes four columns (�̅��̅�, �̅�𝐵, 𝐴𝐵, 𝐴�̅�), two rows (𝐶𝐷, 𝐶�̅�), where all 

the literals are cancelled each other (𝐴 and �̅�, 𝐵 and �̅�, and 𝐷 and �̅�) except the literal 𝐶. We can draw 

the literal 𝐶 from the second. The last circle③ is located around the corner of edges and takes two 

columns (�̅��̅�, 𝐴�̅�) and two rows (𝐶̅�̅�, 𝐶�̅�), where 𝐴 and �̅� are cancelled each other, and 𝐶 and 𝐶̅  are 

cancelled in the same manner. We can draw the literals �̅��̅� from the circle. These three implicants 



35 
 

(product of literals) are ORed, so we can draw the corresponding Boolean equation:  𝑌 = 𝐴 + 𝐶 + �̅��̅� 

from Fig. 4-15. 

 

Fig.  4-15. 4-Input K-Map Representation with Don’t Cares 

 

Exercise 
 

Simply the Boolean equation with K-map: 

 

CD AB 00 01 11 10 

00 1 0 X 1 

01 0 0 X 0 

11 0 0 X X 

10 1 1 X X 

 

Answer: You can get the following equation: 𝑌 = 𝐶�̅� + �̅��̅� 
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4.3 Combinational Circuits 
 

Combinational Circuits are circuits made up of different types of logic gates and produce outputs by 

combining the values of the inputs at any given time. The circuits do not make use of any memory or 

storage device.  

 

Fig.  4-16. Combinational Circuit Description 

For n input variables, there are 2n possible binary input combinations, and for each binary combination 

of the input variables, there is one possible output. 

The combinational circuit is like a black box but it can be described with the truth table, which gives one 

possible output for each binary combination of the input variables. We will take a look at some popular 

combinational circuits throughout this section. 

 

1-Bit Half Adders 
 

A 1-bit half adder is used for adding together the two least significant digits in a binary sum. It has two 

inputs A and B, and two outputs, the sum S and the carryout Cout. The following table describe the 1-bit 

half adder. The sum is the output of exclusive OR gate, which has 𝑆 = �̅�𝐵 + 𝐴�̅� = 𝐴⨁𝐵. The Cout 

(carryout) is the output of AND gate, which has two inputs, A and B, i.e. 𝑆 = 𝐴 ∙ 𝐵. 

 

Table 4-2. Truth Table of 1-bit Half Adder 

A B Cout S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

 

For the above truth table, we can fill the box of Fig. 4-16 with a combinational circuit of 1-bit half adder 

in the following figure: 
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Fig.  4-17. Combinational Circuit of 1-bit Half Adder 

 

Multiplexer 
 

A multiplexer (or Mux), also known as a data selector, is a device that selects one of N analog or digital 

inputs and forwards the selected input to a single output line. If the mux has the two inputs, it needs a 

log2 2 control input. If the mux has N inputs, it needs  log2 𝑁 control inputs. The following figure shows 

a 2-to-1 multiplexer which has two inputs (D0 and D1), one output (Y), and a control input (S).  

 

Fig.  4-18. 2-to-1 Multiplexer 

 

If the control input S is 0, the input D0 is forwarded to the output Y. If the control input S is 1, the input 

D1 is forwarded to the output Y. The following table describes the 2-to-1 multiplexer. 

 

Table 4-3. Truth Table of 2-to-1 Multiplexer 

S D1 D0 Y 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 
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We can simply draw the truth table as follows: 

S Y 

0 D0 

1 D1 

 

The multiplexer can have more than two inputs. The 4-to-1 multiplexer has four inputs (D0, D1, D2, and 

D3), one output (Y), and two select inputs (S0 and S1), as shown in the following figure: 

 

Fig.  4-19. 4-to-1 Multiplexer 

 

The multiplexer operates as follows: 

• If the select inputs S1 S0 is 00, the input D0 is forwarded to the output Y. In this case, the other 

inputs D3, D2, and D1 don’t matter. Only the input D0 determines the output Y. 

• If the select inputs S1 S0 is 01, the input D1 is forwarded to the output Y. In this case, the other 

inputs D3, D2, and D0 don’t matter. Only the input D1 determines the output Y. 

• If the select inputs S1 S0 is 10, the input D2 is forwarded to the output Y. In this case, the other 

inputs D3, D1, and D0 don’t matter. Only the input D2 determines the output Y. 

• If the select inputs S1 S0 is 11, the input D3 is forwarded to the output Y. In this case, the other 

inputs D2, D1, and D0 don’t matter. Only the input D3 determines the output Y. 

 

Accordingly, we can draw the truth table of 4-to-1 multiplexer as follows: 

Table 4-4. Truth Table of 4-to-1 Multiplexer 

S1 S0 D3 D2 D1 D0 Y 

0 0 X X X 0 0 

0 0 X X X 1 1 

0 1 X X 0 X 0 

0 1 X X 1 X 1 
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1 0 X 0 X X 0 

1 0 X 1 X X 1 

1 1 0 X X X 0 

1 1 1 X X X 1 

 

where ‘X’ represents the don’t care term.  

 

Fig. 4-20 shows how the 4-to-1 multiplexer operates when the two select inputs S1S0 = 00. The input 

sequence D0 = 11111111 is forwarded to the output Y. The other inputs don’t affect the sequence of the 

output Y. 

 

Fig.  4-20. 4-to-1 Multiplexer with S1S0 = 00 

 

Fig. 4-21 shows how the 4-to-1 multiplexer operates when the two select inputs S1S0 = 01. The input 

sequence D1 = 00001111 is forwarded to the output Y. The other inputs don’t affect the sequence of the 

output Y. 

 

 

Fig.  4-21. 4-to-1 Multiplexer with S1S0 = 01 
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Fig. 4-22 shows how the 4-to-1 multiplexer operates when the two select inputs S1S0 = 10. The input 

sequence D2 = 11110000 is forwarded to the output Y. The other inputs don’t affect the sequence of the 

output Y. 

 

Fig.  4-22. 4-to-1 Multiplexer with S1S0 = 10 

 

Fig. 4-23 shows how the 4-to-1 multiplexer operates when the two select inputs S1S0 = 11. The input 

sequence D3 = 10101010 is forwarded to the output Y. The other inputs don’t affect the sequence of the 

output Y. 

 

Fig.  4-23. 4-to-1 Multiplexer with S1S0 = 11 

The following figure shows the 8-to-1 multiplexer which has eight inputs, D0 through D7. Since it has 8 

inputs, log2 8 = 3 select bits (select inputs) required. 

 

Fig.  4-24. 8-to-1 Multiplexer 
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The output Y is determined by the three select inputs, i.e. S2, S1, and S0. The following table describes the 

operation of the 8-to-1 multiplexer. 

Table 4-5. Truth Table of 8-to-1 Multiplexer 

S2 S1 S0 Y 

0 0 0 D0 

0 0 1 D1 

0 1 0 D2 

0 1 1 D3 

1 0 0 D4 

1 0 1 D5 

1 1 0 D6 

1 1 1 D7 

 

Encoder 
 

In general, encoders convert motion to an electrical signal that can be read by some type of control 

devices. One of very popular encoders you know is a keyboard. When you press a button of the 

keyboard, the keyboard coverts this motion to an 8-bit digital signal. Your computer can read the value 

you pressed. The encoder is an inverse operation of a decoder. If you have 2N inputs, the encoder 

produces a total of N outputs so that it generates the binary code corresponding to the input value. 

The following figure shows a 4-to-2 encoder, where there are four inputs, i.e. D3, D2, D1, D0, and two 

outputs (binary code), i.e. B1 and B0. In the encoder, only one input is high or “1” and the other inputs 

are low or “0”.  

 

Fig.  4-25. 4-to-2 Encoder 

 

The encoder generates the binary code corresponding to the input value. For example, if the input D0 is 

high and the other inputs are low, the encoder generates the binary code B1 B0 = 00. If the input D3 is 

high and the other inputs are low, the encoder generates the binary code B1 B0 = 11. The following table 

describe the operation of the 4-to-2 encoder. 
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Table 4-6. Truth Table of 4-to-2 Encoder 

Inputs Outputs 

D3 D2 D1 D0 B1 B0 

0 0 0 1 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

1 0 0 0 1 1 

 

The following figure shows a 8-to-3 encoder, where there are eight inputs, i.e. D7 through D0, and three 

outputs (binary code), i.e. B2, B1 and B0. This encoder operates in a similar manner. Only one input is 

high or “1” and the other inputs are low or “0”. 

 
Fig.  4-26. 8-to-3 Encoder 

 

The encoder generates the binary code corresponding to the input value. For example, if the input D7 is 

high and the other inputs are low, the encoder generates the binary code B2 B1 B0 = 111. If the input D4 

is high and the other inputs are low, the encoder generates the binary code B2 B1 B0 = 100. 

Table 4-7. Truth Table of 8-to-3 Encoder 

Inputs Outputs 

D7 D6 D5 D4 D3 D2 D1 D0 B2 B1 B0 

0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 0 1 

0 0 0 0 0 1 0 0 0 1 0 

0 0 0 0 1 0 0 0 0 1 1 

0 0 0 1 0 0 0 0 1 0 0 

0 0 1 0 0 0 0 0 1 0 1 

0 1 0 0 0 0 0 0 1 1 0 

1 0 0 0 0 0 0 0 1 1 1 
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Binary Decoder 
 

The binary decoder translates the binary value into the decimal value. Fig. 4-27 shows a block diagram 

of 2-bit binary decoder. 

 

Fig.  4-27. Block Diagram of 2-bit Binary Decoder 

 

The 2-bit binary decoder has the two inputs, A and B, and four output, Y0, Y1, Y2, and Y3.  The following 

table shows the truth table of the decoder. 

Table 4-8. Truth Table of 2-bit Binary Decoder 

A B Y0 Y1 Y2 Y3 

0 0 1 0 0 0 

0 1 0 1 0 0 

1 0 0 0 1 0 

1 1 0 0 0 1 

 

The following figure shows 3-to-8 binary decoder, where there are three inputs (binary code), i.e. A2, A1, 

and A0, and eight outputs, i.e. Y7 through Y0. 

 

Fig.  4-28. 3-to-8 Decoder 

The decoder converts the binary code into a decimal value (outputs), where only one output is high or 

“1” and the other outputs are low or “0”. The decoder generates a decimal value corresponding to the 

input binary code. For example, if the binary inputs are A2 A1 A0 = 110, only the output Y6 is HIGH, and 

the other outputs are all LOW. The following table describes the operation of the decoder. 
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Table 4-9. Truth Table of 3-to-8 Decoder 

Inputs Outputs 

A2 A1 A0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 

0 0 0 0 0 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 1 0 

0 1 0 0 0 0 0 0 1 0 0 

0 1 1 0 0 0 0 1 0 0 0 

1 0 0 0 0 0 1 0 0 0 0 

1 0 1 0 0 1 0 0 0 0 0 

1 1 0 0 1 0 0 0 0 0 0 

1 1 1 1 0 0 0 0 0 0 0 

 

Priority Circuit 
 

This chapter introduced the priority circuit in Section 4.1. This section describes the priority circuit in 

detail. Fig.  4-6 shows the truth table of the priority circuit. We will show how to design the circuit 

hardware from the truth table using K-map. 

The following figure shows the block of the priority circuit. If the inputs A3 A2 A1 A0 are “0000”, the 

circuit produces the outputs Y3 Y2 Y1 Y0 = 0000. 

 

Fig.  4-29. Priority Circuit with inputs: A3 A2 A1 A0 = 0000 

 

In the following figure, the inputs A3 A2 A1 A0 are “0001”. Only A0 asserts TRUE and the other input 

values are all FALSE. The circuit produces the outputs Y3 Y2 Y1 Y0 = 0001.  

 

Fig.  4-30. Priority Circuit with inputs: A3 A2 A1 A0 = 0001 
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In the following figure, the inputs A3 A2 A1 A0 are “001X”, where the term ‘X’ represents ‘don’t care’. The 

higher priority inputs A3 and A2 didn’t assert. Since only A1 asserts TRUE, the lower priority input A0 

doesn’t matter whether it is TRUE or FALSE. Only the output Y1 is TRUE and the other outputs are all 

FALSE. 

 

 

Fig.  4-31. Priority Circuit with inputs: A3 A2 A1 A0 = 001X 

 

In the following figure, the inputs A3 A2 A1 A0 are “01XX”, where the term ‘X’ represents ‘don’t care’. The 

higher priority input A3 didn’t assert. Since the next higher priority A2 asserts TRUE, the lower priority 

inputs A1 and A0 don’t matter whether they are TRUE or FALSE. Only the output Y2 is TRUE and the other 

outputs are all FALSE. 

 

 

Fig.  4-32. Priority Circuit with inputs: A3 A2 A1 A0 = 01XX 

 

In the following figure, the inputs A3 A2 A1 A0 are “1XXX”, where the term ‘X’ represents ‘don’t care’. The 

highest priority input A3 asserts TRUE. The lower priority inputs A2, A1 and A0 don’t matter whether they 

are TRUE or FALSE. Only the output Y3 is TRUE and the other outputs are all FALSE. 

 

 

Fig.  4-33. Priority Circuit with inputs: A3 A2 A1 A0 = 1XXX 
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We can summarize the operation of the priority circuit in the following table: 

 

Table 4-10. Summary of Priority Circuit Operation 

A3 A2 A1 A0 Y3 Y2 Y1 Y0 

0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 

0 0 1  0 0 1 0 

0 1   0 1 0 0 

1    1 0 0 0 

 

where the symbol ‘X’ represents ‘don’t care”. 

Let’s design the hardware from the truth table. The following figures show how to simplify the output Y3 

with the input variables, A3, A2, A1, and A0. With the red circuit, we can simplify the Boolean equation 

and draw the corresponding equation: 𝑌3 = 𝐴3. 

 

 

Fig.  4-34. Priority Circuit Design of Y3 using K-map 

 

The following figures show how to simplify the output Y2 with the input variables, A3, A2, A1, and A0. With 

the red circuit, we can simplify the Boolean equation and draw the corresponding equation: 𝑌2 = 𝐴3
̅̅ ̅𝐴2. 

 

Fig.  4-35. Priority Circuit Design of Y2 using K-map 
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The following figures show how to simplify the output Y1 with the input variables, A3, A2, A1, and A0. With 

the red circuit, we can simplify the Boolean equation and draw the corresponding equation: 𝑌1 =

𝐴3
̅̅ ̅ 𝐴2

̅̅ ̅𝐴1. 

 

 

Fig.  4-36. Priority Circuit Design of Y1 using K-map 

 

The following figures show how to simplify the output Y0 with the input variables, A3, A2, A1, and A0. With 

the red circuit, we can simplify the Boolean equation and draw the corresponding equation: 𝑌0 =

𝐴3
̅̅ ̅ 𝐴2

̅̅ ̅ 𝐴1
̅̅ ̅𝐴0. 

 

 

Fig.  4-37. Priority Circuit Design of Y0 using K-map 

 

With the above figures, from Fig. 4-34 to Fig. 4-37, we can design the priority circuit as follows: 

• Input A3 directly connected to Y3 

• AND1 gate produces the output Y2 with two inputs, A3 complement and A2 

• AND2 gate produces the output Y1 with three inputs, i.e. A3 complement, A2 complement, and 

A1 

• AND3 gate produces the output Y0 with four inputs, i.e. A3 complement, A2 complement, A1 

complement and A0 

 

The following figure shows the priority circuit with logic gates. 
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Fig.  4-38. Priority Circuit with Logic Gates 

 

where the bubble symbol at the input side of AND gates represents a complement.  
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Chapter 5: Binary Number Formats 

In this chapter, we introduce fixed- and floating-point number systems that can represent rational 

numbers. Fixed-point numbers are analogous to decimals; some of the bits represent the integer part, 

and the rest represent the fraction. Floating-point numbers are analogous to scientific notation, with a 

mantissa and an exponent. 

 

Objectives 
 

By the end of this chapter you should be able to: 

• Use the fixed- and floating-point number systems to represent rational numbers. 

• Demonstrate signed fixed- and floating-point numbers. 

• Recall how to convert decimal numbers to binary numbers. 

• Express rational numbers into scientific notations. 

• Identify the biased exponent for IEEE 754 representation. 

• Demonstrate the floating-point precision. 

 

5.1 Number Systems for Binary Representations 
 

Computers operate on both integers and fractions. So far, the numbers we can represent using binary 

representations include positive and negative integer numbers. Positive integer numbers are 

represented with unsigned binary numbers, whereas negative integer numbers are represented with 

two’s complement and sign/magnitude numbers. How can we represent fractions? There are two 

common notations to represent numbers with fractions; (1) fixed point notation and (2) floating point 

notation. In fixed point notation, the location of decimal point is fixed and there are a fixed number of 

digits after the decimal point. On the other hand, floating point number allows for a varying number of 

digits after the decimal point, meaning that the decimal point floats to the right of the most significant 

‘1’ bit. 

 

5.2 Fixed-Point Number Representation 
 

The decimal number can be expressed as the sum of the products of each digit times the weight for that 

digit. Thus, the decimal number 123.4510, can be expressed as 

123.4510 = (1  102) + (2  101) + (3  100) + (4  10-1) + (5  10-2) 

The weight of digits moving towards left increases by a factor of 10, whereas the weight of digits moving 

towards right decreases by a factor of 10. 
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Now, let’s look at binary number representation. The binary number can be expressed as the sum of the 

products of each digit times the weight for that digit in a similar manner. Thus, the binary number 

101.112, can be expressed as 

101.112 = (1  22) + (0  21) + (1  20) + (1  2-1) + (1  2-2) 

= 4 + 0 + 1 + 0.5 + 0.25 = 5.7510 

In the binary number representation, the weight of digits moving towards left increases by a factor of 2, 

whereas the weight of digits moving towards right decreases by a factor of 2. 

For example, what decimal number does the binary number 1011.10112 represent? We can find the 

decimal number value of the binary number 1011.10112 with the sum of the products of each digit times 

the weight for that digit, such as 1011.10112 = 1×23+0×22+1×21+1×20+1×2-1+0×2-2+1×2-3+1×2-4 = 8 + 0 + 2 

+ 1 + 0.5 + 0 + 0.125 + 0.0625 = 11.6875. 

What about the reverse process? Let’s convert the decimal number 6.7510 to a fixed-point binary 

number. First, we need to split the value into the integral part and the fractional part; integral 6 and 

fractional 0.75. The integral part will be converted into the binary number by repeating the division, 6 = 

110. The fractional part 0.75 will be converted into the binary number by repeating the multiplication as 

shown below: 

• 0.75 × 2 = 1.5 → remove overflow digit  1  

• 0.50 × 2 = 1.0 → remove overflow digit 1 

By collecting all the overflow digits from top to bottom, we can represent the decimal number 6.75 into 

the binary number 110.112. 

 

Exercises 
 

Represent the decimal number 12.6875 as the binary number using 4 integer bits and 4 fraction bits. 

After splitting the decimal number into the integer part and the fractional part, we can get the integral 

part as shown below: 

• Integral part: 12 → 1100 

The fractional part 0.6875 will be converted into the binary number by repeating the multiplication as 

shown below: 

• 0.6875 × 2 = 1.375 → remove overflow digit  1 

• 0.375  × 2 = 0.75 → no overflow   0 

• 0.75   × 2 = 1.5 → remove overflow digit  1 

• 0.5 × 2 = 1.0 → remove overflow digit  1 

By collecting all the overflow digits from top to bottom, we can represent the decimal number 12.6875 

into the binary number 1100.10112. 
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Signed Fixed-Point Numbers 
 

The fixed-point number can represent the positive and negative values with two’s complement and 

sign/magnitude number systems. 

For example, let’s represent the decimal number -7.510 as a signed fixed-point binary number using 4 

integer and 4 fraction bits. In the sign/magnitude number system, the first bit always represents the 

sign. Since the decimal number -7.510 is a negative value, the sign bit should be ‘1’. The rest of integer 

bits can represent the integer value, so that we can convert the integer part 7 into the binary value 111. 

