
1

CYBR 4423

Linux/Unix Administration

BASH SCRIPTING

2

Overview

Bash scripting language basics
Script files
Language elements

Variable
Operators
Control flow
Function

Scripting apps
Text and number processing
File processing

3

Scripting

What is a script?

Why should system administers know how to write

scripts?

4

Script File

A set of commands grouped together in a file

Bash script file
.sh (suffix not required)
Add “#!/bin/bash” as a directive in the first line

One statement per line
; is optional
Use ; to separate statements if multiple commands are on the same line

Use # for comments

5

Variables

Variable naming
Variable names are case sensitive
All-caps names typically suggest environment variables or variables read from global
configuration files
Local variables are all-lowercase with components separated by underscores

Assignment and data type
All variables are of the string data type when assigned

Referencing variables
Use the “$”+variable name
Use {} around variable name optionally

6

Script Execution Methods

Use the bash process to execute scripts
bash [script file name]

Directly run a script file as a separate process
Use “chmod +x” to allow the execution permission

7

Script Arguments

Script arguments are supplied at the command line after

command name and separated by a space

Arguments are stored in order as $1, $2
$0 refers to the command/script name
$# is the number of arguments

8

Arithmetic Operations

Basic operators
+, -, *, /, %
++, --, +=, etc.

Arithmetic operations must be enforced by using
let
$[…]
$((…))
expr or bc command

More information

https://www.shell-tips.com/bash/math-arithmetic-calculation/

9

Comparison Operations

10

Flow Control – If

11

Nested If

12

Compound Conditions

Use [[…]] to evaluate compound conditions
&&: logical AND
||: logical OR

Other ways
[…] && […]
[…] || […]
[… -a …]
[… -o …]

13

Flow Control – Case

Basic structure
case $variable in

condition1) …;;
condition2) …;;
*) … ;;

esac

The case structure is very flexible on cases; case values

can be numbers and strings – in fact, they are all strings.

14

Flow Control – For Loop

Basic structure
for ((i=0 ; i < $limit ; i++))
do

…
done

15

Flow Control – For … In Loop

Basic structure
for var1 in … #arguments separated by space
do

…
done

16

Flow Control – While Loop

Basic structure
counter=0
while [loop condition]
do

…
$((counter++))

done

17

Flow Control – Until Loop

Basic structure
counter=0
until [loop stop condition]
do

…
$[counter++]

done

18

Functions and Parameters

Basics
Functions in bash do not return values
Functions must be declared before they can be called
Parameters do not need to be declared; they are referred to as $1, $2, etc. in the
function

19

Summary

Key terms
Scripting mode
Script file
Argument
Function

Bash operators and symbols
Arithmetical operations: $((…)) $[…] let + - * / ** %
Comparison operators: -eq -ne -gt -lt -d -e -f && ||
Other operators: ; \ # $
Control flow structures: if, case, for, for…in, while, until
function, { }, argument ($#, $1, $2, etc.)

20

Shell Initiation Files

Initiation files are script files that are executed when the

system starts

System wide
/etc/profile
/etc/bashrc

User specific
~/.bash_profile
~/.bashrc

More reference
Shell Initialization Files

https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_03_01.html

21

Good Readings and Resources

Quick guides to write scripts using the bash shell
A quick guide to writing scripts using the bash shell
Shell Programming
Introduction to Linux Shell and Shell Scripting
Bash Script Examples

References for further advanced study
The bash shell
Bash Scripting Tutorial
Linux Shell Scripting Tutorial
Bash Guide for Beginners
Bash Programming – Introduction How-To
Advanced Bash-Scripting Guide

http://www.panix.com/~elflord/unix/bash-tute.html
http://linuxsig.org/files/bash_scripting.html
https://www.geeksforgeeks.org/introduction-linux-shell-shell-scripting/
https://www.fosslinux.com/46250/35-bash-script-examples.htm
https://bash.cyberciti.biz/guide/The_bash_shell
http://linuxconfig.org/Bash_scripting_Tutorial
http://www.freeos.com/guides/lsst/
http://tldp.org/LDP/Bash-Beginners-Guide/html/
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
https://tldp.org/LDP/abs/html/

22

Overview

Shell
Shell builtin commands
Command line scripting

Bash scripting basics
Input/output
Piping
Variables and data types

23

Shell

A Unix/Linux shell is a piece of software (command-line
interpreter) that provides an interface for users to access
the services of the OS kernel

