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Flow Networks

The Maximum-Flow Problem
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Flow Networks

• A flow network is a directed graph 𝐺 = (𝑉, 𝐸) in which
• each edge (𝑢, 𝑣) ∈ 𝐸 has a nonnegative capacity 𝑐(𝑢, 𝑣) ≥ 0;
• if (𝑢, 𝑣) ∉ 𝐸, then for convenience 𝑐 𝑢, 𝑣 = 0;
• there are two distinguished vertices: a source 𝑠 ∈ 𝑉 and a sink 𝑡 ∈ 𝑉.

• Intuition: Material originates at source 𝑠 and is sent to sink 𝑡.
• Example: A flow network for the Lucky Puck Company’s trucking problem.
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Flow

• A flow in a flow network 𝐺 = (𝑉, 𝐸) is a function 𝑓: 𝑉×𝑉 → ℝ satisfying:
• Capacity constraint: For all 𝑢, 𝑣 ∈ 𝑉, 0 ≤ 𝑓(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣);
• Flow conservation: For all 𝑢 ∈ 𝑉 − {𝑠, 𝑡},

∑!∈# 𝑓(𝑣, 𝑢) = ∑!∈# 𝑓(𝑢, 𝑣).
flow into 𝑢 flow out of 𝑢

• Value of a flow 𝑓 is: 𝑓 = ∑!∈# 𝑓(𝑠, 𝑣) − ∑!∈# 𝑓(𝑣, 𝑠).
• Example: Q: 𝑓 = ?
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A: 𝑓 = 19



The Maximum-Flow Problem
Input: A flow network 𝐺 = (𝑉, 𝐸) with source 𝑠 ∈ 𝑉, sink 𝑡 ∈ 𝑉, and capacity 
𝑐(𝑢, 𝑣) ≥ 0 for each edge (𝑢, 𝑣) ∈ 𝐸.
Output: A flow of maximum value.
• Goal: Find flow 𝑓(𝑢, 𝑣) for each edge (𝑢, 𝑣) ∈ 𝐸 s.t.

• For all (𝑢, 𝑣) ∈ 𝐸, 0 ≤ 𝑓(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣) ⎯ Capacity constraint
• For all 𝑢 ∈ 𝑉 − {𝑠, 𝑡}, ∑!∈# 𝑓(𝑣, 𝑢) = ∑!∈# 𝑓(𝑢, 𝑣) ⎯ Flow conservation
• 𝑓 = ∑!∈# 𝑓(𝑠, 𝑣) − ∑!∈# 𝑓(𝑣, 𝑠) is maximized

• Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 6

Max 
flow:



Flow Network Assumptions

Assumption 1: Self-loops are disallowed.
Assumption 2: If (𝑢, 𝑣) ∈ 𝐸, then the reverse edge (𝑣, 𝑢) ∉ 𝐸.
• When both (𝑢, 𝑣) ∈ 𝐸 and (𝑣, 𝑢) ∈ 𝐸, which are called antiparallel edges, 

we transform 𝐺 into an equivalent one with no antiparallel edges by 
choosing one of them, say (𝑢, 𝑣),
• Adding a new vertex 𝑣′, and
• Replacing (𝑢, 𝑣) by (𝑢, 𝑣′) and (𝑣′, 𝑣), with 𝑐 𝑢, 𝑣$ = 𝑐 𝑣$, 𝑣 = 𝑐(𝑢, 𝑣)
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Flow Networks

The Minimum Cut Problem
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The Minimum s-t Cut Problem

Input: An undirected graph 𝐺 = (𝑉, 𝐸), two veritices 𝑠, 𝑡 ∈ 𝑉, and weight 
𝑤(𝑢, 𝑣) ≥ 0 for each edge (𝑢, 𝑣) ∈ 𝐸.
• A 𝑠-𝑡 cut (𝑆, 𝑇) of 𝐺 is a partition of 𝑉 into two sets 𝑆 and 𝑇 = 𝑉 − S such 

that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇.
Output: Find a 𝑠-𝑡 cut (𝑆, 𝑇) of 𝐺 with minimum weight:

𝑤 𝑆, 𝑇 = ∑$∈%∑!∈&𝑤(𝑢, 𝑣).
• Example:
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• A minimum 𝑠-𝑡 cut: 
𝑆 = {𝑎, 𝑏, 𝑖, ℎ, 𝑔}
𝑇 = {𝑐, 𝑑, 𝑒, 𝑓}