The fractional part 0.5 will be converted into the binary number by repeating the multiplication, 0.5 × 2 

= 1.0 (overflow digit: 1). The number -7.510 can be converted into the signed fixed-point number, 

1111.1000, where the decimal point is fixed.  

Now, let’s represent the decimal number -7.510 as a two’s complement number. First, we will find a 

positive representation of the number and then we will negate the value, meaning that we convert the 

positive value to the negative value. We can find a positive representation of the number 7.5, by 

splitting the value into the integral part and the fractional part; integral 0111 and fractional 1000. Let’s 

negate the positive representation 01111000 by inverting all the bits and adding 1 to lsb (least 

significant bit), as shown below: 

• +7.5:  01111000 

• Invert bits: 10000111 

• Add 1 to lsb: +      1 

• -7.5:  10001000 

 

In the two’s complement number system, the first digit always represents a negative value. The other 

bits are regular binary numbers, as shown below: 

Digits 1 0 0 0 1 0 0 0 

Weights -8 4 2 1 0.5 0.25 0.125 0.0625 

 

That means the first digit ‘1’ represents -8 and the fifth digit ‘1’ represents 0.5. the sum of these two 

digits represents -7.5 (= -8 + 0.5) which we got from the above operation. 

 

Exercises 
 

Convert the following two’s complement binary fixed-point numbers to base 10. The implied binary 

point is explicitly shown to aid in your interpretation. 

 

• 0101.1000 =  
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The integer part is 0101, so that we can get the integer part as follows: 0 × -23 + 1 × 22 + 0 × 21 + 1 × 20 = 

1 × 4 + 1 × 1 = 5. The fractional part is 1000, so that we can get the fractional part as follows: 1 × 2-1 + 0 × 

2-2 + 0 × 2-3 + 0 × 2-4 = 0.5. The sum of integer part and the fractional part is 5.5. 

 

• 1111.1111 =  

The integer part is 1111, so that we can get the integer part as follows: 1 × -23 + 1 × 22 + 1 × 21 + 1 × 20 = 

 -8 + 4 + 2 + 1 = -1. The fractional part is 1111, so that we can get the fractional part as follows: 1 × 2-1 + 1 

× 2-2 + 1 × 2-3 + 1 × 2-4 = 0.5 + 0.25 + 0.125 + 0.0625 = 0.9375. The sum of integer part and the fractional 

part is -1 + 0.9375 = -0.0625. 

 

• 1000.000 =  

There is only the integer part 1000. We can get the integer value, -8. 

 

5.3 Floating-Point Number Representation 
 

In the floating-point number, the binary point position is assumed always just before the most 

significant digit, which is very similar to decimal scientific notation. Before we dive into the binary 

number, let’s look at a decimal number 27310. We can write the decimal number 27310 in scientific 

notation: 273 = 2.73 × 102.  

In general, a number is written in scientific notation as follows: 

± 𝑀 × 𝐵𝐸  

where the symbol 𝑀 defines the mantissa (fraction), the symbol 𝐵 defines the base, and the symbol 𝐸 

defines the exponent. In the example, the mantissa 𝑀 is 2.73, the base 𝐵 is 10, and the exponent 𝐸 is 2. 

The binary number can be written in scientific notation as shown above, where the base is 2. Once we 

got the scientific notation, we can store the binary number in 32 bits, as shown in Fig. 5-1. The first bit 

stores the sign. If the sign bit is 0, the number is positive; otherwise the number is negative. The next 

exponent field (8 bits) stores the exponent value. The mantissa field (23 bits) stores all the digit of the 

number. 

 

 

Fig.  5-1. Floating-Point Number Representation 
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We will show you how to represent the decimal number 22810 using a 32-bit floating point 

representation. There are three versions. The final version is called the IEEE 754 floating-point standard. 

First, we need to convert the decimal number to the binary number. 

• 22810 = 111001002 

Second, we can write the binary number in “binary scientific notation”. 

• 111001002 = 1.110012 × 27 

where, we can identify the mantissa 𝑀 = 111001, the base 𝐵 = 2, and the exponent 𝐸 = 7. Let’s fill in 

each field of the 32-bit floating point number: 

• The sign bit is positive (0) 

• The 8-bit exponent represents the value 7: 00000111 

• The remaining 23 bits are the mantissa: 11100100000000000000000 

Since the mantissa has a total of 6 digits in the given example. The rest of the mantissa will be filled with 

‘0’. The following figure show the first representation of the floating-point number. 

 

Fig.  5-2. Floating-Point Number Representation 1 

 

The first bit of the mantissa is always ‘1’. The implicit leading one is not included in the 23-bit mantissa 

for efficiency. We only store the fraction bits in 23-bit field except the leading one. The following figure 

shows the second representation of the floating-point number. 

 

Fig.  5-3. Floating-Point Number Representation 2 

 

Notice that the first bit of the mantissa is gone. Now we only store the fraction. 

The exponent needs to represent both positive and negative exponents. To do so, floating-point uses a 

biased exponent, which is the original exponent plus a constant bias. 32-bit floating-point uses a bias of 

127. The exponent of 7 is stored as a biased exponent that is equal to the sum of the bias (127) and the 

original exponent (7), i.e., 127 + 7 = 134 = 100001102. The IEEE 754 32-bit floating-point representation 

of 22810 is shown in the following figure: 
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Fig.  5-4. Floating-Point Number Representation 3 – IEEE 754 

 

The hexadecimal representation of the number is 0x43640000. 

 

Exercises 
 

Write the decimal number -58.2510 in floating point of IEEE 754 format. 

First, we need to convert the decimal number to the binary number, as shown below: 

• 58.2510 = 111010.012 

Second, we can write the binary number in “binary scientific notation”. 

•  1.1101001 × 25 

where, we can identify the mantissa 𝑀 = 11101001, the base 𝐵 = 2, and the exponent 𝐸 = 5. Let’s fill 

in each field of the 32-bit floating point number: 

• The sign bit is negative (1) 

• The 8-bit biased exponent bits: (127 + 5) = 132 = 100001002 

• 23 fraction bits: 110 1001 0000 0000 0000 0000 

Note that the first bit of the mantissa is gone and we have 23 fraction bits. 

 

Fig.  5-5. Floating-Point Number Representation with IEEE 754 Format 

 

The hexadecimal representation of the number is 0xC2690000. 

 

  



55 
 

Special Cases 
 

The IEEE 754 floating-point format has special cases to represent numbers such as zero, positive and 

negative infinity, and illegal results. The following figure show special cases of these values. 

Table 5-1. Special Cases of IEEE 754 Standard Format 

Number sign Exponent (8 bits) Fraction (23 bits) 

0 x 00000000 00000000000000000000000 

 0 11111111 00000000000000000000000 

- 1 11111111 00000000000000000000000 

NaN x 11111111 Non-zero 

 

We have showed 32-bit floating-point numbers. When you declare a float variable in your program 

language, the variable is stored with the format we have discussed so far in the computer system. The 

format is also called single-precision (float) or single. The IEEE 754 standard also defines 64-bit double-

precision numbers (also called doubles) that can provide greater precision and range.  

The following table shows the number of bits used for the fields in each format. 

 

Table 5-2. Single-Precision and Double-Precision Formats of IEEE 754 Standard  

Format Total bits Sign bits Exponent bits Bias value Fraction bits 

Single-Precision  32 1 8 127 23 

Double-Precision  64 1 11 1023 52 

 

Recall that a number overflows when its magnitude is too large to be represented. Likewise, a number 

underflows when it is too tiny to be represented.  Arithmetic results that fall outside of the available 

precision must round to a neighboring number. The rounding modes are: round down, round up, round 

toward zero, and round to nearest. The default rounding mode is round to nearest. 

For example, round the value 1.100101 (1.578125) to only 3 fraction bits. If the round down mode is 

applied, the value rounds ‘1.100’. If the round up mode is applied, the value rounds ‘1.101’. If the round 

toward zero is applied, the value rounds ‘1.100’. If the round to a neighboring number is applied, the 

value rounds ‘1.101’, because 1.62510 (1.1012) is closer to 1.57812510 (1.1001012) than 1.510 (1.12) is.  
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Chapter 6: Computer Arithmetic 

In this chapter, we introduce arithmetic circuits which are the central building blocks of computers. 

Computers and digital logic perform many arithmetic functions: addition, subtraction, comparisons, 

shift, multiplication and division. This module describes hardware implementations for all of these 

operations. 

 

Objectives 
 

By the end of this chapter you should be able to: 

• Demonstrate knowledge of 1-bit half and full adders  

• Demonstrate knowledge of four-bit adder and subtractor 

• Recall how to operate four-bit adder-subtractor 

• Evaluate the arithmetic operation with four-bit adder-subtractor 

• Execute arithmetic logic operations with Arithmetic logic unit 

• Differentiate logical shift and arithmetic shift 

• Apply arithmetic and shift operations for multiplication and division 

 

6.1 Boolean Addition 
 

Let’s look at how the computer execute the Boolean addition, 5 + 6, with binary numbers. 

We assume an 8-bit computer. The decimal number 5 will be converted to an 8-bit binary number, 0000 

0101. The decimal number 6 will be converted to an 8-bit binary number, 0000 0110, as shown in the 

below figure: 

 

Fig.  6-1. Boolean Addition: 5 + 6 

 

As we calculate the decimal addition, the rightest digits will be added first and then the next digits will 

be executed. The sum of 1 and 0 is 1 with a carry 0. In the second column from the right side, the sum of 

0, 1, and the carry 0 is 1 with a carry 0. In the third column from the right side, the sum of 1, 1 and the 

carry 0 is 0 with a carry 1. In the fourth column, the sum of 0, 0, and the carry 1 is 1 with a carry 0. 
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We can execute the Boolean addition using 1-bit full adders. A 1-bit half adder is used for adding 

together the two least significant digits in a binary sum. It has two inputs A and B, and two outputs, Sum 

and Cout. But it lacks a Cin (carry) input. 

 

1-Bit Full Adders 
 

1-bit full adder can perform addition of numbers, where it has such as inputs and outputs: 

• Inputs: A, B, Carry in (Cin) 

• Outputs: Carry out (Cout), Sum (S) 

 

 

Fig.  6-2. 1-Bit Full Adder 

 

The following table describes the operation of the adder. Here, the sum S will be ‘1’ if the number of the 

input ‘1’ is odd. For example, if the inputs A, B, and Cin are 001, the sum S is ‘1’. If the inputs A, B, and 

Cin are 110, the sum S is ‘0’. The Cout will be ‘1’ if the number of the input ‘1’ is greater than or equal to 

2. For example, if the inputs A, B, and Cin are 110, the Cout is ‘1’. 

 

Table 6-1. Truth Table of 1-bit Full Adder 

A B C
in

 S C
out

 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 
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We can simplify the outputs S and Cout using K-map. The following figure shows K-map representation of 

the output S. 

 

Fig.  6-3. K-map representation of the output S 

 

From the above figure, we can express the output S in terms of input variables as follows: 

𝑆 = 𝐴�̅�𝐶�̅�𝑛 + �̅�𝐵𝐶�̅�𝑛 + �̅��̅�𝐶𝑖𝑛 + 𝐴𝐵𝐶𝑖𝑛 = 𝐴⨁𝐵⨁𝐶𝑖𝑛 

In order to produce the output S, there are four AND gates and one OR gate needed as shown in Fig. 6-4: 

 

Fig.  6-4. Logic gate circuit for the Output S 

 

Each AND gate has the following inputs: 

• AND1: 𝐴, �̅�, and 𝐶�̅�𝑛 

• AND2: �̅�, 𝐵, and 𝐶�̅�𝑛 

• AND3: �̅�, �̅�, and 𝐶𝑖𝑛 

• AND4: 𝐴, 𝐵, and 𝐶𝑖𝑛 

All outputs of the AND gates fed into the OR gate that produces the sum S.  

The following figure shows K-map representation of the output Cout. 

 

Fig.  6-5. K-map representation of the output Cout 
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From the above figure, we can express the output Cout in terms of input variables as follows: 

𝐶𝑜𝑢𝑡 = 𝐴𝐶𝑖𝑛 + 𝐵𝐶𝑖𝑛 + 𝐴𝐵 

In order to produce the output Cout, there are three AND gates and one OR gate needed as shown in Fig. 

6-6: 

 
Fig.  6-6. Logic gate circuit for the Output Cout 

 

Each AND gate has the following inputs: 

• AND5: 𝐴 and 𝐶𝑖𝑛 

• AND6: B and 𝐶𝑖𝑛 

• AND7: 𝐴 and 𝐵 

All outputs of the AND gates fed into the OR gate that produces the carryout Cout. 

By combining Figs. 6-4 and 6-6, we can draw the 1-bit full adder with the carryin Cin, as shown in the 

following figure: 

 

 
Fig.  6-7. Logic gate circuit for the 1-Bit Full Adder 
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In the above figure, the 1-bit full adder has three inputs, A, B and Cin; and two outputs, S and Cout. All the 

logic gates for the outputs S and Cout placed in a single block. The sum S is produced with four AND gates 

and one OR gate in the same way to generate the output S in Fig. 6-4. The Cout is produced with three 

AND gates and one OR gate in the same way to generate the output Cout in Fig. 6-6. 

 

Four-Bit Adders 
 

How can we design four-bit adders? The four-bit adder is designed with four 1-bit full adders by 

connecting them in a parallel manner. The carryout Cout of the first full adder connected to the carry in 

Cin of the second full adder, Cout of the second full adder connected to Cin of the third fuller adder, and 

Cout of the third full adder connected to Cin of the fourth fuller adder, as shown in the following figure: 

 
Fig.  6-8. Four-bit Adder 

 

where the binary input A includes A3, A2, A1 and A0, the binary input B includes B3, B2, B1 and B0, Cin is C0, 

the output S includes S3, S2, S1 and S0, and the Cout is C4. 

 

Exercises 
 

Add 3 and 4 using the four-bit adder. 

• 3 = 0011 (A), 4 = 0100 (B) 

Inputs A (0011) and B (0100) are fed into 4-bit full adder. The sum of A0, B0 and C0 is 1 (S0), the sum of A1, 

B1 and C1 is 1 (S1), the sum of A2, B2 and C2 is 1 (S2), and the sum of A3, B3 and C3 is 0 (S3). By collecting all 

the bits S3 – S0, it produces 0111 (=7) which is the sum of 3 and 4. 
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Fig.  6-9. Add 3 and 4 using four-bit adder 

 

6.2 Boolean Subtraction 
 

Let’s look at how the computer execute the Boolean subtraction, 12 - 5, with binary numbers. 

We assume an 8-bit computer. The decimal number 12 will be converted to an 8-bit binary number, 

0000 1100. The decimal number 5 will be converted to an 8-bit binary number, 0000 0101, as shown in 

the below: 

 
0000 11002 (1210) 

    − 0000 01012 (510) 

    = 0000 01112 (710) 

 

The logic operation of the above is not appreciate with the logic gates. Instead of the above operation, 

the Boolean subtraction is converted to the addition by converting the subtracted value to negate using 

two’s complement. 

We can negate the number 5 by flipping all the bits and adding one to the lsb (least significant bit), as 

shown below: 

1111 10102 

+       1 

1111 10112 (-510) 

 

The Boolean subtraction is now converted to the addition, as shown below: 

 
    1 1111 0000  carries 

     0000 11002 (1210) 

    + 1111 10112 (-510) 

    = 0000 01112 (710) 
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The most left carry bit (9th bit) will be ignored because the operation is executed in an 8-bit computer. 

The overflow may occur when there are insufficient bits in a binary number representation to portray 

the result of an arithmetic operation. 

 

Four-Bit Subtractor 
 

Four-bit subtractor can be designed with 4-bit full adder, by adding NOT gates and carryin (Cin) = 1, as 

shown in the below figure: 

 

 
Fig.  6-10. Four-bit Subtractor 

 

where the input bits A3 through A0 are fed into the full adder directly, the input bits B3 through B0 are 

fed into the full adder after flipping the bits with NOT gates, and the first carryin C0 set to 1, C0 = 1. The 

Boolean equation of the above block diagram is expressed as shown below: 

𝑌 = 𝐴 − 𝐵 = 𝐴 + (�̅� + 1) 

The subtractor produces the output Y, Y3 through Y0, and the carryout C4. 

Let’s subtract 3 from 7 using the four-bit subtractor.  

• 7 = 0111 (A); A3 = 0, A2 = 1, A1 = 1, A0 = 1,  

• 3 = 0011 (B); B3 = 0, B2 = 0, B1 = 1, B0 = 1. 

The binary inputs A and B (A3 – A0 and B3 – B0) are fed into the subtractor as shown below: 
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Fig.  6-11. Subtract 3 from 7 

 

Starting from the rightest side, we can execute the full adder operation with 𝐴0 = 1, �̅�0 = 0, and 𝐶0 = 1, 

producing the outputs 𝑌0 = 0 and 𝐶1 = 1, where 𝐶1 become the carryin for the next full adder. The 

second full adder executes with the following inputs; 𝐴1 = 1, �̅�1 = 0, and 𝐶1 = 1, producing the outputs 

𝑌1 = 0 and 𝐶2 = 1, where 𝐶2 become the carryin for the next full adder. The third and fourth full adders 

execute in a similar manner: the inputs 𝐴2 = 1, �̅�2 = 1, and 𝐶2 = 1 produce the outputs 𝑌2 = 1 and 𝐶3 = 

1; and the inputs 𝐴3 = 0, �̅�3 = 1, and 𝐶3 = 1 produce the outputs 𝑌3 = 0 and 𝐶4 = 1, where the carryout  

𝐶4 will be ignored because this is a 4-bit computer system. The output bits 𝑌3𝑌2𝑌1𝑌0 (= 0100) is equal to 

4. 

 

6.3 Adder-Subtractor 
 

The hardware configure of the adder is very similar to that of the subtractor. Since the hardware 

configuration is related to the cost. We can design this two hardware by sharing some components, i.e. 

full adders.  A four-bit Adder-Subtractor can be designed with 4-bit full adder, four exclusive OR gates 

and a mode bit M, as shown in the below: 

 
Fig.  6-12. Four-bit Adder-Subtractor 

 

where the input bits A3 through A0 are fed into the full adder directly, the input bits B3 through B0 are 

fed into the full adder after executing exclusive OR operation with a mode bit M. The mode bit M 
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determines either an adder (M = 0) or a subtractor (M = 1). The Adder-Subtractor produces the output 

bits S3 through S0, and the carryout C4, where the carryout C4 is used for overflow detection. 

The following figure shows the case when the mode bit M is equal to 0, executing the add operation.  

 
Fig.  6-13. Four-bit Adder-Subtractor: M = 0 

 

Since the mode bit M = 0, the outputs of exclusive OR gates are equal to B3, B2, B1 and B0. Then the four-

bit Adder-Subtractor produces the output bits, S3 through S0, and the carryout C4. It works as a 4-bit full 

adder.  

If the mode bit M = 1, as shown in Fig. 6-14, the outputs of exclusive OR gates are equal to �̅�3, �̅�2, �̅�1, 

and �̅�0, where the carryin C1 of the first full adder is equal to 1.  

 

 
Fig.  6-14. Four-bit Adder-Subtractor: M = 1 

 

Then the four-bit Adder-Subtractor produces the output bits, S3 through S0, and the carryout C4.  It 

works as a 4-bit subtractor. 

Let’s look at how this circuit works with the following example inputs; 

• A = 5 (0101) 

• B = 7 (0111) 

• The mode bit M = 1 
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The input bits A3 through A0 are directly fed into the adders. On the other hand, the input bits B3 

through B0 are fed into the exclusive OR gates. Since the mode bit M = 1, the outputs of the exclusive OR 

gates are �̅� (B complement). 