Major shells
Bourne shell compatibles

Bourne shell: /bin/sh
Bash (Bourne-Again shell): /bin/bash

C Shell (csh)
See the /etc/shells file for valid shells (not installed shells)

Ubuntu (and most Linux distros) uses bash as the default
shell

You can switch to a different shell at any time use the "chsh" command

24

Command Execution

25

Get Command Reference

man
View command manuals (press "q" to exit)

type
Show the type of a command

which
Show the file location of a
command.

whereis
Locate binary, source, manual, configuration, and other files related to a command.

26

Basic Command Operations

Auto completion: use tab key
No need to type all characters!
This applies to commands and directory/file names

Command history
Use up/down arrow key to navigate through commands entered before.
Use "history" command and "!" operator

Linux C and history command
Linux Command Line History

Command editing
Use left/right arrow keys, del, backspace to edit a command

https://www.computerhope.com/unix/uhistory.htm
http://www.thegeekstuff.com/2008/08/15-examples-to-master-linux-command-line-history/

27

Scripting

Scripting vs. Programming

Scripting language in Linux
Shell (Bash)
Perl
Python

Two scripting modes
Command line scripting
Script file execution

28

Command Line Scripting

Write scripts directly in the shell at the command prompt

Command editing
Use up arrow key to get previous commands
Ctrl + A to go to the beginning of the command
Ctrl + E to go to the end of the command

Multi line commands
Use “\” to indicate a soft return and continue on the next line

Multiple commands on one line
Use “;” to separate commands

29

Shell Built-in Commands

Shell built-ins are commands interpreted by the shell

directly (no separate executable files). Examples:
cd
pwd
type
echo
alias

Use "type" command to see if a command is a builtin

Reference

http://tldp.org/LDP/abs/html/internal.html

30

Command Alias

An alias is a (usually short) name that the shell translates into
another (usually longer) name or (complex) command.

Aliases allow you to define new commands.

Example
Enter “alias” without any argument to check the current aliases defined

When an alias hides the original command
Use “” (quotation mark) around the original command to avoid calling an alias

Remove alias
Use the "unalias" command followed by the alias name

31

Command Search Path

Search path
These are the directories to search when a command is entered without its path.
Paths are stored in the $PATH environment variable

To add a directory "/dir/path" to PATH

32

Changing Command Prompt

Command prompt is usually used to display useful

environment information such as
Current user, directory, date, etc.

Change the “PS1”

variable to change

command prompt

Reference

http://www.linuxselfhelp.com/howtos/Bash-Prompt/Bash-Prompt-HOWTO-2.html

33

Other Environmental Variables

Prompt statement
$PS1 - command prompt
$PS2 - command continuation prompt

Other commonly used ones
$SHELL - current shell
$HOME - home directory
$PWD - current working directory
$PATH - command search path

Use "printenv" command to show all environmental

variables

34

Input and Output

Every process has at least 3 communication channels

available
“standard input” (STDIN)
“standard output” (STDOUT)
“standard error” (STDERR)

These channels are setup by the kernel, so the process

itself doesn’t necessarily know them
Most commands accept their input from STDIN and write their output to STDOUT. They
write error messages to STDERR

In the context of an interactive terminal window
STDIN normally reads from the keyboard
STDOUT and STDERR write their output to the screen

35

Reroute from/to Files

Use “>” to redirect screen output to files
Use “>>” to append to a file rather than to overwrite it

Use “<” to get input from a file

Use “2>” to redirect errors to a file
Use “/dev/null” if errors should be ignored

36

Pipe

Pipe operator: |
To connect the STDOUT of one command to the STDIN of another

Filter
Any well-behaved command that reads STDIN and writes STDOUT can be used as a filter
(that is, a component of a pipeline) to process data.
Common filter commands:

grep, wc, head, tail, tee, cut, sort, tr, cat
Unix Filter

http://en.wikipedia.org/wiki/Filter_(Unix)

37

More Pipe Examples

If file list is too long, use "less" to see them in pages.

Count how many files

Look for subdirectories – the first letter in each file is

"d" for directories

Provide a value to a program reads from user put

38

grep

grep is used to find text within files

grep [options] PATTERN [FILE...]