• 𝑤 𝑆, 𝑇 = 8 + 2 + 2 = 12
𝑠 = = 𝑡



Cuts of Flow Networks

• A cut (𝑆, 𝑇) of a flow network 𝐺 = (𝑉, 𝐸) is also a partition of 𝑉 into two 
sets 𝑆 and 𝑇 = 𝑉 − S such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇.
• For a flow 𝑓, the net flow across cut (𝑆, 𝑇) is

𝑓 𝑆, 𝑇 = ∑$∈%∑!∈& 𝑓(𝑢, 𝑣) − ∑$∈%∑!∈& 𝑓(𝑣, 𝑢).
• Example: 𝑓 𝑆, 𝑇 = ?
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A: 𝑓(𝑆, 𝑇) = 19



Net Flow Across A Cut (1/2)

For a flow 𝑓, the net flow across cut (𝑆, 𝑇) is
𝑓 𝑆, 𝑇 = ∑$∈%∑!∈& 𝑓(𝑢, 𝑣) − ∑$∈%∑!∈& 𝑓(𝑣, 𝑢).

Claim:
• 𝑓 𝑋, 𝑋 = 0
• If 𝑋 ∩ 𝑌 = ∅, then

𝑓 𝑋 ∪ 𝑌, 𝑍 = 𝑓 𝑋, 𝑍 + 𝑓(𝑌, 𝑍)
𝑓 𝑍, 𝑋 ∪ 𝑌 = 𝑓 𝑍, 𝑋 + 𝑓(𝑍, 𝑌)
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Net Flow Across A Cut (2/2)

For a flow 𝑓, the net flow across cut (𝑆, 𝑇) is
𝑓 𝑆, 𝑇 = ∑$∈%∑!∈& 𝑓(𝑢, 𝑣) − ∑$∈%∑!∈& 𝑓(𝑣, 𝑢).

Lemma: For any flow 𝑓 and any cut (𝑆, 𝑇), we have 𝑓 𝑆, 𝑇 = |𝑓|.*

Proof. Recall: 𝑓 = ∑!∈# 𝑓(𝑠, 𝑣) − ∑!∈# 𝑓 𝑣, 𝑠 = 𝑓 {𝑠}, 𝑉
𝑓 𝑆, 𝑇 = 𝑓 𝑆, 𝑉 − 𝑓 𝑆, 𝑆

= 𝑓 𝑆, 𝑉 − 0
= 𝑓 {𝑠}, 𝑉 + 𝑓 𝑆 − {𝑠 , 𝑉)

Due to flow conservation, ∑!∈# 𝑓(𝑣, 𝑢) = ∑!∈# 𝑓(𝑢, 𝑣) for 𝑢 ∈ 𝑉 − {𝑠, 𝑡}.
So, 𝑓 𝑆 − {𝑠 , 𝑉) = 0 ⟹ 𝑓 𝑆, 𝑇 = 𝑓 {𝑠}, 𝑉 = |𝑓| ☐

*See Lemma 26.4 on p.721-722 of the textbook for a complete proof.
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Capacity of A Cut

• The capacity of cut (𝑆, 𝑇) is
𝑐 𝑆, 𝑇 = ∑$∈%∑!∈& 𝑐(𝑢, 𝑣).

• Example: 𝑐 𝑆, 𝑇 = ?

Corollary: The value of any flow ≤ capacity of any cut.
Proof. 𝑓 = 𝑓 𝑆, 𝑇 = ∑$∈%∑!∈& 𝑓(𝑢, 𝑣) − ∑$∈%∑!∈& 𝑓 𝑣, 𝑢

≤ ∑$∈%∑!∈& 𝑐 𝑢, 𝑣 = 𝑐(𝑆, 𝑇).                                       ☐
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A: 𝑐(𝑆, 𝑇) = 26



Minimum Cut of A Flow Network

Input: A flow network 𝐺 = (𝑉, 𝐸) with source 𝑠 ∈ 𝑉, sink 𝑡 ∈ 𝑉, and capacity 
𝑐(𝑢, 𝑣) ≥ 0 for each edge (𝑢, 𝑣) ∈ 𝐸.
Output: A 𝑠-𝑡 cut (𝑆, 𝑇) of 𝐺 with minimum capacity:

𝑐 𝑆, 𝑇 = ∑$∈%∑!∈& 𝑐(𝑢, 𝑣).
• Example:
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• A minimum 𝑠-𝑡 cut: 
𝑆 = {𝑠, 𝑣), 𝑣*, 𝑣+}
𝑇 = {𝑣,, 𝑡}

• 𝑐 𝑆, 𝑇 = ?