 
Fig.  6-15. Four-bit Adder-Subtractor with Example Inputs: A = 5, B = 7, and M = 1 

 

From the rightest side of the above figure,  

• Three inputs A0 = 1, �̅�0 = 0, carryin C0 = 1 fed into the first FA, and then produce S0 = 0 and 

carryout C1 = 1. 

• Three inputs A1 = 0, �̅�1 = 0, carryin C1 = 1 fed into the second FA and then produce S1 = 1 and 

carryout C2 = 0. 

• Three inputs A2 = 1, �̅�2 = 0, carryin C2 = 0 fed into the third FA, and then produce S2 = 1 and 

carryout C3 = 0. 

• Three inputs A3 = 0, �̅�3 = 1, carryin C3 = 0 fed into the fourth FA, and then produce S3 = 1 and 

carryout C4 = 0. 

Let’s collect all the sum bits, 𝑆3𝑆2𝑆1𝑆0 (= 1110), which is equal to -2 (two’s complete number). 

 

Exercises 
 

Eight-bit Adder-Subtractor can be designed with eight 1-bit full adders by connecting them in a parallel 

manner. 

 
Fig.  6-16. Eight-bit Adder-Subtractor 
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• Cout (C1) of the first full adder connected to Cin of the second fuller adder, Cout (C2) of the second 

full adder connected to Cin of the third fuller adder, etc. 

• Binary input A includes A7 through A0 

• Binary input B includes B7 through B0 

• Cin: C0  

• Output S includes S7 through S0. 

• Cout: C4 

If A = 32 (00100000), B = 63 (00111111), and M = 1, what is the output S? 

 

6.4 Comparators 
 

A 1-bit comparator is designed with an exclusive OR gate, as shown in Fig. 6-17.  

 
Fig.  6-17. Eight-bit Adder-Subtractor 

 

There are two AND gates and one OR gate. AND1 gate has two inputs, A and �̅�. AND2 gate has also two 

inputs, �̅� and B. The two outputs of AND gates are fed into the OR gate that produces the output Y. 

 

Equality 
 

1-bit equality comparator is simply designed with exclusive NOR gate. What about 4-bit equality 

comparator? 4-bit equality comparator is designed by connecting 4 exclusive NOR gates parallelly, as 

shown below: 

 
Fig.  6-18. Four-bit Equality Comparator 

Each XNOR gate compares the inputs A and B as follows: 
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• XNOR3 for two inputs A3 and B3 

• XNOR2 for two inputs A2 and B2 

• XNOR1 for two inputs A1 and B1 

• XNOR0 for two inputs A0 and B0 

The outputs of all XNOR gates are fed into 4-input AND gate, which produces the logic “1” if only if all 

the inputs are “1”. 

 

Less Than 
 

The Less Than comparator can be designed with magnitude comparison by computing A – B and looking 

at the sign bit (msb: most significant bit), as shown in the below: 

 
Fig.  6-19. Less Than Comparator 

 

where the term ‘N’ means the M-bit input or output, and [N-1] represents the sign bit, i.e. the most 

significant bit. If the sign bit is 1, A is less than B. If the sign bit is 0, A is greater than or equal to B. 

 

6.5 Arithmetic Logic Unit 
 

An ALU (Arithmetic Logic Unit) combines a variety of mathematical and logical operations, e.g. addition, 

subtraction, magnitude comparison, AND operation, OR operation, etc., into a single unit. The following 

figure shows a simplified ALU.  

 
Fig.  6-20. Simplified ALU 
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There are the two inputs A and B. Both of them are N bits. The operation of ALU determined by the 

function bits, F2 F1 F0. For example, if F2 F1 F0 = 000, ALU executes AND operation. If F2 F1 F0 = 001, ALU 

executes OR operation. The following table explains the operation of the ALU with the function bits. 

 

Table 6-2. ALU Operation with Function Bits 

F
2
 F

1
 F

0
 Function 

0 0 0 A AND B 

0 0 1 A OR B 

0 1 0 A + B 

0 1 1 Not used 

1 0 0 A AND ~B 

1 0 1 A OR ~B 

1 1 0 A - B 

1 1 1 SLT 

 

N-bit ALU 
 

The simplified N-bit ALU of Fig. 6-20 is designed with 2-to-1 Multiplexer, full adder, zero extend, NOT 
gate, OR gate, AND gate, and 4-to-1 Multiplexor, as shown in Fig. 6-21, where all the units are N bits. 

 
Fig.  6-21. Design of N-bit ALU 

 

Input A (n-bit) directly is fed into the full adder, OR gate, or AND gate. Input B (n-bit) is fed into 2-to-1 

Multiplexor with and without NOT gate, where 2-to-1 Multiplexor produce either B or �̅� depending on 

the function bit F2 value. If the function bit F2 is true (F2 = 1), the multiplexor produces �̅�. If the function 

bit F2 is false (F2 = 0), it produces B. The full adder has two inputs A and B (or �̅�). In a similar manner, 
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each logic OR or AND gate has two inputs A and B (or �̅�). Zero extend detects the most significant bit of 

the full adder output (the sum S) and produces a total of N bits, where the other bits except the least 

significant bit are filled with ‘0’. 

4-to-1 Multiplexor has the following four inputs: 

• the output of zero extend 

• the output of the adder 

• The output of OR gate 

• The output of AND gate 

It forward one of inputs to the output Y depending on the two function bits F1 F0. 

 

Let’s look at an example how the ALU operates with the following inputs: 

• Input A = 25 

• Input B =32 

• Function bits F2 F1 F0 = 111 

where we assume this is a 32-bit ALU. Input A = 25 (32-bit) is directly fed into the full adder, whereas 

input �̅� (32-bit) is fed into the full adder because 2-to-1 Multiplexor produces �̅� with F2 = 1. Here, the 

full adder works as subtractor. Note that the carryin of the full adder is F2 = 1. 

 
Fig.  6-22. SLT Operation of N-bit ALU 

 

The output of the adder is -7, i.e. A – B = 25 – 32 = -7. The most significant bit (msb) S31 is equal to 1 

because the output value of the adder is negative. The zero-extend extends the msb and produces 

0x00000001. Since F1 F0 = 11, the output of zero-extend is forwarded to the output of 4-to-1 

Multiplexer, i.e. Y = 0x00000001. 
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Exercises 
 

Let’s execute the designed 32-bit ALU with the following inputs: 

• Input A = 16 

• Input B =31 

• Function bits F2 F1 F0 = 110 

where we assume this is a 32-bit ALU.  Input A = 16 (32-bit) directly is fed into the full adder, whereas 

input �̅� (32-bit) is fed into the full adder because 2-to-1 Multiplexor produces �̅� with F2 = 1. Here, the 

full adder works as subtractor. 

 
Fig.  6-23. Subtract Operation of N-bit ALU 

 

The adder executes the following operation: 

• Binary input A =  0000|0000|0000|0000|0000|0000|0001|0000 

• Binary input �̅� = 1111|1111|1111|1111|1111|1111|1110|0000 

• Carryin F2 = 0000|0000|0000|0000|0000|0000|0000|0001 

• Binary output S = 1111|1111|1111|1111|1111|1111|1111|0001 (=-15) 

Since two function bits F1 F0 = 10, the 4-to-1 Multiplexer forwards the binary output S to the output 

value Y = S = 0xFFFFFFF1. 

 

Logical Shift 
 

A logical shift is a bitwise operation that shifts all the bits. The two base variants are the logical left shift 

and the logical right shift. In the logic left shift, shift all the bits to left and fill empty spaces with 0’s: 

  11001011 LSL 1 = 10010110 
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where the underlined zero is added to fill the empty spaces. The most significant bit is discarded. 

In the logical right shift, shift all the bits to right and fill empty spaces with 0’s: 

  11001011 LSR 2 = 00110010 

where the underlined zeros are added to fill the empty spaces. The least significant bits are discarded. 

 

Arithmetic Shift 
 

An arithmetic shift is also a bitwise operation that shifts all the bits. The two base variants are the 

arithmetic left shift and the arithmetic right shift. The operation of the arithmetic left shift is the same as 

the logic left shift. The vacant least significant bit is fill with zero and the most significant bit is discarded.  

 

 msb     lsb  
 7 6 5 4 3 2 1 0  

Before ALS: 0 0 0 1 0 1 1 1 = 23 

          2 

After ALS: 0 0 1 0 1 1 1 0 = 46 

 

The arithmetic left shift is equivalent to multiplication. After we execute ALS by 1 bit, the original value 

is multiplied with 21-bit.  For example, if you execute ALS by 1 bit with 00010111 (=23), the operation 

returns 00101110 (= 46). If you execute ALS by 2 bits with 00010111 (=23), it returns 01011100 

(=23  22 = 92). 

 

The arithmetic right shift is equivalent to division. After we execute ARS by 1 bit, the original value is 

divided by 21-bit. For example, if you execute ARS by 1 bit with 00010111 (=23), the operation returns 

00001011 (=11), where the result is always round down.  

 

 msb     lsb  
 7 6 5 4 3 2 1 0  

Before ARS: 0 0 0 1 0 1 1 1 = 23 

          2 

After ARS: 0 0 0 0 1 0 1 1 = 11 

 

where the vacant most significant bit is filled with a copy of the original msb zero, where the original 

number is positive. If the number is negative, the vacant most significant bit is filled with one. 

Let’s execute ARS by 1 bit with 11101001 (=-23). The operation returns 11110100 (-12), where the 

vacant msb is filled with a copy of the original msb one. The result is always round down. 
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 msb     lsb  
 7 6 5 4 3 2 1 0  

Before ARS: 1 1 1 0 1 0 0 1 = -23 

          2 

After ARS: 1 1 1 1 0 1 0 0 = -12 

 

Exercises 
 

Execute the logical shift operation of the following values: 

• 11001 LSR 2 = 00110 

The original value 11001 is shifted right. The vacant msb is filled with zero and the lsb is discarded. 

• 11001 LSL 2 = 00100 

The original value 11001 is shifted left. The vacant lsb is filled with zero and the msb is discarded. 

 

Execute the arithmetic shift operation of the following values: 

• 11001 ASR 2 = 11110 

The original value 11001 is shifted right. The vacant msb is filled with a copy of the original msb.  

• 11001 ASL 2 = 00100 

The original value 11001 is shifted left. The vacant lsb is filled with a copy of the original lsb. 
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Chapter 7: Circuit Designs and Sequential Circuits 

In this chapter, we introduce the most commonly used building blocks: multiplexer, decoder, and 

encoder. The outputs of these combinational logic circuits depend on current input values, hiding the 

unnecessary gate-level details to emphasize the function of the building block. This chapter also 

introduces sequential logic circuits, which outputs depend on both current and prior values. 

 

Objectives 
 

By the end of this chapter you should be able to: 

• Demonstrate knowledge of multiplexer, decoder, and encoder 

• Simplify the Boolean equation with k-map 

• Design combinational logic circuits with logic gates 

• Differentiate combinational logic circuits and sequential logic circuits 

• Recall basic knowledge of SR latch: set, reset, memory and invalid state 

• Evaluate internal circuit operations of D latch and D flip-flop 

 

7.1 Combinational Circuit Design 
 

Multiplexer 
 

A multiplexer (or Mux), also known as a data selector, is a device that selects one among N analog or 

digital inputs and forwards the selected input to a single output line. If the mux has N inputs, it needs  

log2 𝑁 control inputs. For example, if the mux has the two inputs, it needs a log2 2  ( = 1) control input. 

The following figure shows 2-to-1 multiplexer which has two inputs (D0 and D1), one output (Y), and a 

control input (S).  

 
Fig.  7-1. 2-to-1 Multiplexer 

 

If the control input S is 0, the input D0 is forwarded to the output Y. If the control input S is 1, the input 

D1 is forwarded to the output Y. The following table describes the 2-to-1 multiplexer. 
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Table 7-1. Truth Table of 2-to-1 Multiplexer 

S D1 D0 Y 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 

 

From the above table, we can notice that the value of the output Y is determined by two inputs, D1 and 

D0, and the control input S. Let’s draw K-map to simplify the Boolean equation in terms of the output Y, 

as shown in Fig. 7-2. 

 

 

Fig.  7-2. 2-to-1 Multiplexer 

 

The simplified equation is 𝒀 = 𝐷0𝑆̅ + 𝐷1𝑆 which allows us to design logic gates for2-to-1 multiplexer. 

For the multiplexer design, there needs two AND gates and one OR gate in the block of Fig. 7-1. 

 
Fig.  7-3. 2-to-1 Multiplexer 

 

As shown in Fig. 7-3, AND1 gate has two inputs, D1 and S, whereas AND2 gate has two inputs, D0 and 𝑆̅. 

The two outputs of the AND gates are fed into the OR gate which produces the output Y. 
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Decoder 
 

The decoder translates the binary value into a decimal value. Fig. 7-4 shows a block diagram of 2-bit 

binary decoder. The 2-to-4 decoder has two inputs A1 and A0, and four outputs Y3, Y2, Y1 and Y0. 

Depending on the binary inputs A1 and A0, only one output will be TRUE and the other outputs will be 

FALSE. For example, if the binary inputs A1A0 is equal to ‘11’, only one output Y3 is TRUE and the other 

outputs Y2 Y1 Y0 are all FALSE. 

 
Fig.  7-4. Block Diagram of 2-bit Binary Decoder 

 

The following table shows the truth table of the decoder. 

 

Table 7-2. Truth Table of 2-bit Binary Decoder 

A1 A0 Y3 Y2 Y1 Y0 

0 0 0 0 0 1 

0 1 0 0 1 0 

1 0 0 1 0 0 

1 1 1 0 0 0 

 

The truth table of 2-to-4 binary decoder can be mapped to K-map and we can describe the output 

variables in terms of input variables. 

 
Fig.  7-5. K-Map Representation of 2-bit Binary Decoder 

 

Each output value was expressed with input variables, as shown in the above figure. We can fill the box 

of Fig. 7-4 with a combinational circuit of 2-bit binary decoder in the following figure: 
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Fig.  7-6. Combinational Circuit of 2-bit Binary Decoder 

The 2-to-4 binary decoder has two inputs (A1, A0) and four outputs (Y3, Y2, Y1, and Y0). There are four 

AND gates and two NOT logic gate in the block.  

• AND3 gate produces the output Y3 with two inputs, 𝐴0 and 𝐴1. 

• AND2 gate produces the output Y2 with two inputs, �̅�0 and 𝐴1. 

• AND1 gate produces the output Y1 with two inputs, 𝐴0 and �̅�1. 

• AND0 gate produces the output Y0 with two inputs, �̅�0 and �̅�1. 

 

Encoder 
 

The encoder is the inverse operation of a decoder. The operation is like the keyboard. Only one input is 

TURE (press only one button) and the others are FALSE. It generates the binary code corresponding to 

the input value. A 4-to-2 encoder has four inputs D3 D2 D1 D0 and two binary outs B1 B0, as shown in Fig. 

7-7. Only one input is TRUE and the other inputs are FALSE. For example, if the input D3 is TRUE and the 

others are FALSE, it generates the corresponding binary code B1 B0 = 11. 

 
Fig.  7-7. 4-to-2 Encoder 

 

The following table describe the operation of the 4-to-2 encoder. 

 



77 
 

Table 7-3. Truth Table of 4-to-2 Encoder 

Inputs Outputs 

D3 D2 D1 D0 B1 B0 

0 0 0 1 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

1 0 0 0 1 1 

 

From the above table, we can notice that the outputs B1 and B0 are determined by four inputs, D3, D2, D1 

and D0, respectively. Using the truth table of the encoder, we can create K-map which can simplify the 

Boolean equation for the encoder. 

To simplify the Boolean equation of the output B1, we have the following Boolean values: 

• If the inputs D3 D2 D1 D0 are equal to ‘0 0 0 1’, the output B1 = 0 

• If the inputs D3 D2 D1 D0 are equal to ‘0 0 1 0’, the output B1 = 0 

• If the inputs D3 D2 D1 D0 are equal to ‘0 1 0 0’, the output B1 = 1 

• If the inputs D3 D2 D1 D0 are equal to ‘1 0 0 0’, the output B1 = 1 

To simplify the Boolean equation of the output B0, we have the following Boolean values: 

• If the inputs D3 D2 D1 D0 are equal to ‘0 0 0 1’, the output B0 = 0 

• If the inputs D3 D2 D1 D0 are equal to ‘0 0 1 0’, the output B0 = 1 

• If the inputs D3 D2 D1 D0 are equal to ‘0 1 0 0’, the output B0 = 0 

• If the inputs D3 D2 D1 D0 are equal to ‘1 0 0 0’, the output B0 = 1 

 

The following figure shows the K-map representation of 4-to-2 encoder.  

 
Fig.  7-8. K-map Representation of 4-to-2 Encoder with Empty Cells 

 

The empty cells will be full with X (don’t care) notation, because we don’t care the outputs B1 and B0 

(either 0 or 1) when the other input combinations of D3 D2 D1 D0 are fed into the encoder. It seems that 

more than two buttons pressed simultaneously.  
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The K-map simplifies the Boolean equation of B1 and B0, as shown in Fig. 7-9. We can get the simplified 

equation as follows: 

• B1 = D3 + D2 

• B0 = D3 + D1 

 
Fig.  7-9. K-map Representation of 4-to-2 Encoder with X (don’t care) Notation 

 

Let’s design logic gates for the encoder using the above figure: 

 
Fig.  7-10. Designed Encoder with logic gates 

 

4-to-2 encoder has four inputs, i.e. D3, D2, D1, D0, and two outputs (binary code), i.e. B1 and B0. There are 

two OR gates in the block. 

• OR1 gate has two inputs, D2 and D3, and produces the output B1. 

• OR0 gate has two inputs, D1 and D0, and produces the output B0. 
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7.2 Sequential Circuits 
 

So far, we take a look at the combinational circuit, in which the output is independent of time and only 

relies on the current input at that particular instant. On the other hand, the sequential circuit is the type 

of circuit where output not only relies on the current input but also depends on the previous output. 

The sequential circuit consists of a combinational circuit and storage elements. The previous 

input/output values are stored in storage elements. 

 

Fig.  7-11. Sequential Circuit 

 

As shown in the above figure, the inputs directly are fed into the combinational circuit block. The 

combinational circuit produces outputs with current and prior input values. Some states of the 

combinational circuit are stored in memory elements, e.g. Flip-flops, which will be used as the prior 

input values. Storage elements maintain a binary state indefinitely as long as power is delivered to the 

circuit. There are two types of the storage elements: 1) Latch – operated with signal levels, and 2) Flip-

Flop – controlled by a clock transition. 

 

SR Latch 
 

SR latch is the most fundamental building block using static gates, where S and R stand for set and reset. 

SR latch can be designed with two NOR gates. The inputs S and R are fed into each NOR gate, and the 

output of one NOR gate recursively is fed into the input of the other NOR gate, as shown below: 

 

Fig.  7-12. SR Latch 

 

The outputs 𝑄 and �̅� represent the value of the stored state and its complement, respectively. In SR 

latch, there are four possible input cases: 
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• Case 1: S = 1, R = 0 

Let’s look at the case when the inputs S = 1 and R = 0. The ‘1’ bit is the dominant input of the NOR gate. 

Since one of the inputs, S = 1, is TRUE, the NOR gate (N2) produces the output FALSE which is fed into 

one of the inputs in the other NOR gate (N1). Both two inputs of NOR gate N1 are FALSE and the NOR 

gate N1 produces the output TRUE. 

 

 

Fig.  7-13. SR Latch When the inputs S = 1 and R = 0 

 

• Case 2: S = 0, R = 1 

Let’s look at the case when the inputs S = 0 and R = 1. The ‘1’ bit is the dominant input of the NOR gate. 

Since one of the inputs, R = 1, is TRUE, the NOR gate (N1) produces the output FALSE which is fed into 

one of the inputs in the other NOR gate (N2). Both two inputs of NOR gate N2 are FALSE and the NOR 

gate N2 produces the output TRUE. 