Options
-i ignore case
-w whole word
-v reverse results
-o resulted phrase only

Pattern
Strings or regular expressions

39

More grep Examples
File name ending with ".jpg“

Get only the match part, not the whole line (-o option)

More examples

grep reference

Complete Regex reference

http://www.thegeekstuff.com/2009/03/15-practical-unix-grep-command-examples/
http://www.thegeekstuff.com/2009/03/15-practical-unix-grep-command-examples/
http://www.regular-expressions.info/reference.html

40

Variables
Variable naming

Variable names are case sensitive
All-caps names typically suggest environment variables or variables read from global
configuration files
Local variables are all-lowercase with components separated by underscores

Assignment
All variables are of the string data type when assigned

Referencing variables
Use the “$”+variable name
Use {} around variable name optionally

41

I/O Command: echo

Use echo command to send results to “STDOUT”

Multiple arguments followed

42

I/O Command: printf

Similar to “echo”, but with some formatting
\t tab
\n new line

Format controls reference: use man or visit
The printf command

https://wiki.bash-hackers.org/commands/builtin/printf

43

I/O Command: read

Accept user input from the keyboard and save it to a

variable
Use -p option for input prompt

44

Double and Single Quotes
The shell treats strings enclosed in single and double

quotes similarly, except that double-quoted strings are

subject to globbing – a pattern matching behavior like:
The expansion of filename-matching metacharacters such as * and ?
Variable expansion $
Command history !

45

Capture Command Output

``
Back quotes (or back-ticks), are similar to double quotes, but they have the additional
effect of executing the contents of the string as a shell command and replacing the string
with the command’s output.

$()
Another form of command substitution

46

Summary

Key concepts
Command-line scripting
I/O channels: stdin, stdout, stderr
Pipe
Environmental variable

Key skills: write simple command-line shell scripts

utilizing the following elements
Channel operators: > < >> 2> |
Variables
Shell builtin commands

echo, printf, read, bash, alias
Commands: man, type, which, whereis

47

Good Readings and Resources

Bash Guide for Beginners

15 Useful Bash Shell Built-in Commands

http://tldp.org/LDP/Bash-Beginners-Guide/html/
http://www.thegeekstuff.com/2010/08/bash-shell-builtin-commands/

48

Regular Expression for Searching

Regular Expression (Regex)
Looking for text patterns
Commonly used for string search

Use with “grep”

References

http://www.regular-expressions.info/reference.html

49

Regex Quick Guide

	Slide 1: CYBR 4423 Linux/Unix Administration
	Slide 2: Overview
	Slide 3: Scripting
	Slide 4: Script File
	Slide 5: Variables
	Slide 6: Script Execution Methods
	Slide 7: Script Arguments
	Slide 8: Arithmetic Operations
	Slide 9: Comparison Operations
	Slide 10: Flow Control – If
	Slide 11: Nested If
	Slide 12: Compound Conditions
	Slide 13: Flow Control – Case
	Slide 14: Flow Control – For Loop
	Slide 15: Flow Control – For … In Loop
	Slide 16: Flow Control – While Loop
	Slide 17: Flow Control – Until Loop
	Slide 18: Functions and Parameters
	Slide 19: Summary
	Slide 20: Shell Initiation Files
	Slide 21: Good Readings and Resources
	Slide 22: Overview
	Slide 23: Shell
	Slide 24: Command Execution
	Slide 25: Get Command Reference
	Slide 26: Basic Command Operations
	Slide 27: Scripting
	Slide 28: Command Line Scripting
	Slide 29: Shell Built-in Commands
	Slide 30: Command Alias
	Slide 31: Command Search Path
	Slide 32: Changing Command Prompt
	Slide 33: Other Environmental Variables
	Slide 34: Input and Output
	Slide 35: Reroute from/to Files
	Slide 36: Pipe
	Slide 37: More Pipe Examples
	Slide 38: grep
	Slide 39: More grep Examples
	Slide 40: Variables
	Slide 41: I/O Command: echo
	Slide 42: I/O Command: printf
	Slide 43: I/O Command: read
	Slide 44: Double and Single Quotes
	Slide 45: Capture Command Output
	Slide 46: Summary
	Slide 47: Good Readings and Resources
	Slide 48: Regular Expression for Searching
	Slide 49: Regex Quick Guide