The Ford-Fulkerson Method
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The Ford-Fulkerson Method
Ford-Fulkerson-Method(𝐺, 𝑠, 𝑡)
1   initialize flow 𝑓 to 0
2   while there exists an augmenting path 𝑝 in the residual network 𝐺-
3         augment flow 𝑓 along 𝑝
4   return 𝑓
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• The residual network consists of edges with capacities that represent how 
we can change the flow on edges of 𝐺.
• An augmenting path 𝑝 is a simple path from 𝑠 to 𝑡 in the residual network.
• Example:

8
8

85

5 0
0

05

5

⟹ ⟹ ?



The Ford-Fulkerson Method

Residual Network
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Residual Network

• Given a flow 𝑓 in network 𝐺 = (𝑉, 𝐸), the residual network consists of 
edges with capacities that represent how we can change the flow in 𝐺. 
• That’s the residual capacity:

𝑐' 𝑢, 𝑣 = I
𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 , if 𝑢, 𝑣 ∈ 𝐸,
𝑓 𝑣, 𝑢 , if 𝑣, 𝑢 ∈ 𝐸,
0, otherwise.

• Then, the residual network is 𝐺' = (𝑉, 𝐸'), where 
𝐸' = {(𝑢, 𝑣) ∈ 𝑉×𝑉: 𝑐' 𝑢, 𝑣 > 0}
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Residual Network Examples (1/2)

• The residual network is 𝐺' = (𝑉, 𝐸'), where 
𝐸' = {(𝑢, 𝑣) ∈ 𝑉×𝑉: 𝑐' 𝑢, 𝑣 > 0}.

• The residual capacity:

𝑐' 𝑢, 𝑣 = I
𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 , if 𝑢, 𝑣 ∈ 𝐸,
𝑓 𝑣, 𝑢 , if 𝑣, 𝑢 ∈ 𝐸,
0, otherwise.

• Example 1: Given a flow 𝑓 in network 𝐺 as follows, what is 𝐺'?
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8/8

8/8

8/80/5

0/5



Residual Network Examples (2/2)

• The residual capacity:

𝑐' 𝑢, 𝑣 = I
𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 , if 𝑢, 𝑣 ∈ 𝐸,
𝑓 𝑣, 𝑢 , if 𝑣, 𝑢 ∈ 𝐸,
0, otherwise.

• Example 2:
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𝐺 with 𝑓 𝐺-



The Ford-Fulkerson Method

Augmenting Path
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Augmenting Path

• An augmenting path 𝑝 is a simple path from 𝑠 to 𝑡 in 𝐺'.
• The flow value can be increased along an augmenting path 𝑝 by

𝑐' 𝑝 = min
$,! ∈)

{𝑐' 𝑢, 𝑣 }.

• Example:
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𝐺 with 𝑓!:

𝐺 with 𝑓": 𝐺-! :

𝐺-" :



Augmented Flow Network

• When there is no augmenting path in 𝐺', 𝑓 is a maximum flow in 𝐺.
• Example:
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𝐺 with 𝑓": 𝐺-! :

• There is no augmenting path in 𝐺'#. 
• Consider cut (𝑆, 𝑇) in 𝐺-! : 𝑆 = {𝑠, 𝑣), 𝑣*, 𝑣+} and 𝑇 = {𝑣,, 𝑡}
• No edges cross the cut in the direction from 𝑆 to 𝑇.

• Thus, the maximum flow in 𝐺 is 𝑓* and 𝑓* = 23.



The Ford-Fulkerson Method

Max-Flow Min-Cut Theorem
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Max-Flow Min-Cut Theorem (1/3)

Proof. (1) ⇒ (2): (prove by contraposition)
• Assume there is an augmenting path in 𝐺'.
• Then the flow value could be increased.
(3) ⇒ (1):
• 𝑓 ≤ 𝑐(𝑆, 𝑇) for any cut (𝑆, 𝑇). - According to Corollary (on slide 12)
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Max-Flow Min-Cut Theorem* If 𝑓 is a flow in a flow network 𝐺 = (𝑉, 𝐸) with 
source 𝑠 and sink 𝑡, the the following conditions are equivalent:
1) 𝑓 is a maximum flow in 𝐺.
2) The residual network 𝐺' contains no augmenting paths.
3) 𝑓 = 𝑐(𝑆, 𝑇) for some cut (𝑆, 𝑇) of 𝐺.