 

 

Fig.  7-14. SR Latch When the inputs S = 0 and R = 1 
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• Case 3: S = 0, R = 0 

Let’s look at the case when both inputs S and R are FALSE. Since both of inputs are FALSE, we need to 

consider the case whether the previous output 𝑄𝑝𝑟𝑒𝑣 is FALSE or TRUE. In the former case when the 

previous output 𝑄𝑝𝑟𝑒𝑣 is FALSE, both inputs of the NOR gate N2 are FALSE and the gate produces the 

output TRUE.  Both inputs of the other NOR gate N1 has TRUE and FALSE, the gate produces the output 

FALSE. In the latter case when the previous output 𝑄𝑝𝑟𝑒𝑣 is TRUE, both inputs of the NOR gate N1 are 

FALSE and the gate produces the output TRUE.  Both inputs of the other NOR gate N2 has TRUE and 

FALSE, the gate produces the output FALSE. 

  

Fig.  7-15. SR Latch When the inputs S = 0 and R = 0 

 

In summary, if the inputs S = 0, R = 0, and 𝑄𝑝𝑟𝑒𝑣 = 0, then the output 𝑄 = 0. If the inputs S = 0, R = 0, and 

𝑄𝑝𝑟𝑒𝑣 = 1, then the output 𝑄 = 1. In this case, the latch memorizes the previous state. 

 

• Case 4: S = 1, R = 1 

Let’s look at the case when both inputs S and R are TRUE. Both NOR gates have a dominant input ‘1’ and 

both outputs 𝑄 and �̅� are equal to 0. This is an invalid state. The values of 𝑄 and �̅� should be different. 

We should avoid this state. 

 

Fig.  7-16. SR Latch When the inputs S = 1 and R = 1 

 

SR latch stores one bit of state (𝑄). The following figure shows the SR latch symbol.  
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Fig.  7-17. SR Latch Symbol 

 

D Latch 
 

SR latch has an invalid state. We must do something to avoid the invalid state. D latch allows us to avoid 

this invalid state, where the D latch has two inputs CLK and D. The CLK input controls when the output 

changes, and the data input D controls what the output changes to. The function of D latch is as follows: 

• When CLK = 1, D passes through to 𝑄: called it a state of “transparent” 

• When CLK = 0, 𝑄 holds its previous value: called it a state of “opaque” 

 

  
(a) Internal Circuit (b) Symbol 

Fig.  7-18. D Latch, (a) Internal circuit and (b) Symbol 

 

As shown in the above figure, D Latch Internal Circuit consists of NOT gate, two AND gates, and SR latch. 

There are two inputs, CLK and D, and two outputs 𝑄 and �̅�. The inputs, CLK and �̅�, are fed into one AND 

gate, and the gate produces the internal value R. On the other hand, the inputs, CLK and D, are fed into 

the other AND gate, and the gate produces the internal value S. The following table summarizes the 

internal states of the D latch. 

Table 7-4. Internal States of D Latch 

CLK D �̅� S R 𝑸 �̅�  

0 X �̅� 0 0 𝑄
prev

 �̅�
prev

 

1 0 1 0 1 0 1 

1 1 0 1 0 1 0 

 

• If CLK = 0, both of AND gates produce “0”. That means two internal inputs S and R are “0”. The 

latch produces 𝑄
prev

 and �̅�
prev

, meaning that the current output 𝑄 is equal to 𝑄
prev

. 
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• If CLK = 1 and D = 0, the internal input S has a value of “0” and the internal input R has a value of 

“1”. The latch produces 𝑄 = 0 and �̅� = 1. 

• If CLK = 1 and D = 1, the internal input S has a value of “1” and the internal input R has a value of 

“0”. The latch produces 𝑄 = 1 and �̅� = 0. 

 

The way to respond to the clock signal is slightly different in Latch and Flip-Flop. The latch updates its 

state when the clock level is positive, as shown in the following figure: 

 

 

Fig.  7-19. Latch Respond to Positive Level 

 

On the other hand, the flip-flop updates its state when the clock level is in a transitional state, i.e. edge 

triggered, as shown in the following figure: 

 

 

Fig.  7-20. Flip-Flop Respond to Positive or negative-edge in the Clock Cycle 

 

That means that the flip-flop changes the state when the clock level is changed from low to high, 

referred to as a positive-edge response, or from high to low, referred to as a negative-edge response. 
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D Flip-Flop 
 

The D flip-flop is created by connecting two gated D latches serially, and inverting the CLK input to one 

of them. There are two inputs, CLK and D, and it produces the output values 𝑄 and �̅�.  The following 

figure shows the symbols of D flip-flop. 

 
Fig.  7-21. D Flip-Flop Symbols 

 

In D flip-flop, D (data) passes through to 𝑄 when CLK rises from 0 to 1 (or from 1 to 0); otherwise, 𝑄 

holds its previous value. 𝑄 value changes only on rising edge of CLK (from 0 to 1), called edge-triggered, 

which was represented in the inverted triangle of the above figure.  

The internal circuit of D Flip-flop composes of two latches (L1: Master, and L2: Slave) and NOT gate, as 

shown in the following figure: 

 
Fig.  7-22. D Flip-Flop Internal Circuit - Master Enabled 

 

CLK value is directly fed into L2, but connected to L1 after flipping CLK with NOT gate. The input D is 

directly fed into L1. The output 𝑄 of L1 is directly connected to the internal input N1 of L2. When the CLK 

value is zero, L1 Latch is enabled (transparent) and the input D value can pass through L1. On the other 

hand, L2 Latch is disabled (opaque) and the internal input N1 cannot pass through L2.  
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Fig.  7-23. D Flip-Flop Internal Circuit - Slave Enabled 

 

When the CLK value is one, L2 Latch (Slave) is enabled (transparent) and the internal input N1 can pass 

through L2. On the other hand, L1 Latch (Master) is disabled (opaque) and the input D cannot pass 

through L1, as shown in the above figure. 

Thus, when the CLK value rises from 0 to 1 (on the edge of the clock), the D value passes through 𝑄 

value. 

Since D flip-flop keeps one-bit information, we can design a 4-bit register with four D flip-flops, as 

follows: 

 

Fig.  7-24. 4-bit Register 

 

• D Flip-Flop0 has the input D0 and the output Q0. 

• D Flip-Flop1 has the input D1 and the output Q1. 

• D Flip-Flop2 has the input D2 and the output Q2. 

• D Flip-Flop3 has the input D3 and the output Q3. 

Notice that each edge clock CLK of D Flip-Flop is connected to the common CLK individually. 
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Chapter 8: Basic CPU Organization 

In this chapter, we introduce the basic CPU organization and instructions. This module also shows how a 

CPU is made, what's inside a CPU, how computer memory works, and how a CPU works. 

 

Objectives 
 

By the end of this chapter you should be able to: 

• Recognize the history of Intel microprocessors 

• Recall how a CPU is made from sand to chip 

• List what’s inside a CPU 

• Demonstrate knowledge of computer memory integrating with a CPU 

 

8.1. Hardware Overview 
 

Typical personal computer systems consist of lots of input/output devices, storage devices and 

communication interface. The input device includes keyboard, mouse. The output device includes 

monitor, printer, and speaker. Storage devices include CD-R/RW, DVD, and Hard disk. When you open a 

desktop computer case, you can see lots of electronic components in the main board. The key 

components of your main board are CPU and Memory. 

 

History of Intel Processors 
 

The early computers that used vacuum tubes were huge. The ENIAC occupied a whole room. Vacuum 

also took a long time to warm up and they produce a lot of excess heat and then came transistors. The 

transistor was invented at Bell Laboratories on December 23, 1947. The following show the history of 

intel processors (https://www.youtube.com/watch?v=Qu2njWY3Hjk): 

Year Processors # of Transistors Clock rate Memory Feature size 

1971 Intel 4004 2,300 740 KHz Up to 4,096 bytes 10 microns 

1972 Intel 8008 3,500 0.2 to 0.8 MHz Up to 16 kB 10 microns 

1964 Intel 8080 4,500 2 MHz Up to 64 kB 6 microns 

1978 Intel 8086 29,000 5 to 10 MHz Up to 1 MB 3 microns 

1979 Intel 8088 29,000 5 to 10 MHz Up to 1 MB 3 microns 

1982 Intel 80186 55,000 6 to 25 MHz Up to 1 MB 3 microns 

1982 Intel 80286 134,000 6 to 25 MHz Up to 16 MB 1.5 microns 

1985 Intel 80386 275,000 12 to 40 MHz Up to 4 GB 1.5 microns 

1989 Intel 80486 1,180,235 16 to 150 MHz Up to 4 GB 
Cache – 8 to 16 kB 

1 micron 



87 
 

 

The list of Intel microprocessors can be found in the following link: 

https://en.wikipedia.org/wiki/List_of_Intel_microprocessors 

 

1993 Intel 
Pentium 
80501 

3.1 to 3.3 
million 

60 to 66 MHz Up to 4 GB 
Cache – 8 kB 
instruction cache, 8 
kB cache 

0.35 to 0.8 
microns 

1995 Intel 
Pentium Pro 

5.5 million 150 – 200 MHz Up to 64 GB 
L1 Cache – 8 kB 
instruction cache & 
8 kB data cache 
LS Cache – 512 kB 

0.35 to 0.5 
microns 

1997 Intel 
Pentium II 

7.5 million 233, 266 or 300 
MHz 

Up to 64 GM 
L1 Cache – 32 kB 
L2 Cache – 512 kB 

0.35 microns 

1999 Intel 
Pentium II 
(Dixon) 

27.4 million 400 MHz Up to 64 GB 
L1 Cache – 32 kB 
L2 Cache – 256 kB 

180 nm 

1999 Intel 
Pentium 3 
Katmai 

9.5 million 450 to 600 
MHz 

L1 Cache – 16 kB 
instruction cache & 
16 kB data cache 
L2 Cache – 512 kB 
(50% of CPU 
speed) 

250 nm 

2001 Intel 
Pentium 3 
Tualatin 

45 million 1000 to 1400 
MHz 

L1 Cache – 16 kB 
instruction cache 7 
16 kB data cache 
L2 Cache – 256 kB 
or 512 kB  (full 
speed) 

130 nm 

2000 Intel 
Pentium 4 
Willamette 

42 million 1300 to 2000 
MHz 

L1 Cache – 20 kB 
L2 Cache – 256 kB 

180 nm 

2002 Intel 
Pentium 4 
Northwood 

55 million 1600 to 2800 
MH 

L2 Cache – 512 kB 130 nm 

2004 Intel 
Pentium 4 
Prescott 

112 million 2400 to 3067 
MHz 

L2 Cache – 1024 kB 90 nm 

2005 Intel 
Pentium 4 
Prescott 2M 

169 million 2.8 to 4.00 GHz L2 Cache – 2 MB 90 nm 

2006 Intel 
Pentium 4 
Cedar Mill 

184 million 3 to 3.6 GHz L2 Cache – 2 MB 65 nm 

https://en.wikipedia.org/wiki/List_of_Intel_microprocessors
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How A CPU Is Made 
 

Your CPU made with sand (silicon), UV light, fire (high temperature), and water (cleaning). Intel released 

all the major steps in a process that normally takes hundreds of stages to complete. See the link to see 

that Intel shows how a CPU is made: https://www.tomshardware.com/picturestory/514-intel-cpu-

processor-core-i7.html 

 

8.2. CPU Organization 
 

What’s inside a CPU 
 

Inside every computer is a central processing unit and inside every CPU are small components that carry 

out all the instructions for every program you run. These components include AND gates, OR gates, NOT 

gates, Clock, Multiplexer, ALU (arithmetic logic unit), etc. Data bus performs data transfer within a CPU 

and a computer. As shown in Fig. 8-1, CPU is organized with Program Counter (PC), Instruction Register 

(IR), Instruction Decoder, Control Unit, Arithmetic Logic Unit (ALU), Registers, and Buses. PC holds the 

address of the next instruction to be fetched from Memory. IR holds each instruction after it is fetched 

from Memory. Instruction Decoder decodes and interprets the contents of the IR, and splits a whole 

instruction into fields for the Control Unit to interpret. Control Unit co-ordinates all activities within the 

CPU, has connections to all parts of the CPU, and includes a sophisticated timing circuit. ALU carries out 

arithmetic and logical operations, exemplified with addition, comparison, Boolean AND/OR/NOT 

operations. Within ALU, input registers hold the input operands and output register holds the result of 

an ALU operation. Once completing ALU operation, the result is copied from the ALU output register to 

its final destination.  

 
Fig.  8-1. CPU Organization 

 

https://www.tomshardware.com/picturestory/514-intel-cpu-processor-core-i7.html
https://www.tomshardware.com/picturestory/514-intel-cpu-processor-core-i7.html
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General-purpose registers are available for the programmer to use in their programs within CPU. 

Typically, the programmer tries to maximize the use of these registers in order to speed program 

execution. Busses serve as communication highways for passing information in the computer. 

The computer has memory which memorize data in a similar way we remember the past events. The 

register is the fastest memory which is located within CPU of the computer.  

 

 
Fig.  8-2. CPU Overview 

 

The above figure shows CPU overview which consists of PC, instruction memory, registers, ALU, and 

Data memory. PC always holds the address of the next instruction to be fetched from Memory. 

Instruction, e.g. add $t1, $t2, $t3, is fetched into instruction memory. Register operands are used by an 

instruction in registers, where $t1 is the first source operand, $t2 is the second source operand, and $t3 

is the storage of the result. ALU executes an arithmetic operation, e.g.  Sum of $t1 and $t2. The result 

from the ALU or memory is written back into the register file ($t3). In the figure, ALU results and the 

output of data memory can't just join wires together. The red dash-dot line can be designed with the 

multiplexer to put the wires together.  

The following figure shows CPU control with multiplexers. The first multiplexer controls what value 

replaces the PC (PC + 4 or the branch destination address), where the Mux is controlled by the AND gate 

with the Zero output of ALU and a control signal. The second multiplexer steers the output of the ALU or 

the output of the data memory. The third one determines whether the second ALU input is from the 

registers or from the offset field of the instruction (for a load or store). 
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Fig.  8-3. CPU Control with Multiplexer 
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Chapter 9: Instruction Set Architecture 

In this chapter, we introduce the instruction set architecture. The architecture is the programmer's view 

of a computer, which is defined by instruction set (language) and operand locations (registers and 

memory). We look at the computer's vocabulary (called the instruction set). Computer instructions 

indicate both the operation to perform and the operands to use. we look at the operands which come 

from memory, from registers, or from the instruction itself. This chapter also shows how to interpret 

assembly language into machine language. 

 

Objectives 
 

By the end of this chapter you should be able to: 

• Recognize Assembly language and machine language 

• Demonstrate knowledge of MIPS Assembly architecture 

• Differentiate the operation to perform and the operands to use 

• Summarize features of word-addressable memory 

• Deconstruct different types of instructs, i.e. R-type, I-type and J-type 

• Translate assembly language into machine code 

 

9.1. Instructions 
 

An instruction is a single operation of a processor defined by the processor instruction set. The size of 

length of an instruction depends on the processor. The instruction can be written in human-readable 

formats or computer-readable formats. Assembly language is the human-readable format of 

instructions, whereas machine language is the computer-readable format (1’s and 0’s). 

Once you’ve learned one architecture, it’s easy to learn others. MIPS (Microprocessor without 

Interlocked Pipelined Stages) architecture was developed by John Hennessy and his colleagues at 

Stanford in the 1980’s, and used in many commercial systems, including Silicon Graphics, Nintendo, and 

Cisco. Underlying architecture design principles, as articulated by Hennessy and Patterson are as 

follows: 

• Simplicity favors regularity 

• Make the common case fast 

• Smaller is faster 

• Good design demands good compromises 

Let’s look at the following instructions for the addition: 

High-level Code MIPS assembly code 
a = b + c add a, b, c 
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where add is a mnemonic which indicates operation to perform. b and c are source operands on which 

the operation is performed. a is a destination operation to which the result is written. 

The next instructions show the subtractions in High-Level Code and MIPS assembly code. 

High-level Code MIPS assembly code 
a = b - c sub a, b, c 

 

The subtraction is similar to addition, only mnemonic changes. 

As shown in the above instructions, MIPS assembly code shows consistent instruction format, has the 

same number of operands (two source operands and one destination operand), and is easy to encode 

and handle in hardware. This is the first design principle: Simplicity favors regularity. 

More complex code is handled by multiple MIPS instructions. For example, the following High-Level 

Code can be interpreted into multiple MIPS instructions, as follows: 

High-level Code MIPS assembly code 
a = b + c - d add t, b, c # t = b + c 

sub a, t, d # a = t - d 

 

MIPS assembly code includes only simple, commonly used instructions. With this feature, hardware to 

decode and execute instructions can be simple, small, and fast. More complex instructions (that are less 

common) are performed using multiple simple instructions. This is the second design principle: Make 

the common case fast. 

 

Operands 
 

An instruction operates on operands. The instructions need a physical location from which to retrieve 

the binary data.  Operand can be stored in the following locations: 

• Registers that is located in CPU. The instruction in registers can be accessed quickly. 

• Memory is located outside of CPU in the computer. It provides large capacity but operate slowly. 

• Constant (also called immediate) expressions indicate inline values of the instruction.  
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Fig.  9-1. CPU Organization 

As shown in the above figure, CPU is organized with Program Counter (PC), Instruction Register (IR), 

Instruction Decoder, Control Unit, Arithmetic Logic Unit (ALU), general registers, and buses. MIPS has 32 

32-bit general registers, which is called the register set or register file. The fewer the registers, the faster 

they can be accessed. This is related to the third design principle: Smaller is faster. In terms of volume, 

the registers are much smaller than memory, and located within CPU. That’s why the registers are faster 

than memory. MIPS is also called “32-bit architecture” because it operates on 32-bit data. 

The operands are positioned on registers. Typically, the register comes with the symbol $ before their 

name. For example, we read the symbol $0 in “register zero”, “dollar zero”. The registers are used for 

specific purposes. The register $0 always holds the constant value 0. The saved registers, $s0 - $s7, 

are used to hold variables. The temporary registers, $t0 - $t9, are used to hold intermediate values 

during a larger computation process. The following table show the register usage in MIPS assembly 

system. 

 

Table 9-1. Register Usage 

Register number Register name Usage 

0 zero Always zero 

1 $at Reserved for the assembler 

2 – 3 $v0 - $v1 Function return value 

4 – 7 $a0 - $a3 The first four parameters passed to a procedure. (Function arguments) 

8 – 15 $t0 - $t7 Temporary variables. Can be overwritten by callee 

16 - 23 $s0 - $s7 Saved variables. Must be saved/restored by callee 

24 - 25 $t8 - $t9 Temporary variables. Can be overwritten by callee 

26 - 27 $k0 - $k1 Reserved for kernel usage (operating system) 

28 $gp Global pointer for static data (pointer to global area) 

29 $sp Stack pointer 

30 $fp Frame pointer 

31 $ra Function return address 

 

Now, we can interpret the instructions with registers. The following High-Level codes can be converted 

to MIPS assembly codes with designated register names: 
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Example 1) 

High-Level code MIPS assembly code 
a = b + c; # $s0=a, $s1=b, $s2=c 

 

add $s0, $s1, $s2  

 

Example 2) 

High-Level code MIPS assembly code 
a = b + c - d; # $s0=a, $s1=b, $s2=c, $s3=d 

 

sub $t0, $s2, $s3 // t = c - d 

add $s0, $s1, $t0 // a = b + t 

 

Word-addressable Memory 
 

When we execute instructions, there are too much data to fit in only 32 registers. The memory has a lot 

of capacities to store data. The register file is small and fast, whereas memory is large and slow, because 

the memory is located outside the CPU. Only commonly used variables are kept in registers. The rest of 

them are kept in memory for a future processing. As shown in the below, each 32-bit data word has a 

unique 32-bit address. This is called word-addressable memory. Both the 32-bit word address and the 

32-bit data value are written in hexadecimal. 

 

 

Fig.  9-2. Word-addressable Memory 

 

Exercises 
 

Translate the following high-level code into assembly language. Assume variables a – c are held in 

registers $s0 - $s2 and f – j are in $s3-$s7. 

a = b – c; 

f = (g + h) – (i + j); 

 



95 
 

Answer) 

# MIPS assembly code 

# $s0=a, $s1=b, $s2=c, $s3=f, $s4=g, $s5=h, $s6=i, $s7=j 

 sub $s0, $s1, $s2 # a = b – c 

 add $t0, $s4, $s5 # $t0 = g + h 

 add $t1, $s6, $s7 # $t1 = i + j 

 sub $s3, $t0, $t1 # f = (g + h) – (i + j) 

 

 

9.2. Machine Languages 
 

Assembly language is convenient for humans to read. However, digital circuits understand only 1’s and 

0’s. Therefore, a program written in assembly language is translated from mnemonics to a 

representation using only 1’s and 0’s called machine language. The small number of formats allows 

some regularity among all the types, and thus simpler hardware, while it can also accommodate 

different instructions needs. 

MIPS Assembly language uses 32-bit instructions that makes the compromise of defining three 

instruction formats: R-type, I-type, and J-type. This is the fourth design principle: Good design demands 

good compromises. In MIPS assembly language, multiple instruction formats allow flexibility. For 

example, add and sub use 3 register operands, whereas lw and sw use 2 register operands and a 

constant. The number of instruction formats kept small to adhere to design principles 1 and 3. 

 

R-type Instruction Format 
 

The name R-type is short for register-type. The following figure shows the R-type instruction fields.  

 

Fig.  9-3. R-type Instruction fields 

• opcode: operation code (zero value for all R-type) 

• rs: first source register number 

• rt: second source register number 

• rd: destination register number 

• shamt: shift amount (00000 for now) 

• function: function code (extends opcode) 
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Now, let’s look at how the computer can interpret a MIPS instruction, add $s0, $s1, $s2, into a 

machine language.  In the R-type instruction, the operation code field is all zero. The function field 

extends the operation code value that define the add mnemonic in the function field. The rs and rt 

fields are filled with the two source operands, $s1 and $s2. The rd field is filled with the destination 

operand $s0. For the add mnemonic, the shift amount is unused for now. This field is filled with all 0’s, 

as shown below. 

 
Fig.  9-4. R-type Instruction field with add $s0, $s1, $s2 

Each instruction set architecture has its own function definition in the following table.  

Table 9-2. References for Operation code and Function field 

 

 

The register number for the register usage is defined in Table 9-1. We can define the register numbers, 

such as the decimal value 17 for $s1, the decimal value 18 for $s2, and the decimal value 16 for $s0. 

The R-type instruction field of the add instruction is filled with all those decimal values, as shown 

below: 

 
Fig.  9-5. R-type Instruction field with Decimal Representation 

 

The decimal representation is expressed with the binary number representation, i.e. machine code as 

shown below: 



97 
 

 
Fig.  9-6. R-type Instruction field with Binary Number Representation 

We can express this binary number in the hexadecimal representation: 0232802016. 

Let’s look at another example with the sub instruction, sub $t0, $t3, $t5, and interpret it into a 

machine language. Since the sub instruction is one of R-type instructions as shown in Table 9-2, the 

operation code field is all zero. The function field extends the operation code value that define the sub 

mnemonic in the function field. The rs and rt fields are filled with the two source operands, $t3 and 

$t5. The rd field is filled with the destination operand $t0. For the sub mnemonic, the shift amount is 

unused. This field is filled with all 0’s, as shown below. 

 
Fig.  9-7. R-type Instruction field with sub $t0, $t3, $t5 

 

As shown with the register number in Table 9-1. We can define the register numbers, such as the 

decimal value 11 for $t3, the decimal value 13 for $t5, and the decimal value 8 for $t0. The R-type 

instruction field of the sub instruction is filled with all those decimal values, as shown below: 

 
Fig.  9-8. R-type Instruction field with Decimal Representation 

 

The decimal representation is expressed with the binary number representation, i.e. machine code as 

shown below: 

 
Fig.  9-9. R-type Instruction field with Binary Number Representation 

We can express this binary number in the hexadecimal representation: 016D402216. 

 

I-type Instruction Format 
 

Although multiple formats complicate the hardware, we can reduce the complexity by keeping the 

formats similar. Any instruction that comes with a constant (off) value or memory address can be 

accommodated with the I-type instruction format. That means the I-type instruction format can be used 

for the load/store word instruction and the immediate arithmetic instructions which include a constant 

value. The following figure shows the I-type instruction fields. 
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Fig.  9-10. I-type Instruction Fields 

 

• The first three fields, op, rs, and rt, are like those of R-type instructions. 

• rs and imm are always used as source operands. 

• rt is used as a destination (addi and lw) or another source (sw) 

• Constant (imm): −215 to 215−1 

• Address: offset added to base address in rs 

 

Now, let’s look at how the computer can interpret the following I-type instructions into machine 

languages.   

• Assembly Code 

addi  rt,  rs, imm  → addi  $s0, $s1, 5 

addi  rt,  rs, imm  → addi  $t0, $s3, -12 

lw    rt,  imm(rs)   → lw    $t2, 32($0) 

sw    rt,  imm(rs)   → sw    $s1, 4($t1) 

The addi is a I-type instruction, where rt is used for the destination register address, rs is the base 

address, and imm is the 16-bit immediate value. The opcode field of the addi is the decimal value 8 

(00100) defined in Table 9-2. Both the load word (lw) and the store word (sw) instructions are I-type 

instructions. The data positioned in the memory can be loaded to the (destination) register with the load 

word (lw) instruction.  

The opcode field of the lw instruction is the decimal value 35. For the lw instruction, the memory 

address is calculated with the sum of the base register address and the offset value. In the above 

example, the base register address is $0 and the offset value is 32. The calculated memory address is 

32. After finding the data that is located in the memory (memory address: 32), the data is loaded into 

the destination register address ($t2).   

The opcode field of the sw instruction is the decimal value 43. The data positioned in the register file 

can be stored to the memory with the store word (sw) instruction. For the sw instruction, the memory 

address is calculated in the same way to the lw instruction. In the above example, the base register 

address $t1 is and the offset value is 4. The memory address is the sum of the value in $t1 and the 

offset value, $t1 + 4. The value located in the register $s1 is stored in the memory address $t1 + 

4. 

The following figure shows the field values of the above examples: 
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Fig.  9-11. I-type Instruction fields with Decimal Representation 

 

The decimal representations are expressed with binary number representations, i.e. machine code, as 

shown below: 

 
Fig.  9-12. I-type Instruction field with Binary Number Representation 

 

J-type Instructions 
 

The J-type instruction is used to jump the target of the address. The following figure shows the J-type 

instruction field. 

 
Fig.  9-13. J-type Instruction Fields 

Jump instruction uses word address and updates PC with concatenation of the following values (total of 

32 bits): 

• Top 4 bits of old PC  ( 4 bits) 

• 26-bit jump address  (26 bits) 

• 00    (2 bits) 

 

The following example codes show how the Jump instruction is used in the assembly code. 

 addi $s0, $0, 4     # $s0 = 4 
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 addi $s1, $0, 1     # $s1 = 1 

 j  target  # jump to target 

 addi $s1, $s1, 1    # not executed 

 sub $s1, $s1, $s0    # not executed 

target: 

 add $s1, $s1, $s0    # $s1 = 1 + 4 = 5 

 

The first two addi instructions execute the immediate arithmetic operations, where the destination 

register address $s0 holds the sum of $0 and 4 ($s0=4), and the destination register address $s1 

holds the sum of $0 and 1 ($s1=1). The jump instruction jumps the target of the address and then 

executes the last add instruction. The destination register address $s1 holds the sum of two register 

values 1 and 4. 

 

Instruction Fetch and PC 
 

Program Counter (PC) is a 32-bit register which holds the address of the next instruction to be fetched 

from the memory. PC value is increased by 4 for the next instruction, as shown in the following figure. 

The instruction memory fetches the instruction from the memory, and forward the instruction to the 

next step. 

 
Fig.  9-14. Instruction Fetch and PC Increment 

 

Exercises 
 

1) Translate the following assembly language into machine language.  

 
add $t0, $s4, $s5  // $t0->8, $s4->20, $s5->21 

 

Answer) 
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• Decimal representation (field values): 

 

• Binary number representation (Machine Code): 

 

000000101001010101000000001000002 = 0295402016 

 

2) Translate the following I-type instruction into machine code. 
     // lw opcode value: 35 

lw $s3, -24($s4) // $s3 and $s4 are #19 and #20. 

 

Answer) 

• Decimal representation (field values): 

 

• Binary number representation (Machine Code): 

 

100011101001001111111111111010002 = 8E93FFE816 

 

3) Convert the following machine language into MIPS assembly language. 
0x01094020 

 

Answer) 

0000 0001 0000 1001 0100 0000 0010 0000 (32 bits) 

0000 0001 0000 1001 0100 0000 0010 0000 

  0       8     9     8    0      32 

  Opcode   src   src   dst  shmt   func   

  add $t0 $t0 $t1 
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Chapter 10: Assembly 

In this chapter, we introduce the assembly language which is the human-readable representation of the 

computer's native language. We also introduce simple arithmetic instructions and show how these 

operations are written in Assembly language. We then define the MIPS instruction operands: registers, 

memory, and constants. 

 

Objectives 
 

By the end of this chapter you should be able to: 

• Demonstrate knowledge of word-addressable and memory 

• Differentiate word-addressable and byte-addressable memories 

• Summarize features of the stored program 

• Recall different types of machine code 

• Demonstrate knowledge of logic operations 

• Carry out conditional operations with arithmetic instructions 

 

10.1. Assembly Languages 
 

Read Word-Addressable Memory 
 

An instruction operates on operands. In MIPS assembly architecture, there are only 32 registers which 

are not good enough to hold all the data. We can store more data in memory. The register file is small 

and fast, whereas memory is large and slow. The instructions are stored in memory. Only commonly 

used variables are kept in registers. 

When we store the data in memory, each 32-bit data word has a unique address, as shown below: 

 
Fig.  10-1. Word-Addressable Memory 
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We can read the data in memory and load it to one register using the load word (lw) instruction, as 

indicated with the red arrow in the above figure. 

The following instruction exemplifies the format of the lw instruction. 

• lw $s0, 5(t1) 

where $s0 is the register address that will hold the data after loading the data from memory. The 

memory address is calculated by adding the base address ($t1) to the offset value (5), i.e. $t1 + 5. 

After executing the lw instruction, the register address $s0 holds the value at the memory address 

$t1 + 5.  Any register can be used as the base address. 

Let’s read a word of data at the memory address 1 into the register address $s3.  If the $0 is used for 

the base address, the memory address is calculated by adding the zero value ($0) to the offset (1), as 

shown below: 

• lw  $s3, 1($0)  # read memory word 1 into $s3 

As a result of this instruction, the register address $s3 holds the data 0xF2F1AC07 as shown in the 

figure below: 

 
Fig.  10-2. Load data from Memory to Register with lw instruction 

 

The above figure shows the register address $s3 holds the word of data at the memory address 1 after 

executing the instruction lw $s3, 1($0).  

  

Write Word-Addressable Memory 
 

We can store the data located at a register into memory with the store word (sw) instruction. 

The following instruction exemplifies the format of the sw instruction. 

• sw $t4, 0x7($0) 

where $t4 is the register address. We can store the data located at the register address $t4 into the 

memory, where the memory address is calculated by adding the base address ($0) to the offset value 

(7), i.e. $0 + 7. 



104 
 

Let’s store the value of the register address $t4 into the memory address 7.  If the $0 is used for the 

base address, the memory address is calculated by add the zero value ($0) to the offset (7), as shown 

below: 

• sw  $t4, 0x7($0) # write the value of $t4 into memory word 7 

where the offset can be written in decimal (default) or hexadecimal. As a result of this instruction, the 

memory address 7 holds the value 0x6A049C04 of the register address $t4, as shown below: 

 
Fig.  10-3. Store the value of Register into Memory with sw instruction 

 

Byte-Addressable Memory 
 

Each data byte has unique address. We can load/store words or single bytes with load byte (lb) and 

store byte (sb). Since we are using 32-bit word that is 4 bytes, the word address is increased by 4. That 

means the address of a memory word must now be multiplied by 4. For example, the address of 

memory word 2 is 2  4 = 8 and the address of memory word 10 is 10  4 = 40 (0x28). Keep in mind 

that MIPS is byte-addressed, not word-addressed. 

 

Power of the Stored Program 
 

Both 32-bit instructions and data are stored in memory. The only difference between two applications is 

the sequence of instructions. We do not require large amounts of time and effort to reconfigure or 

rewire hardware to run a new program. We only require writing the new program to memory. When 

executing program, the processor fetches (reads) instructions from memory to instruction register in 

sequence and performs the specific operation. Even large and complex programs are simplified to a 

series of memory reads and instruction executions. 

For example, the assembly code and the corresponding machine code are given as below: 

Assembly Code Machine Code 
lw   $t2, 32($0) 

add  $s0, $s1, $s2 

addi $t0, $s3, -12 

sub  $t0, $t3, $t5 

0x8C0A0020 

0x02328020 

0x2268FFF4 

0x016D4022 
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   The whole machine codes are stored in memory, as shown in Fig. 10-4. In this example, the first 

instruction is stored at the memory address 0x00400000. The next instruction is stored at the 

memory address 0x00400004, etc. Note that the memory address is increased by 4 because it is a 

byte address (4  8 = 32). The program counter in the processor keeps track of current instruction. Each 

instruction is executed in sequence. 

 
Fig.  10-4. Stored Program 

 

The processor starts to interpreting machine code. The first six bits (opcode) tell how parse the rest of 

them. If opcode is all 0’s, the function field tells the arithmetic/logic operation; otherwise it tells 

operation. 

 

Exercises 
 

1) The data values in the memory address are drawn below. MIPS Assembly code is given as follows: 

lw $s0, 0($0) 

lw $s1, 8($0) 

lw $s2, 0xC($0) 

What are the register values in $s0, $s1, and $s2? 

 
Fig.  10-5. Data Values in Memory Address 

 

Answer) 
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lw $s0, 0($0)  # read data word 0(0xABCDEF78) into $s0 

lw $s1, 8($0)  # read data word 2(0x01EE2842) into $s1 

lw $s2, 0xC($0) # read data word 3(0x40F30788) into $s2 

 

2) Translate the following machine language code into assembly language. 
0x2237FFF1 

Answer) the machine language code 0x2237FFF1 is expanded into as below: 

  2    2    3    7    F    F    F    1  (hexadecimal) 

0010 0010 0011 0111 1111 1111 1111 0001  (binary, 32 bits) 

0010 0010 0011 0111 1111 1111 1111 0001 

    8    17     23          -15 

Opcode   rs     rt          imm 

 

The corresponding assembly code: addi $s7, $s1, -15. 

 

3) What is the assembly language statement corresponding to this machine instruction?  
0x00AF8020 

Answer) 

Convert hexadecimal to binary 

0 0 A F 8 0 2 0 

0000 0000 1010 1111 1000 0000 0010 0000 

 

Referring to the Table 9-2. 

  op     rs    rt     rd   shamt  funct 

000000  00101  01111  10000  00000  100000 

→ add $s0, $a1, $t7 
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10.2. Logic Operations 
 

MIPS instructions execute bitwise manipulation as shown below: 

Table 10-1. Instructions for Bitwise Manipulation 

Logic operations C operators Java operators MIPS instruction 

Shift left << << sll 

Shift right >> >>> srl 

Bitwise AND & & and, andi 

Bitwise OR | | or, ori 

Bitwise NOT ~ ~ nor 

 

The instructions in the above table are useful for extracting and inserting groups of bits in a word. 

 

Shift Operations 
 

The shift operation is a R-type instruction and the field value is shown below: 

 
Fig.  10-6. The field Value of Shift Operations 

 

where the field shamt tells how many positions to shift. 

There are two logic shifts, i.e., the shift left logic (sll) and the shift right logic (srl). The sll shifts the 

bits left and fills the empty bits with 0 bits. sll by i bits is equivalent to multiply by 2i. The srl shifts 

the bits right and fills the empty bits with 0 bits. srl by i bits is equivalent to divide by 2i (unsigned 

only). 

Let’s look at how the shift operations work with some example. The MIPS assembly codes and field 

values are shown below: 

 

Fig.  10-7. Examples of Shift Operation 

 

The source register address $s1 has the following field value: 
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After executing the above MIPS assembly code, the target register addresses $t0 and $s0 have the 

following field values: 

 

 

AND Operations 
 

AND operation is useful to mask bits in a word. When executing AND operation, some bits are selected if 

both bits are TRUE; otherwise, it clears others to 0. 

For example, let’s execute AND operation of the values located in the register addresses $t1 and $t2, 

and store the result in the register address $t0:  

• and $t0, $t1, $t2 

Only the selected bits are set to TRUE (1’s), whereas the other bits are set to all FALSE (0’s), as shown 

below: 

 

Fig.  10-8. Examples of AND Operation 

 

OR Operations 
 

OR operation is useful to include bits in a word. When executing OR operation, it sets some bits to TRUE 

(1’s) and leaves others unchanged. 

For example, let’s execute OR operation of the values located in the register addresses $t1 and $t2, 

and store the result in the register address $t0:  

• or $t0, $t1, $t2 

As shown below, some bits are set to TRUE highlighted in blue. The other bits are unchanged. 

 

Fig.  10-9. Examples of OR Operation 
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NOT Operations 
 

NOT operation is useful to invert bits in a word. That means it change 0 bit to 1 bit, and 1 bit to 0 bit. 

MIPS has a NOR 3-operand instruction that has the same function as the NOT instruction. 

• a NOR b == NOT (a OR b) 

we can invert bits in a word using NOR 3-operand instruction, as shown below: 

• nor $t0, $t1, $zero 

Since the register 0 always holds zero value, the NOR 3-operand instruction can execute the above 

instruction and return the result of NOT operation as shown below: 

 

Fig.  10-10. Examples of NOT Operation 

 

Exercises 
 

1) The source register addresses $s1 and $s2 are given below: 

 

We would like to execute the following MIPS assembly code: 

AND $s3, $s1, $s2 

OR  $s4, $s1, $s2 

NOR $s5, $s1, $s2 

XOR $s6, $s1, $s2 

 

What field values do the target register addresses, i.e., $s3, $s4, $s5, and $s6, hold?  
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10.3. Conditional Operation 
 

The conditional operations are used to branch to a labeled instruction if a condition is true. If the 

condition is false, the instructions are executed sequentially. 

The following instructions show the conditional operations: 

• beq rs, rt, L1 

The branch on equal (beq) tests the equality of the condition. It branches to the instruction labeled L1 

if the condition (rs == rt) is true. 

• bne rs, rt, L1 

The branch on not equal (bne) tests the inequality of the condition. It branches to the instruction 

labeled L1 if the condition (rs != rt) is true. 

• j L1 

In the jump (j), it jumps to the instruction labeled L1 unconditionally. 

Let’s look at an example how the conditional branch instruction beq is used with the following MIPS 

assembly code:  

 addi $s0, $0, 4   # $s0 = 0 + 4 = 4 

 addi $s1, $0, 1   # $s1 = 0 + 1 = 1 

 sll  $s1, $s1, 2   # $s1 = 1 << 2 = 4 

 beq  $s0, $s1, target  # $s0 == $s1, so branch is taken 

 addi $s1, $s1, 1   # not executed 

 sub  $s1, $s1, $s0   # not executed 

 

Target:  

 add $s1, $s1, $s0   # $s1 = 4 + 4 = 8 
Fig.  10-11. Examples of conditional instruction beq 

The first two instructions set the values of the register addresses, $s0 to 4 and $s1 to 1. The value of 

the register address $s1 is multiplied by 4 (=22) using the instruction sll. Since the equality of the 

conditional instruction beq is true, the branch is taken. Two instructions, addi and sub, are not 

executed. The value of the source register $s1 is set to 8.  