* This is Theorem 26.6 on p.723 of the textbook.



Max-Flow Min-Cut Theorem (2/3)
Max-Flow Min-Cut Theorem If 𝑓 is a flow in a flow network 𝐺 = (𝑉, 𝐸) with 
source 𝑠 and sink 𝑡, the the following conditions are equivalent:
2) The residual network 𝐺' contains no augmenting paths.
3) 𝑓 = 𝑐(𝑆, 𝑇) for some cut (𝑆, 𝑇) of 𝐺.
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Proof. (cont’d)   (2) ⇒ (3): When 𝐺- contains no 
augmenting paths, define a cut (𝑆, 𝑇) s.t.
• 𝑆 = {𝑣 ∈ 𝑉: ∃ 𝑠 ↝ 𝑣 path in 𝐺-} (𝑠 ∈ 𝑆)

• 𝑇 = 𝑉 − S (𝑡 ∈ 𝑇)
For any 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇, we must have 𝑐- 𝑢, 𝑣 = 0. 
By Lemma (on slide 11), we have 𝑓 = 𝑓 𝑆, 𝑇 .
Need to show: 𝑓 𝑆, 𝑇 = 𝑐 𝑆, 𝑇 .

𝐺 with 𝑓"
𝐺-! :



Max-Flow Min-Cut Theorem (3/3)
Max-Flow Min-Cut Theorem If 𝑓 is a flow in a flow network 𝐺 = (𝑉, 𝐸) with 
source 𝑠 and sink 𝑡, the the following conditions are equivalent:
2) The residual network 𝐺' contains no augmenting paths.
3) 𝑓 = 𝑐(𝑆, 𝑇) for some cut (𝑆, 𝑇) of 𝐺.
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Proof. (cont’d) (2) ⇒ (3): Show that 𝑓 𝑆, 𝑇 = 𝑐 𝑆, 𝑇 .
For any 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇, we must have 𝑐- 𝑢, 𝑣 = 0.
Based on definitions of residual capacity,
• If (𝑢, 𝑣) ∈ 𝐸, then 𝑐 𝑢, 𝑣 = 𝑓 𝑢, 𝑣
• If (𝑣, 𝑢) ∈ 𝐸, then 𝑓 𝑣, 𝑢 = 0
𝑓 𝑆, 𝑇 = ∑.∈/∑!∈0 𝑓(𝑢, 𝑣) − ∑.∈/∑!∈0 𝑓 𝑣, 𝑢

= ∑.∈/∑!∈0 𝑐 𝑢, 𝑣 = 𝑐 𝑆, 𝑇 ☐

𝐺 with 𝑓"
𝐺-! :



The Ford-Fulkerson Method

The Basic Ford-Fulkerson Algorithm
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The Basic Ford-Fulkerson Algorithm
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FORD-FULKERSON(𝐺, 𝑠, 𝑡)
1  for each edge 𝑢, 𝑣 ∈ 𝐺. 𝐸
2        𝑢, 𝑣 . 𝑓 = 0
3  build the residual network 𝐺!
4  while there exists a path 𝑝 from 𝑠 to 𝑡 in 𝐺!
5        augment 𝑓 by 𝑐!(𝑝)
6        update 𝐺!

8/8

8/8

8/85

5

Example 1:

8/8

3/8

8/85/5

5/5

𝐺 with 𝑓!

𝐺 with 𝑓"𝑐$" 𝑝" = 5 No augmenting path

8
8

85

5𝐺:

𝑐$# 𝑝! = 8

8

8

85

5
𝐺$": 

8

5
85

5
𝐺$$: • 𝑓" is a max flow in 𝐺.