 

Let’s look at the following example how the conditional branch bne is used with MIPS assembly codes:  

 addi $s0, $0, 4   # $s0 = 0 + 4 = 4 

 addi $s1, $0, 1   # $s1 = 0 + 1 = 1 

 sll  $s1, $s1, 2   # $s1 = 1 << 2 = 4 

 bne  $s0, $s1, target  # $s0 == $s1, so branch is not taken 

 addi $s1, $s1, 1   # $s1 = 4 + 1 = 5 

 sub  $s1, $s1, $s0  # $s1 = 5 – 4 = 1 

 

target:  

 add $s1, $s1, $s0  # $s1 = 1 + 4 = 5 
Fig.  10-12. Examples of conditional instruction bne 
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The first three instructions (two addi and an sll) set the values of the register addresses, $s0 to 4 

and $s1 to 4. Since the inequality of the conditional instruction bne is false, the branch is not taken. 

Two instructions, addi and sub, are executed. The value of the source register address $s1 is set to 5 

in this case.  

 

Let’s look at an example how the unconditional branch j is used with the following MIPS assembly 

codes:  

 addi $s0, $0, 4     # $s0 = 4 

 addi $s1, $0, 1     # $s1 = 1 

 j target    # jump to target 

 addi $s1, $s1, 1     # not executed 

 sub $s1, $s1, $s0     # not executed 

 

target: 

 add $s1, $s1, $s0     # $s1 = 1 + 4 = 5 
Fig.  10-13. Examples of unconditional branch j 

The first two instructions set the values of the register addresses, $s0 to 4 and $s1 to 1. The 

unconditional branch j jumps to the target of the instruction. Two instructions, addi and sub, are not 

executed in this case. The value of the source register address $s1 is set to 5 with the last instruction. 

The unconditional branch, Jump register (jr) is used to jump to the address held in a register. The 

following MIPS assembly code includes the unique address: 

0x00002000 addi  $s0, $0, 0x2010  # $s0 = 0x2010 

0x00002004 jr  $s0     # jump to 0x00002010 

0x00002008 addi $s1, $0,1    # not executed 

0x0000200c sra  $s1, $s1, 2   # not executed 

0x00002010 lw   $s3, 44($s1)   # executed after jr 
Fig.  10-14. Examples of unconditional branch jr 

The fist instruction sets the value of the register address $s0 to 0x2010. The second instruction, Jump 

register (jr) jumps to the address 0x00002010 that was held in the register $s0. 

 

Conditional Statements 
 

There are conditional statements commonly used in high-level languages, as shown below: 

• if statements 

• if/else statements 

• while loops 

• for loops 

Let’s look at how those conditional statements are translated into MIPS assembly code. 
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if statements 

 

The high-level code with if statement is shown below: 

if (i == j) 

    f = g + h; 

 

f = f – i; 
 

If the condition is true, the code executes the add operation, followed by the subtract operation. If the 

condition is false, it won’t execute the add operation. It only executes the subtract operation. Since all 

the instruction is executed in sequence, the if conditional statement is translated into the MIPS 

assembly code with bne instruction. 

# $s0 = f, $s1 = g, $s2 = h 

# $s3 = i, $s4 = j 

 

 bne $s3, $s4, L1   # if i  j 
 add $$s0, $s1, $s2  # f = g + h 

L1: 

 sub $s0, $s0, $s3  # f = f - i 
 

The conditional branch bne is taken if the register value $s3 is not equal to $s4, and then jumps to the 

target of the instruction sub.  If the two register values are same, the conditional branch bne is not 

taken. Both add and sub instructions are executed. 

 

if/else statements 

 

The high-level code with if/else statement is shown below: 

if (i == j) 

    f = g + h; 

 

else 

 f = f – i; 
 

If the condition is true, the code executes the add operation; otherwise it executes the subtract 

operation. That means it executes either add or sub operation. This conditional statement is translated 

into MIPS assembly code with both bne and j instructions. 

# $s0 = f, $s1 = g, $s2 = h 

# $s3 = i, $s4 = j 

 

 bne $s3, $s4, else  # if i  j 
 add $$s0, $s1, $s2  # f = g + h 

 j   done     # skip else 

else: 

 sub $s0, $s0, $s3  # f = f - i 

done: 
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The conditional branch bne is taken if the register value $s3 is not equal to $s4, and then jumps to the 

target of the instruction line else.   After executing the instruction sub, the program is terminated. 

If the two register values are same, the conditional branch bne is not taken. It executes the next 

instruction add in sequence, followed by the unconditional branch j that jumps to the end of this 

program.  

 

while loops 

 

The high-level code with while loop is shown below: 

int pow = 1; 

int x = 0; 

 

 

while(pow != 128) 

{ 

   pow = pow * 2; 

   x = x + 1; 

} 
 

If the condition of the while statement is true, the code executes all the instructions within the curly 

bracket {}; otherwise it terminate the program. This statement is translated into MIPS assembly code 

with both beq and j instructions. 

# $s0 = pow, $s1 = x 

 addi $s0, $0, 1    # pow = 1 

 addi $s1, $0, 0    # x = 0 

 

 addi $t0, $0, 128   # $t0 = 128 

while:      # comparison 

 beq  $s0, $t0, done  # if pow=128 

 sll  $s0, $s0, 1    # pow=pow*2 

 addi $s1, $s1, 1    # x = x + 1 

 j    while 

done: 
 

The conditional branch beq is taken if the register value $s0 is equal to $t0, and then jumps to the 

target of the instruction line done.  If the register value $s0 is not equal to $t0, the branch is not 

taken and it executes the next instructions in sequence, followed by the unconditional branch j that 

jumps to the target of the instruction while of this program.  

 

for loops 

 

The high-level code with for loop is shown below: 

int sum = 0; 
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for(i=0;i!=10;i=i+1) 

{ 

    sum = sum + i; 

} 
 

The integer variable sum is initialized with 0. In the for loop, there are three instructions, as shown 

below: 

1) index i initialized with 0; i = 0; 

2) the condition of for loop; i != 10; 

3) increment/decrement of the index i; i = i + 1 

After initializing the index i, the statement checks the condition. If the condition is true, it executes all 

the instructions within the curly bracket { }. After increasing the value of the index i by 1, the statement 

checks the condition again. If the condition is false, it terminates the program. If the condition is true, it 

repeats all the previous steps until the condition becomes false. This statement is translated into MIPS 

assembly code with both beq and j instructions. 

# $s0 = i, $s1 = sum 

 addi $s1, $0, 0    # sum = 0 

 addi $s0, $0, 0    # i = 0 

 addi $t0, $0, 10    # $t0 = 10 

 

for: 

 beq  $s0, $t0, done  # if i == 10 

 add  $s1, $s1, $s0   # sum=sum+i 

 addi $s0, $s0, 1     # i = i + 1 

 j    for 

done: 

 

The first three instructions initialize the register values, i.e., $s0, $s1 and $t0. If the register value 

$s0 is equal to $t0, the conditional branch beq is taken, and then jumps to the target of the 

instruction line done. If the register value $s0 is not equal to $t0, the branch is not taken and then it 

executes the next instructions, i.e., add and addi instructions in sequence. The add instruction 

updates the register value $s1 that is equivalent to the integer variable sum. The addi instruction 

increases the value of the index i by 1. The unconditional branch j jumps to the target of the 

instruction line for of this program. 

 

Loops using slt 

 

The high-level code with for loop is shown below: 

int sum = 0; 

 

 

 

for(i=1;i<101;i=i*2) 

{ 

   sum = sum + i; 
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} 

 

The integer variable sum is initialized with 0. In the for loop, there are three instructions, as shown 

below: 

1) index i initialized with 1; i = 1; 

2) the condition of for loop; i < 101; 

3) increment/decrement of the index i; i = i * 2 

After initializing the index i, the statement checks the condition. If the condition is true, it executes all 

the instructions within the curly bracket { }. After multiplying the value of the index i with 2, the 

statement checks the condition again. If the condition is false, it terminates the program. If the 

condition is true (the value of the index i is less than 101), it repeats all the previous steps until the 

condition becomes false. Since there is the less than condition in the loop, this statement is translated 

into MIPS assembly code with slt, beq, and j instructions, where the set less than (slt) instruction 

sets the destination register value to 1 if the first register operand is less than the second register 

operand. 

# $s0 = i, $s1 = sum 

 addi $s1, $0, 0    # sum = 0 

 addi $s0, $0, 1    # i = 1 

 addi $t0, $0, 101 # $t0 = 101 

loop: 

# if (i < 101) $t1=1, else $t1 = 0 

 slt  $t1, $s0, $t0 

 beq  $t1, $0, done   # if $t1=0 

 add  $s1, $s1, $s0   # sum = sum + i 

 sll  $s0, $s0, 1     # i = i * 2 

 j    loop 

done: 
 

After initializing the register values, there comes the instruction line loop. In the slt instruction, the 

register value $s0 is compared with the register value $t0. If $s0 is less than $t0, it sets the value of 

the register $t1 to 1; otherwise sets to 0. The beq instruction compares the register value $t1 with 

$0. If the register value $t1 is 1 ($s0 < $t0), the branch is not taken and it executes the next 

instructions in sequence and updates the variables sum and i, followed by the unconditional branch j 

that jumps to the target of the instruction loop of this program. If the register value $t1 is 0 ($s0 => 

$t0), the branch is taken and it terminates the program. 
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Chapter 11: Pipeline 

In this chapter, we introduce microarchitecture, which is the connection between logic and architecture. 

Microarchitecture is the specific arrangement of registers, ALUs, finite state machines, memories, and 

other logic building blocks needed to implement an architecture. We also define instruction pipelining, 

hazards, pipelined datapath, and pipelined control. 

 

Objectives 
 

By the end of this chapter you should be able to: 

• Identify five stages in MIPS pipeline 

• Recognize structure hazards, data hazard, and control hazard 

• Demonstrate knowledge of pipelined datapath 

• Clarify pipeline usage in a single-clock cycle 

• Clarify pipeline operation in multi-cycle pipeline diagram 

 

11.1. Instruction Pipelining 
 

R-Type Instruction 
 

The instruction is fetched from memory, and the PC is incremented by 4 in the instruction fetch (IF) 

stage, as shown in Fig. 11-1. The fetched instruction is used by other parts of the datapath. Program 

Counter (PC) always holds the next memory address to be fetched, where PC is a byte address, not bit 

address.  PC value is updated by adding 4 to the previous PC value. 

 
Fig.  11-1. Instruction Fetch Stage of R-Type Instruction 
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Fig. 11-2 shows the instruction decode (ID) stage of R-Type Instruction. The two elements needed to 

implement R-format ALU operations are the register file and the ALU. The register file contains all the 

registers and has two read ports and one write port.  The register file always outputs the contents of the 

registers corresponding to the Read register inputs on the outputs; no other control inputs are needed. 

The inputs (RS and RT) carrying the register number to the register file are all 5-bit wide, whereas the 

lines carrying data values are 32-bit wide. The operation to be performed by the ALU is controlled with 

the ALU operation signal, which will be 4-bit wide. 

 
Fig.  11-2. Instruction Decode Stage of R-Type Instruction 

The arithmetic operations are executed in the execute (EX) stage, as shown in Fig. 11-3. Two 32-bit wide 

inputs from register files are fed into ALU to execute logic operations. 

 

 
Fig.  11-3. Execute Stage of R-Type Instruction 

There is nothing happening in memory access stage in R-type instruction.  
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In the write back (WB) stage of Fig. 11-4, the result from the ALU is written into the register file using 

bits 15:11 of the instruction to select the destination register. 

 
Fig.  11-4. Write Back Stage of R-Type Instruction 

 

Load Instruction 
 

In load instruction of Fig. 11-5, the instruction is fetched from memory, and PC value is increased by 4, 

which is the same as R-type instruction. 

 
Fig.  11-5. Instruction Fetch Stage of Load Instruction 

The fetched instruction is used by other parts of the datapath. Program Counter (PC) always holds the 

next memory address to be fetched, where PC is a byte address, not bit address.  PC value is updated by 

adding 4 to the previous PC value. 
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Fig. 11-6 shows the ID stage of Load instruction. In this stage the instruction field value [25 – 21] is fed 

into the register files and produces Read data 1 (32 bits), whereas the instruction field value [15 – 0] is 

fed into sign-extend function and produces a 32-bit constant/address value. 

 
Fig.  11-6. Instruction Decode Stage of Load Instruction 

 

The memory address is calculated with two 32-bit values in the execute stage of Fig. 11-7. 

 

 
Fig.  11-7. Execute Stage of Load Instruction 
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Fig.  11-8. Memory Access Stage of Load Instruction 

Fig. 11-8 shows the memory access stage of Load instruction. In this stage, the control bit for MemWrite 

is set to 1. Data memory contents designated by the address input are replaced by the value on the 

Write data input.  

As shown in the following figure, the control bit for MemtoReg is set to 1 in the write back stage. The 

value fed to the register Write data input comes from the data memory. 

 

 
Fig.  11-9. Write Back Stage of Load Instruction 

 

Performance Issues 
 

Historically early computers with very simple instruction sets did use this implementation technique. 

Pipelining improves efficiency by executing multiple instruction simultaneously. 
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The longest delay determines clock period in the pipeline. In the MIPS instruction sets, the load 

instruction is the critical path because it includes the following stage: 

• Instruction memory (IF) → register file (ID) → ALU (EX) → data memory (MEM) → register file 

(WB) 

It is not feasible to vary period for different instructions, because that violates design principle, making 

the common case fast. We can improve performance by pipelining, meaning that each instruction is 

executed in a different stage simultaneously in the processor. 

With pipeline, we can overlap the execution. It is the similar concept to improve the performance with 

parallelism. The laundry analogy exemplified this parallelism.  Ann, Brian, Cathy, and Don each have 

dirty clothes to be washed, dried, folded, and put away. Assume there are total four laundries and four 

steps for each laundry, i.e. washer, dryer, folding clothes, and clothes closet. Each step needed 30 

minutes to complete. A sequential laundry takes 8 hours for 4 loads of wash, i.e. 4 loads  2 hours, 

whereas a pipelined laundry takes just 3.5 hours, i.e. 1.5 hours + 30 minutes  4). 

MIPS pipeline has five stages, one step per stage: 

• IF: Instruction fetch from memory 

• ID: Instruction decode & register read 

• EX: Execute operation or calculate address 

• MEM: Access memory operand 

• WB: Write result back to register 

Let’s assume that the time for stages is as follows: 

• 100 ps for register read or write 

• 200 ps for other stages 

In the following table, we can compare the total time of the pipelined datapath with a single-cycle 

datapath: 

 

Table 11-1. Pipelined DataPath 

Instruction 
Instruction 

fetch 
Register 

read 
ALU op 

Memory 
access 

Register 
Write 

Total 
Time 

lw 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps 

sw 200 ps 100 ps 200 ps 200 ps 
 

700 ps 

R-format 200 ps 100 ps 200 ps 
 

100 ps 600 ps 

beg 200 ps 100 ps 200 ps 
  

500 ps 
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The load instruction includes all the pipeline stage so that the total time of the pipelined datapath is 800 

ps, whereas the R-type instruction has a total time of 700 ps because it doesn’t include the memory 

access stage. 

 
Fig.  11-10. Nonpipelined Execution of Three Load Word Instruction 

 
Fig.  11-11. Pipelined Execution of Three Load Word Instruction 

 

Figs. 11-10 and 11-11 compare nonpipelined and pipelined execution of three load word instructions. In 

the nonpipelined execution, a single-cycle is 800ps, thus the total time to execute three load instructions 

is 3 × 800 ps or 2400 ps in the nonpipelined design. On the other hand, in the pipelined execution, a 

clock cycle is 200 ps, and the pipelined execution clock cycle must have the worst-case clock cycle of 200 

ps, even though some stages take only 100 ps. The total time to execute three load instructions is 200 ps 

 5 + 200 ps  2 or 1400 ps. Notice that the pipelined execution time (1400 ps) is faster than the 

nonpipelined execution time (2400 ls). 

What would happen if we added 1,000,000 instructions in the pipelined and non-pipelined process in 

the above examples? 

For the pipelined process, each instruction adds 200 ps to the total execution time. The total time will be 

as follows: 

• 1,000,000 × 200 ps + 1400 ps = 200,001,400 ps 

For the nonpipelined process, each instruction adds 800 ps to the total execution time. The total time 

will be as follows: 

• 1,000,000 × 800 ps + 2400 ps = 800,002,400 ps 

The ratio of total execution times for real programs on nonpipelined to pipelined processors will be like 

800,002,400 𝑝𝑠

200,002,400 𝑝𝑠
≅

800 𝑝𝑠

200 𝑝𝑠
= 4.00 

If all stages are balanced, i.e., all stage take the same time, the total time of the pipelined process can be 

faster ( number of stages) than the total time of the nonpipelined process. If all stages are not 
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balanced, speedup is less. Note that this speedup is due to the increased throughput. The time for each 

instruction (latency) doesn’t decrease. 

 
Fig.  11-12. MIPS Pipelined Datapath 

 

As shown in the above figure, MIPS Pipelined Datapath has IF (Instruction fetch), ID (Instruction 

decode/register file read), EX (Execute/address calculation), MEM (Memory access), and WB (Write 

back). Each step of the instruction can be mapped onto the datapath from left to right. 

The update of the PC and the write-back step sends either the ALU result or the data from memory to 

the left to be written into the register file. 

 

  



124 
 

11.2. Pipelined Datapath 
 

The pipelined datapath needs registers between stages. The pipeline registers separate each pipeline 

stage, as shown in the following figure. 

 

 
Fig.  11-13. Pipeline Registers 

The pipeline registers are labeled by the stages that they separate; for example, the first is labeled IF/ID 

because it separates the instruction fetch and instruction decode stages. The registers must be wide 

enough to store all the data corresponding to the lines that go through them. For example, the IF/ID 

register must be 64 bits wide, because it must hold both the 32-bit instruction fetched from memory 

and the incremented 32-bit PC address. The pipeline operates cycle-by-cycle flow of instructions 

through the pipelined datapath. The single-clock-cycle pipeline diagram shows pipelined usage in a 

single cycle and highlight resources used in the pipeline, whereas the multi-clock-cycle diagram shows 

the graph of operation over time. 

Let’s look at “single-clock-cycle” diagrams for load and store instructions. 

 

Single-clock-cycle Pipeline Diagram 
 

Fig. 11-14 shows the instruction being read from memory using the address in the PC and then being 

placed in the IF/ID pipeline register.  
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Fig.  11-14. Instruction Fetch Stage for Load and Store 

 

The PC address is incremented by 4 and then written back into the PC to be ready for the next clock 

cycle. This incremented address is also saved in the IF/ID pipeline register in case it is needed later for an 

instruction, such as beq. The computer cannot know which type of instruction is being fetched, so it 

must prepare for any instruction, passing potentially needed information down the pipeline. 

 
Fig.  11-15. Instruction Decode Stage for Load and Store 

 

Fig. 11-15 shows the instruction portion of the IF/ID pipeline register supplying the 16-bit immediate 

field, which is sign-extended to 32 bits, and the register numbers to read the two registers. All three 

values are stored in the ID/EX pipeline register, along with the incremented PC address. We again 

transfer everything that might be needed by any instruction during a later clock cycle. 



126 
 

 
Fig.  11-16. Execute Stage for Load 

 

Fig. 11-16 shows that the load instruction reads the contents of register 1 and the sign-extended 

immediate from the ID/EX pipeline register and adds them using the ALU. That sum is placed in the 

EX/MEM pipeline register. 

Fig. 11-17 shows the load instruction reading the data memory using the address from the EX/MEM 

pipeline register and loading the data into the MEM/WB pipeline register. 

 

 
Fig.  11-17. Memory Access Stage for Load 
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Fig.  11-18. Write Back Stage for Load 

Fig. 11-18 shows the final step: reading the data from the MEM/WB pipeline register and writing it into 

the register file in the middle of the figure. When the processor executes WB stage of Load instruction, 

the write register number is not corresponding to the load instruction, because other instructions were 

executed for the ID stage.  

 

 
Fig.  11-19. Corrected Datapath for Load 

 

Fig. 11-19 shows the corrected datapath for Load instruction. The write register number now comes 

from the MEM/WB pipeline register along with the data. The register number is passed from the ID pipe 

stage until it reaches the MEM/WB pipeline register, adding five more bits to the last three pipeline 

registers. This new path is shown in Red color in the following figure: 
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Fig.  11-20. Execute Stage for Store 

 

Fig. 11-20 shows the execute stage of Store instruction. Unlike the third stage of the load instruction, 

the second register value is loaded into the EX/MEM pipeline register to be used in the next stage. 

Although it wouldn’t hurt to always write this second register into the EX/MEM pipeline register, we 

write the second register only on a store instruction to make the pipeline easier to understand. 

 

 
Fig.  11-21. Memory Access Stage for Store 

Fig. 11-21 shows the memory access stage of Store instruction, where the data is written into data 

memory for the store. Note that the data comes from the EX/MEM pipeline register and that nothing is 

changed in the MEM/WB pipeline register.  

Once the data is written in memory, there is nothing left for the store instruction to do, so nothing 

happens in the last (WB) stage. 
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Multi-Cycle Pipeline Diagram 
 

Fig. 11-22 shows the multiple-clock-cycle pipeline diagram for five instructions. Time advances from left 

to right across the page in these diagrams, and instructions advance from the top to the bottom. 

A representation of the pipeline stages is placed in each portion along the instruction axis, occupying the 

proper clock cycles. These stylized datapaths represent the five stages of our pipeline graphically. In the 

figure, IM represents the instruction memory and PC in the instruction fetch stage and DM represents 

data memory. 

 

 
Fig.  11-22. Multi-Cycle Pipeline Resource Usage 

 

Fig. 11-23 shows the more traditional version of the multiple-clock-cycle pipeline diagram. The previous 

figure shows the physical resources used at each stage, while This figure uses the name of each stage. 

 

 
Fig.  11-23. Multi-Cycle Pipeline Resource Usage 
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Exercises 
 

Assume that individual stages of the datapath have the following latencies: 

IF ID EX MEM WB 

260 ps 360 ps 170 ps 310 ps 220 ps 

 

1) What is the clock cycle time in a pipelined and non-pipelined processor? 

• Pipelined processor: Clock cycle time = 360 ps 

• Non-pipelined processor: Clock cycle time = 260 + 360 + 170 + 310 + 220 = 1320 ps 

 

2) What is the total latency of seven LW instructions in a pipelined and non-pipelined processor 

(assume no stalls or hazards) 

• Pipelined processor: Total latency = 360 × 5 + 360 × 6 = 3960 ps 

• Non-pipelined processor: Total latency = 1320 ps × 7= 9240 ps 
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11.3. Pipelined Controls 
 

In the pipeline, there are lots of control signals. Depend on the control signals enabled or disabled, the 

components of the pipeline are executed to complete each stage. The following figure shows that what 

control signals are used for each stage: 

 

 
Fig.  11-24. Simplified Pipelined Control 

 

• IF: If PCSrc set to 0, the PC value increased by 4; otherwise, a specific address forwarded from a 

branch instruction. 

• ID/register file read: the same thing happens at every clock cycle. No optional control lines. 

• Execution/address calculation: the signals, i.e. RegDst, ALUOp, and ALUSrc, are set. Note that we 

now need the 6-bit funct field (function code) of the instruction in the EX stage as input to ALU 

control, so these bits must also be included in the ID/EX pipeline register.  

• Memory access: the control lines, i.e. Branch, MemRead, and MemWrite are set. 

• Write Back: two control lines, MemtoReg and RegWrite. 

 

The effect of each control signal is summarized in the following table: 
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Table 11-2. Effect of Each Control Signal 

Signal name Effect when reasserted Effect when asserted 

RegDst The register destination number for the Write 
register comes from the rt field (bits 20:16) 

The register destination number for the Write register 
comes from the rd field (bits 15:11) 

RegWrite None The register on the Write input is written with the value 
of the Write data input 

ALUSrc The second ALU operand comes from the 
second register file output (Read data 2) 

The second ALU operand is the sign-extended, lower 16 
bits of the instruction 

PCSrc The PC is replaced by the output of the adder 
that computes the value of PC + 4 

The PC is replaced by the output of the adder that 
computes the branch target 

MemRead None Data memory contents designated by the address input 
are put on the Read data output 

MemWrite None Data memory contents designated by the address input 
are replaced by the value on the Write data input 

MemtoReg The value fed to the register Write data input 
comes from the ALU 

The value fed to the register Write date input comes 
from the data memory 

 

The control signals are derived from the instruction, as shown in the following figure: 

 
Fig.  11-25. Pipelined Control Signal 

 

Since the control lines start with the EX stage, the control information, i.e. total nine control signals, can 

be created during ID stage. Four of the nine control lines are used in the EX stage, with the remaining 

five control lines passed on to the EX/MEM pipeline register extended to hold the control lines. Three 

are used during the MEM stage, and the last two are passed to MEM/WB pipeline register for use in the 

WB stage. 
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Example – Pipeline Control 
 

Let’s look at some example what control signals are created in a given instruction and how these signals 

are used for each pipeline stage with the following instructions, where we assume that there are no 

hazard illustrations: 

 

lw $10, 20($1) 

sub $11, $2, $3 

and $12, $4, $5 

or $13, $6, $7 

add $14, $8, $9 

 

 
Fig.  11-26. Pipeline Control – Click 1 

Fig. 11-26 shows that the LW instruction is fetched in the instruction memory of IF stage. At the end of 

the clock cycle, the LW instruction is in the IF/ID pipeline registers. Note that since there is no control 

signal created in this stage, all the control signals are set to 0. 



134 
 

 
Fig.  11-27. Pipeline Control – Click 2 

 

Fig. 11-27 shows the second clock cycle, where the LW instruction moves to the ID stage, and sub 

instruction enters in the IF stage. 

Note that the values of the instruction fields and the selected source registers are shown in the ID stage. 

Hence register $1 and the constant 20, the operands of LW, are written into the ID/EX pipeline register. 

The number 10, representing the destination register number of LW, is also placed in ID/EX. Bits 15–11 

are 0, but we use the symbol X to show that a field plays no role in a given instruction. 
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Fig.  11-28. Pipeline Control – Click 3 

 

LW instruction enters the EX stage in the third clock cycle, adding $1 and 20 to form the address in the 

EX/MEM pipeline register. 

At the same time, the SUB instruction (sub $11, $2, $3) enters ID stage, reading registers $2 and 

$3, and the AND instruction (and $12, $4, $5) starts IF stage. 
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Fig.  11-29. Pipeline Control – Click 4 

 

In the fourth clock cycle, LW instruction moves into MEM stage, reading memory using the value in 

EX/MEM as the address.  

In the same clock cycle, the ALU subtracts $3 from $2 and places the difference into EX/MEM pipeline 

registers, reads registers $4 and $5 during ID stage, and the OR instruction (or $13, $6, $7) 

enters IF stage.  
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Fig.  11-30. Pipeline Control – Click 5 

 

The final instruction, an ADD instruction in this example, enters IF stage in the datapath. All instructions 

are engaged in the fifth clock cycle. By writing the data in MEM/WB into the write register 10, LW 

instruction completes and both the data and the register number are in MEM/WB.  

In the same clock cycle, SUB instruction sends the difference in EX/MEM to MEM/WB, and the rest of 

the instructions move forward. 
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Fig.  11-31. Pipeline Control – Click 6 

 

In the sixth clock cycle, SUB instruction selects the value in MEM/WB to write to the write register 

number 11, again found in MEM/WB.  

The remaining instructions play follow-the-leader: the ALU calculates the OR of $6 and $7 for the OR 

instruction in the EX stage, and registers $8 and $9 are read in the ID stage for the ADD instruction.  

The instructions after ADD are shown as inactive just to emphasize what occurs for the five instructions 

in the example. 
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Fig.  11-32. Pipeline Control – Click 7 

 

In the seventh clock cycle, the ADD instruction brings up the rear, adding the values corresponding to 

registers $8 and $9 during the EX stage.  

The result of the OR instruction is passed from EX/MEM to MEM/WB in the MEM stage, and the WB 

stage writes the result of the AND instruction in MEM/WB to the write register $12.  

Note that the control signals are deasserted (set to 0) in the ID stage, since no instruction is being 

executed. 
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Fig.  11-33. Pipeline Control – Click 8 

 

In the eighth clock cycle, the WB stage writes the result to the write register $13, thereby completing 

OR instruction, and the MEM stage passes the sum of the ADD instruction from EX/MEM to MEM/WB.  

The instructions after ADD instruction are shown as inactive for pedagogical reasons. 
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Fig.  11-34. Pipeline Control – Click 9 

 

The WB stage writes the sum in MEM/WB into the write register $14, completing all five-instruction 

sequences including ADD instruction. The instructions after ADD instruction are shown as inactive for 

pedagogical reasons. 
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Fig.  11-35. Summary of Pipelined Control 

 

Fig. 11-35 summarized the pipeline control. The control values for the last three stages are created 

during the instruction decode stage and then placed in the ID/EX pipeline register. All the control values 

are as follows for each stage: 

• EX stage:  ALUSrc, ALUOp, and RegDst 

• MEM stage: Branch, MemWrite, PCSrc, and MemRead 

• WB stage: MEMtoReg and RegWrite 

The control lines for each pipe stage are used, and remaining control lines are then passed to the next 

pipeline stage. 
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Chapter 12: Memory  

In this chapter, we introduce memory hierarchy and cache memory. Computer system performance 

depends on the processor microarchitecture as well as the memory system. The current memory 

systems are slower than processors. The increasing gap between processor and memory speeds 

demands increasingly ingenious memory systems to try to approximate a memory that is as fast as the 

processor. We introduce memory hierarchy to mitigate the increasing gap between them. We also 

introduce SRAM and DRAM technologies and flash and disk storages. 

 

Objectives 
 

By the end of this chapter you should be able to: 

• Demonstrate knowledge of memory hierarchy 

• Recall how the (temporal and spatial) locality to make memory access fast 

• Clarify knowledge of the terms, i.e. hit, hit rate, miss, miss rate in the memory hierarchy 

• Differentiate memory techniques; SRAM and DRAM technologies, and flash and disk storages 

• Evaluate efficiency of direct-mapped cache 

 

12.1. Memory Hierarchy 
 

Computer performance depends on processor performance and memory system performance. 

 
Fig.  12-1. Memory Interface 

 

As shown in the above figure, the processor frequently needs to access and read the data in the 

memory. If the memory system performance to read the data is not fast as much as the processor 

performance, the overall performance will be degraded due to the memory performance. 

The process performance was similar to the memory performance in 1980, as shown below. But it hasn’t 

been true since the 1980’s. A technological improvement raises the performance of the processor. On 

the other hand, the memory performance was not improved as much as the processor performance. 

The memory performance is not good as much as the processor performance and We call this gap as the 

processor-memory performance gap. 
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Fig.  12-2. Gap between Processor and Memory Speeds 

 

Since the memory system is not fast as much as the processor performance, we should make memory 

system appear as fast as processor. We can use memory hierarchy to make the memory system fast as 

much as the processor speed.  

The ideal memory has the following characteristics: 1) it should be fast and cheap (inexpensive); and 2) 

it should have a large capacity to store data in term of volume. But in reality, we cannot choose the one 

that meets all the requirement. If we choose one of the fastest one, it will be expensive and have limited 

capacity. If we choose one with the largest capacity, it will be slow. 

There are three memory types in the memory hierarchy, i.e. cache, main memory, virtual memory, as 

shown below: 

 
Fig.  12-3. Memory Hierarchy Pyramid 

 

The cache memory (SRAM) is fast but it can only keep small amount of data.  SRAM (Static RAM) needs a 

lot more transistors in order to store a certain amount of memory. That’s why it is very expensive. On 

the other hand, the virtual memory (SSD: solid state drive, and HDD: hard disk drive) is very slow but it 

can store unlimited data in the storage.  The main memory (DRAM) is located in between the cache 

memory and the virtual memory. In term of cost, it is cheaper than the cache memory. But in term of 

speed, it is faster than the virtual memory. DRAM (Dynamic RAM) requires the data to be refreshed 

periodically in order to retain the data.  
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Locality 
 

The memory hierarchy uses the locality to speed up the performance of the memory. There are two 

types of locality; one is temporal locality, and the other one is spatial locality. 

Temporal Locality uses the locality in time. If the data is used recently, the processor may use it again 

soon. By keeping recently accessed data in higher levels of memory hierarchy, the processor can access 

the data immediately. 

Spatial locality uses the locality in space. If the data is used recently, the processor is most likely to use 

neighboring data soon. When the processor access data, the memory system brings nearby data into 

higher levels of memory hierarchy too. The process can access the neighboring data immediately. 

We take advantage of principle of locality by implementing the memory of a computer as a memory 

hierarchy. 

 
Fig.  12-4. Principle of Locality 

 

As shown in the above figure, the faster memories are more expensive per bit than the slower 

memories and thus are smaller. The computer systems store everything on hard disk drive (virtual 

memory). The memory systems copy recently accessed items in the main memory and copy more 

recently accessed items in the cache memory. 

When the memory systems make a copy from low levels to high levels of memory hierarchy, it copies 

chunk of data, not a single line of data. When the data is found in that level of memory hierarchy, it is 

called as hit. The fraction or percentage of accesses that result in a hit is called the hit rate, expressed as 

the following equation: 

𝐻𝑖𝑡_𝑟𝑎𝑡𝑒 =  
# ℎ𝑖𝑡𝑠

# 𝑚𝑒𝑚𝑜𝑟𝑦_𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠
 

 

When the data is not found in that level of memory hierarchy, it is called as miss. It may take time to go 

to the next level, called as miss penalty. The fraction or percentage of accesses that result in a miss is 

called the miss rate, expressed as the following equation: 

𝑀𝑖𝑠𝑠_𝑟𝑎𝑡𝑒 =  
# 𝑀𝑖𝑠𝑠𝑒𝑠

# 𝑚𝑒𝑚𝑜𝑟𝑦_𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠
= 1 − ℎ𝑖𝑡_𝑟𝑎𝑡𝑒 
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It follows that the sum of the hit rate and the miss rate is equal to 1.0 (100%).  

The system makes a copy from the virtual memory to the main memory with a unit of data, called as a 

page. The system makes a copy from the main memory to the cache memory with a unit of data, called 

as a block.  

 

SRAM and DRAM Technologies 
 

SRAMs are Integrated circuits that are memory arrays with (usually) a single access port. SRAM has a 

fixed access time to any datum. It doesn’t need to refresh and so the access time is very close to the 

cycle time. Typically, it uses six to eight transistors per bit to prevent the information from being 

disturbed when reading the data. It costs a lot. 

DRAMs store data as a charge in a capacitor, where a single transistor is used to access the charge. 

That’s why it is much denser and cheaper per bit than SRAM. However, the data cannot be kept 

indefinitely and must periodically be refreshed, call ‘dynamic’.  

 

Table 12-1. DRAM Generations 

Year  
introduced 

Chip size $ per GB 
Total access time  

to a new row/column 
Average column access 

time to existing row 

1980 64 Kbit $1,500,000 250 ns 150 ns 

1983 256 Kbit $500,000 185 ns 100 ns 

1985 1 Mbit $200,000 135 ns 40 ns 

1989 4 Mbit $50,000 110 ns 40 ns 

1992 16 Mbit $15,000 90 ns 30 ns 

1996 64 Mbit $10,000 60 ns 12 ns 

1998 128 Mbit $4,000 60 ns 10 ns 

2000 256 Mbit $1,000 55 ns 7 ns 

2004 512 Mbit $250 50 ns 5 ns 

2007 1 Gbit $50 45 ns 1.25 ns 

2010 2 Gbit $30 40 ns 1 ns 

2012 4 Gbit $1 35 ns 0.8 ns 

[source] Computer Organization and Design, Fifth Edition: The Hardware/Software Interface (The Morgan Kaufmann Series in Computer Architecture and Design) 

 

The above table shows how DRAM generations gradually developed from 1980s. 
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Disk Storage 
 

Disk storage (also sometimes called drive storage) is a general category of storage mechanisms where 

data is recorded by various electronic, magnetic, optical, or mechanical changes to a surface layer of one 

or more rotating disks. 

 

    
Fig.  12-5. Disk Storage 

 

In the disk storage, a sector is a subdivision of a track on a magnetic disk. Each sector stores a fixed 

amount of user-accessible data, traditionally 512 bytes for hard disk drives (HDDs) and 2048 bytes for 

CD-ROMs and DVD-ROMs. The data area contains the sync bytes, user data and an error-correcting code 

(ECC) that is used to check and possibly correct errors that may have been introduced into the data. 

Access to a sector involves 

• Queuing delay if other accesses are pending 

• Seek time: move the heads 

• Rotational latency 

• Data transfer 

• Controller overhead 

For example, disks rotate at 5400 RPM to 15,000 RPM. What is the average rotational latency at 5400 

RPM? 

The average rotational latency is calculated as follows: 0.5 rotation/5400 RPM = 0.5 rotation/(5400 

rotation/60 seconds) = 30/5400 seconds = 5.6 ms 

 

Exercises 
 

1) A program has 2,000 load and store instructions. There exists 1,250 of these data values in cache 

and the rest of them supplied by other levels of memory hierarchy. What are the hit and miss rates 

for the cache? 
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Answer) 

• Hit_rate = 1250/2000 = 0.625 

• Miss_rate = 750/2000 = 0.375 = 1 – Hit_rate 

 

2) Disk Access 

Given: 512B sector, 15,000 RPM, 1 ms average seek time, 100 MB/s transfer rate,  

0.2 ms controller overhead, idle disk. 

What is the average read time? 

Answer) 

• No queuing delay because of idle disk 

• Seek time: 1 ms 

• Rotational latency: 0.5/(15,000/60) = 2 ms 

• Data transfer time: 512 B / 100 MB/s = 0.005 ms 

• Controller overhead: 0.2 ms 

The sum of the above items is 3.205 ms. 

 

12.2. Cache Memory 
 

Cache memory is located in the highest level of memory hierarchy. It is fast, and typically takes 1 clock 

cycle to access the data in the cache memory. Ideally it supplies most data to a processor. It usually 

holds most recently accessed data. 

Caches first appeared in research computers in the early 1960s and in production computers later in 

that same decade. Every general-purpose computer built today, from servers to low-power embedded 

processors, includes caches. 

When designing cache, the following questions are considered: 

• What data is held in the cache? 

• How is data found? 

• What data is replaced? 

Although we focus on data cache loads, the same principles apply for fetches from an instruction cache. 

Ideally, cache anticipates needed data and puts it in the cache memory, but it is impossible to predict 

the future demanding with perfect accuracy. Instead, the cache uses the past pattern to predict future 

demanding with temporal and spatial localities: 

• Temporal locality: copy newly accessed data into cache 

• Spatial locality: copy neighboring data into cache too 
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Before diving into the detail description, let’s look at the cache terminology. 

• Capacity (C): number of data bytes in cache 

• Block size (b): bytes of data brought into cache at once 

• Number of blocks (B = C/b): number of blocks in cache: B = C/b 

• Degree of associativity (N): number of blocks in a set 

• Number of sets (S = B/N): each memory address maps to exactly one cache set 

The cache is organized into S sets. Each memory address maps to exactly one set. The caches are 

categorized by # of blocks in a set: 

• Direct mapped: 1 block per set 

• N-way set associative: N blocks per set 

• Fully associative: all cache blocks in 1 set 

We exemplified the cache parameters as follows: 

• C = 8 words (capacity) 

• b = 1 word (block size) 

• So, B = C/b = 8 (# of blocks) 

It is ridiculously small, but will illustrate organizations with these simple parameters in the next 

subsection. 

 

Direct Mapped Cache 
 

In the direct mapped cache, the cache memory assigns the location of the cache for each work based on 

the address of the word (block) in the main memory. Since there is only one choice to put the data of 

memory into the blocks of the cache memory, it is called as ‘Directed mapped’, and the block number is 

calculated with the following modulo operation: 

• (block address) modulo (# blocks in cache) 

Let’s find out where the data at addresses 0x00000004, 0x00000024,…, 0xFFFFFFE4 map to. The 

following figure illustrates a direct mapped cache with a capacity of eight words (C = 8 words) and a 

block size of one word (b = 1 word). The number of blocks in cache is a power of 2 (B = C/b = 8). 

The cache has eight sets, each of which contains a one-word block. The two rightmost bits of the 

address are always 00, because they are word aligned. The next three rightmost bits (log2 8 = 3 bits) 

indicate the set (cache index) onto which the memory address maps. Thus, the data at addresses 

0x00000004, 0x00000024, . . . , 0xFFFFFFE4 map to the set number 1.  Likewise, data at addresses 

0x00000010 and 0xFFFFFFF0 map to set 4, and so forth. Each main memory address maps to exactly one 

set in the cache. 
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Fig.  12-6. Mapping of Main Memory to a Direct Mapped Cache 

 

The following figure shows the direct mapped cache hardware. The cache is constructed with an eight-

entry SRAM. Each entry, or set, contains one line consisting of 1 valid bit, 27 bits of tag, and 32 bits of 

data, as shown in the right side of Fig. 12-7. The cache is accessible using the 32-bit (memory) address 

that consists of the tag field (27 bits), the set bits (3 bits) and the byte offset (2 bits), as indicated in the 

top left of Fig. 12-7. 

 
Fig.  12-7. Direct Mapped Cache Hardware 
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The set bits specify the entry or set in the cache. Using the set value, the system finds out the cache 

index number. The system compares two values, the tag value of the memory address and the tag value 

in the cache. If the two values are identical and the valid bit is set to ‘1’, the memory system will get 

‘hit’, and the data in the cache can be returned to the processor. Otherwise, the cache misses and the 

memory system must fetch the data from main memory. 

The system knows whether a requested block is in the cache or not through tag values. The tags contain 

the address information required to identify whether a block (a word) in the cache corresponds to the 

requested block (word). The tag needs only to contain the upper portion of the address. Then what if 

there is no data in a location? The system indicates whether an entry contains a valid address through a 

valid bit. If the valid bit is one, there exists a valid address; otherwise there is no valid address in that 

entry. It is initially set to 0. 

Let’s look at how the cache memory is utilized when executing the following MIPS assembly codes: 

 # MIPS assembly code 
 

 addi $t0, $0, 5 

loop: beg  $t0, $0, done 

 lw   $t1, 0x4($0) 

 lw   $t2, 0xC($0) 

 lw   $t3, 0x8($0) 

 addi $t0, $t0, -1 

 j    loop 

done: 
 

The program contains a loop that repeats for five iterations. Each iteration involves three memory 

accesses (loads), resulting in 15 total memory accesses. We assume that the cache is initially empty. The 

first two instructions (addi and beq) require no memory access. Since the cache is initially empty, there 

is no data in the memory. The third instruction, lw  $t1, 0x4($0), got missed, where the memory 

address consists of the tag (00…00), the set value (001) and the byte offset (00). The system makes a 

copy the data from memory and the entry of index number 1 is filled with the data including the valid bit 

(1) and the tag value (00…00), as shown below: 

 

Table 12-2. Temporal Locality with a Direct Mapped Cache with lw $t1, 0x4($0) 

V Tag Data 
 

0 
  

Set 0 (000) 

1 00…00 Mem(0x00…04) Set 1 (001) 

0 
  

Set 2 (010) 

0 
  

Set 3 (011) 

0 
  

Set 4 (100) 

0 
  

Set 5 (101) 

0 
  

Set 6 (110) 

0 
  

Set 7 (111) 
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The fourth instruction, lw  $t2, 0xc($0), got missed because there is no data in the memory. The 

memory address of the instruction consists of the tag (00…00), the set value (011) and the byte offset 

(00). The system makes a copy the data from memory in the same way. The entry of index number 3 is 

filled with the data including the valid bit (1) and the tag value (00…00), as shown below: 

 

Table 12-3. Temporal Locality with a Direct Mapped Cache with lw $t2, 0xc($0) 

V Tag Data 
 

0 
  

Set 0 (000) 

1 00…00 Mem(0x00…04) Set 1 (001) 

0 
  

Set 2 (010) 

1 00…00 Mem(0x00…0C) Set 3 (011) 

0 
  

Set 4 (100) 

0 
  

Set 5 (101) 

0 
  

Set 6 (110) 

0 
  

Set 7 (111) 

 

The fifth instruction, lw $t3, 0x8($0), got missed again because there is no data in the memory. The 

memory address of the instruction consists of the tag (00…00), the set value (010) and the byte offset 

(00). The system makes a copy the data from memory in the same way before. The entry of index 

number 2 is filled with the data including the valid bit (1) and the tag value (00…00), as shown below: 

 

Table 12-4. Temporal Locality with a Direct Mapped Cache with lw $t3, 0x8($0) 

V Tag Data 
 

0 
  

Set 0 (000) 

1 00…00 Mem(0x00…04) Set 1 (001) 

1 00…00 Mem(0x00…08) Set 2 (010) 

1 00…00 Mem(0x00…0C) Set 3 (011) 

0 
  

Set 4 (100) 

0 
  

Set 5 (101) 

0 
  

Set 6 (110) 

0 
  

Set 7 (111) 

 

No memory access is required for the last two instructions, addi and j. The first time the loop executes, 

the cache is empty and the data must be fetched from main memory locations 0x4, 0xC, and 0x8 into 

cache sets 1, 3, and 2, respectively. The processor jumps to the instruction line loop. However, the next 

four times the loop executes, the data is found in the cache. We can calculate the miss rate, 3/15 = 20%. 
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Now let’s assume that we have the memory addresses 0x4 and 0x24 in a loop, as shown below: 

• 0x4 : tag (00…00), the set value (001) and the byte offset (00). 

• 0x24 : tag (00…01), the set value (001) and the byte offset (00). 

Both memory addresses map to the set number 1. During the initial execution of the loop, data at 

address 0x4 is loaded into set 1 of the cache.  Then data at address 0x24 is loaded into set 1, evicting the 

data from address 0x4. Upon the second execution of the loop, the pattern repeats and the cache must 

refetch data at address 0x4, evicting data from address 0x24. The two addresses conflict, and the miss 

rate is 100% in this case. 

 

N-Way Set Associative Cache 
 

An N-way set associative cache reduces conflicts by providing N blocks in each set, where data mapping 

to that set might be found. The following figure shows the hardware for a C = 8-word, N = 2-way set 

associative cache. The cache now has only S = 4 sets rather than 8. Thus, only log2 4 = 2 set bits are used 

to select the set. 

 

Fig.  12-8. 2-way Set Associative Cache 

 

The number of tag bits increases from 27 to 28 bits. 2-way set associative cache has two options to store 

the tag value and the data. Each way consists of a data block and the valid and tag bits. When the 

memory address is searched as noticed in the top left of the above figure, the tag value in memory 

address is compared with the tag value in the cache. The cache reads blocks from both ways in the 

selected set and checks the tags and valid bits for a hit. If a hit occurs in one of the ways, a multiplexer 

selects data from that way. 

Let’s look at how the 2-way set associative cache is utilized when executing the following MIPS assembly 

codes: 
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 # MIPS assembly code 
 

      addi $t0, $0, 5 

loop:  beq  $t0, $0, done 

       lw   $t1, 0x4($0) 

       lw   $t2, 0x24($0) 

       addi $t0, $t0, -1 

       j    loop 

done: 
 

The program contains a loop that repeats for five iterations. Each iteration involves two memory 

accesses (loads), resulting in 10 total memory accesses. We assume that the cache is initially empty. 

The first load instruction, lw $t1, 0x4($0), got missed because there is no data in the cache memory. 

The memory address of the instruction consists of the tag (00…00), the set value (01) and the byte offset 

(00). The system makes a copy the data from memory to cache and the way 0 entry of the set number 1 

(01) is filled with the data including the valid bit (1) and the tag value (00…00), as shown below: 

 

Table 12-5. 2-way Set Associative Cache with lw $t1, 0x4($0) 

Way 1 Way 0  

V Tag Data V Tag Data 
 

0 
  

0 
  

Set 3 (11) 

0 
  

0 
  

Set 2 (10) 

0 
  

1 00…00 Mem[0x00…04] Set 1 (01) 

0 
  

0 
  

Set 0 (00) 

 

The second load instruction, lw $t2, 0x24($0), got missed again because there is no data in the 

memory. The memory address of the instruction consists of the tag (00…10), the set value (01) and the 

byte offset (00). The system makes a copy the data from memory to cache in the same way. In this time, 

the way 1 entry of the set number 1 is filled with the data including the valid bit (1) and the tag value 

(00…10), as shown below: 

 

Table 12-6. 2-way Set Associative Cache with lw $t2, 0x24($0) 

Way 1 Way 0  

V Tag Data V Tag Data 
 

0 
  

0 
  

Set 3 (11) 

0 
  

0 
  

Set 2 (10) 

1 00…10 Mem[0x00…24] 1 00…00 Mem[0x00…04] Set 1 (01) 

0 
  

0 
  

Set 0 (00) 
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Both memory accesses, to addresses 0x4 and 0x24, map to the set number 1. However, the cache has 

two ways, so it can accommodate data from both addresses. During the first loop iteration, the empty 

cache misses both addresses and loads both words of data into the two ways of the set number 1. On 

the next four iterations, the cache hits. Hence, the miss rate is 2/10 = 20%. 

 

Full Associative Cache 
 

A fully associative cache allows a given block to go in any cache entry. The cache is expensive to build 

because it requires all entries to be searched at once. But it can reduce conflict misses. 

 

 
Fig.  12-9. Fully Associative Cache 

 

 

Exercises 
 

1) The modulo operation finds the remainder after division of one number by another. For example, 5 

modulo 2, where 5 is the dividend and 2 is the divisor, would evaluate to 1 because 5 divided by 2 

leaves a quotient of 2 and a remainder of 1. What are the results of the following modulo 

operations? 

• 9 modulo 3 =  

• 000012 modulo 23 = 

• 100012 modulo 23 = 
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Chapter 13: Virtual Memory  

In this chapter, we introduce virtual memory. Most modern computer systems use a hard driver 

made of magnetic or solid-state storage as the lowest level in the memory hierarchy. The virtual 

memory is located in the lowest level of the memory hierarchy while still provide the speed of 

faster memory for most accesses. Processors can access data anywhere using virtual addresses 

that specify the location in virtual memory. We also introduce virtual memory definitions and 

show how to translate the virtual address into the physical address. 

 

Objectives 
 

By the end of this chapter you should be able to: 

• Differentiate virtual and physical addresses 

• Identify the difference between virtual memory analogue and cache memory analogue 

• Recognize the address translation in virtual address 

• Carry out the address translation from virtual address to physical address 

• Demonstrate knowledge of page table 

• Identify features of translation lookaside buffer 

 

13.1. Virtual Memory Address 
 

There are three memory types in the memory hierarchy, i.e. cache, main memory, virtual memory, as 

shown in the following figure. As we discuss in the cache memory, the cache memory (SRAM) is fast but 

it can only keep small amount of data because it is very expensive. The virtual memory gives the illusion 

of bigger memory. Ideally, we have no limitation to store data in the virtual memory, where the main 

memory (DRAM) acts as cache for hard disk. That means we can make a copy a chunk of data from 

virtual memory to main memory.  

 

 
Fig.  13-1. Memory Hierarchy Pyramid 
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The following table describes the cache and virtual memory analogues. 

Table 13-1. Cache/Virtual Memory Analogues 

Cache Virtual Memory 

Block Page 

Block Size Page Size 

Block Offset Page Offset 

Miss Page Fault 

Tag Virtual Page Number 

 

When the system makes a copy data from main memory to cache memory, it does in a unit of block, 

where cache memory is exactly a memory unit. When the system makes a copy data from virtual 

memory to main memory, it does in a unit of page. Virtual memory is not a memory unit, it is a 

technique. The page size is the amount of memory transferred from hard disk (Virtual memory) to 

DRAM at once. The typical page size is between 1 KB and 8 KB and is generally 4 KB for 32-bit systems. 

The page number is the number of bits required to represent the pages in Virtual Address Space, where 

the page offset is the number of bits required to represent particular word in a page or page size of 

Virtual Address Space or word number of a page. 

The data is stored in virtual memory and processors use virtual addresses when they execute. The entire 

virtual address space is stored on a hard drive and only subset of virtual address data moves in physical 

memory (DRAM). Accordingly, CPU translates virtual addresses into physical addresses (DRAM 

addresses) so that it can find the physical location of data in DRAM. If data is not in DRAM fetched from 

hard drive, it is called “page fault”, which is a similar concept of “miss”. As shown in the following figure, 

the address translation determines physical address from virtual address, where the page table is used 

as a lookup table to translate virtual addresses to physical addresses. 

 

 
Fig.  13-2. Virtual and Physical Addresses 

 

As shown in the above figure, Virtual memory is divided into virtual pages, typically 4 KB in size. Physical 

memory is likewise divided into physical pages of the same size (4 KB). A virtual page may be located in 
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physical memory (DRAM) or on the disk. Some virtual pages are present in physical memory, and some 

are located on the disk. The process of determining the physical address from the virtual address is 

called address translation. When we execute a program, we expect that most memory accesses got hit 

in physical memory. But what if the program size is bigger than DRAM size? In this case, we cannot move 

all the programs to the physical memory. The programs can have the large capacity in virtual memory. 

The programmer no longer needs to worry about the amount of physical memory available. All the 

programs will be stored in the virtual memory with virtual memory address. The system only makes a 

copy required data from virtual memory to physical memory. 

 

Address Translation 
 

The following figure illustrates how to translate a virtual address to a physical address. In this example, 

we assume that the system has the following specification: 

• Virtual memory size: 2 GB = 231 bytes 

• Physical memory size: 128 MB = 227 bytes 

• Page size: 4 KB = 212 bytes 

 
Fig.  13-3. Address Translation 

 

In the figure above, the least significant 12 bits indicate the page offset and require no translation.  The 

upper 19 bits of the virtual address specify the virtual page number (VPN) and are translated to a 15-bit 

physical page number (PPN). 

We can extract the following values for the give system: 

• Virtual address: 31 bits 

• Physical address: 27 bits 

• Page offset: 12 bits = 3 hexes 

• # Virtual pages = 231/212 = 219 (VPN = 19 bits) 

• # Physical pages = 227/212 = 215 (PPN = 15 bits) 
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The following figure shows the virtual page number 5 mapping to the physical page number 1, virtual 

page number 0x7FFFC mapping to physical page number 0x7FFE, and so forth. For example, virtual 

address 0x53F8 (an offset of 0x3F8 within virtual page 5) maps to physical address 0x13F8 (an offset of 

0x3F8 within physical page 1). The least significant 12 bits of the virtual and physical addresses are the 

same (0x3F8) and specify the page offset within the virtual and physical pages. Only the page number 

needs to be translated to obtain the physical address from the virtual address. 

 
Fig.  13-4. VPN Mapping to PPN 

 

Exercises 
 

1) Let’s assume we have the virtual memory system with the given Fig. 13-4. What is the physical 

address of the virtual address 0x0000247C? 

 

Answer)  

• VPN = 0x00002 

• VPN 0x00002 maps to PPN 7FFF 

• 12-bit page offset = 0x47C 

• Physical address = 0x7FFF47C 

 

2) Consider a virtual memory system that can address a total of 232 bytes. You have unlimited hard 

drive space, but are limited to only 8 MB of semiconductor (Physical) memory. Assume that virtual 

and physical pages are each 4 KB in size. Configuration of the virtual and physical memory 

addresses, as follows: 
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The virtual memory address consists of virtual page number (VPN) and page offset. The physical 

memory address consists of physical page number (PPN) and page offset. 

The lengths of page offset are same. 

The total number of the virtual page: 232 / 212 = 220. That means a total of 20 bits are used for the 

virtual page number. 

The total number physical page: 8 MB / 4 KB = 223 / 212 = 211. That means a total of 11 bits are used 

for the physical page number. 

 

13.2. Page Table 
 

Let’s look at how to perform translation with the page table. The page table has the entry for each 

virtual page, where entry fields have the following information: 

• Valid bit (V): set to 1 if the page is in physical memory 

• Physical page number (PPN): where the page is located in the main memory 

 
Fig.  13-5. Page Table Translation 

 

As shown in left side of Fig. 13-5, the virtual address consists of virtual page number (VPN) and page 

offset. The VPN 0x00002 is translated into physical page number (PPN) 0x7FFF using the given page 

table. If the PPN 0x7FFF is already in the page table and the valid bit set to 1, then the system will get 

“hit”. The PPN 0x7FFF in page table is mapped to the PPN in physical address. The page offset of 

virtual address is directly translated into the page offset of physical address. 
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Translation Lookaside Buffer (TLB) 
 

The page table is large and is usually located in physical memory. If a processor executes load or store 

instruction, the system requires two accesses of the main memory: 

• one for translation (page table read) 

• another to access data (after translation) 

These accesses eventually degrade the memory performance in half, unless we get clever way to access 

the memory. 

Translation Lookaside Buffer (TLB) is small cache of most recent translations, and reduces the number 

of memory accesses for most loads/stores from 2 to 1. 

 
Fig.  13-6. Paging Hardware With TLB 

 

The CPU only looks at the virtual (logical) address which consists of VPN and PO. If the corresponding 

PPN is already in Translation look-aside buffers, the system will get TLB hit.  VPN is directly translated 

into PPN using TLB located within CPU. In this case, only one memory access is required. 

If the page number is not in the TLB (TLB miss), the system searches the page table which is located in 

the main memory. After getting PPN in the main memory, it can translate VPN into PPN, and then access 

the data located in the memory. In this case, two memory accesses are required. 

When we run multiple processes (programs) at once, each process has its own page table. Each process 

can use entire virtual address space.  A process can only access physical pages mapped in its own page 

table.  
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Virtual Memory Settings 
 

In the Window Search window, type “Advanced System Settings” and click it. You can see the following 

figure. Then Click “Setting”. 

 

In the System Properties window, click the Advanced tab. You can check the virtual memory size. 

 

 

Virtual Memory for 64-bit versions of Windows 

• How to determine the appropriate page file size for 64-bit versions of Windows 

 

 

https://docs.microsoft.com/en-US/windows/client-management/determine-appropriate-page-file-size
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Exercises 
 

1) What is the physical address of virtual address 0x00005F20 with the given page table? (assume 

12-bit page offset) 

 

Answer) The least significant 12 bits of the virtual and physical addresses are the same (0xF20) and 

specify the page offset both the virtual and physical pages. According, the virtual page number 5 is 

mapping to the physical page number 1 in the page table. The virtual address 0x00005F20 is 

translated into the physical address 0x0001F20, as shown below: 

 

 

2) What is the physical address of virtual address 0x000073E0 with the given page table? (assume 

12-bit page offset) 



164 
 

 

 

Answer) The least significant 12 bits of the virtual specify the page offset. According, the virtual page 

number (VPN) is 7. The corresponding physical page number is not valid (blank) in the page table. If the 

processor attempts to access a virtual address that is not in physical memory, a page fault occurs, and 

the operating system loads the page from the hard disk into physical memory. 

 

3) What is the physical address of virtual address 0x7FFFCA20 with the given page table? (assume 

12-bit page offset) 

 

 