• 𝑓" = 13
• A min-cut of 𝐺: 
𝑆 = {𝑠}
𝑇 = {𝑎, 𝑏, 𝑡}



The Trucking Problem Example (1/2)
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𝐺:

𝑐!! 𝑝% = 4

𝐺:

𝐺 with 𝑓%
𝐺!": 

𝑐!" 𝑝& = 4 𝐺 with 𝑓&

𝐺!#: 

𝑐!# 𝑝' = 4

𝐺 with 𝑓'

𝐺!$: 

𝑐!$ 𝑝( = 7 𝐺 with 𝑓(



The Trucking Problem Example (2/2)

• 𝑓? is a maximum flow in 𝐺.
• 𝑓? = 23
• A min-cut of 𝐺: 
𝑆 = 𝑠, 𝑣), 𝑣*, 𝑣+
𝑇 = {𝑣,, 𝑡}
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No more augmenting path.

𝐺 with 𝑓( 𝑐!% 𝑝) = 4

𝐺!%: 

𝐺 with 𝑓)
𝐺!&: 

𝑆 contains all the vertices that 
can be reached from 𝑠 in 𝐺-# .



Time Complexity of Ford-Fulkerson Algorithm

• The time complexity depends on how we 
find the augmenting path in line 4.
• It can be very slow. 
• Example:

It takes 2×10+ iterations.
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𝐺 𝐺$" 𝐺$$

FORD-FULKERSON(𝐺, 𝑠, 𝑡)
1  for each edge 𝑢, 𝑣 ∈ 𝐺. 𝐸
2        𝑢, 𝑣 . 𝑓 = 0
3  build the residual network 𝐺!
4  while there exists a path 𝑝 from 𝑠 to 𝑡 in 𝐺!
5        augment 𝑓 by 𝑐!(𝑝)
6        update 𝐺!



Analysis of Ford-Fulkerson Algorithm

• Assumption: Capacities are all integers.
• Then, each augmenting path increases |𝑓| by at least 1. – Why?
• If max flow is 𝑓∗, then there will be at most |𝑓∗| iterations.
• Total running time: 𝑂(𝑚|𝑓∗|) – NOT polynomial in input size!

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 33

• Lines 1-2: 𝑂(𝑚)
• Line 3: 𝑂(𝑛 +𝑚)
• Lines 4-6: in each iteration,
• Line 4: 𝑂(𝑛 +𝑚) – by DFS or BFS
• Line 5: 𝑂(𝑛)
• Line 6:  𝑂(𝑛)

FORD-FULKERSON(𝐺, 𝑠, 𝑡)
1  for each edge 𝑢, 𝑣 ∈ 𝐺. 𝐸
2        𝑢, 𝑣 . 𝑓 = 0
3  build the residual network 𝐺!
4  while there exists a path 𝑝 from 𝑠 to 𝑡 in 𝐺!
5        augment 𝑓 by 𝑐!(𝑝)
6        update 𝐺!



The Ford-Fulkerson Method

The Edmonds-Karp algorithm
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Edmonds-Karp Algorithm

• It follows the basic Ford-Fulkerson algorithm.
• Computes augmenting paths by using BFS in 𝐺' to find the shortest path 

from 𝑠 to 𝑡 with all edge weights being 1. Call it the BFS path.
• Time complexity of Edmonds-Karp algorithm: 𝑂(𝑛𝑚*)

- NO assumption on values of capacities
• That is, the number of iterations of the while loop is in 𝑂(𝑛𝑚).*
• In each iteration, 𝐺' is updated with ≥ 1 edge deleted.
• We will prove: Each edge in 𝐺' can be deleted and reinserted back later 

for at most 𝑛/2 times.
• Then, with 𝑂(𝑚) edges, there are 𝑂(𝑛𝑚) iterations in total.

* This is Theorem 26.8 on p.729 of the textbook.
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Analysis of Edmonds-Karp Algorithm (1/5)

Lemma: Each edge (𝑢, 𝑣) in 𝐺' can be deleted and reinserted back later for 
at most 𝑛/2 times.
• Recall: BFS takes a graph 𝐺' with starting vertex 𝑠. It can compute 𝑣. 𝑑 for 

every 𝑣 ∈ 𝑉, where 𝑣. 𝑑 = distance (smallest # of edges) from 𝑠 to 𝑣.
• For any edge 𝑢, 𝑣 on a BFS path, 𝑣. 𝑑 = 𝑢. 𝑑 + 1. 
Example:
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𝐺- Breadth-first tree of 𝐺-



Analysis of Edmonds-Karp Algorithm (2/5)

Q: How does 𝑣. 𝑑 change as 𝐺' changes?
Claim: For every 𝑣 ∈ 𝑉, 𝑣. 𝑑 never decreases.
Proof. When an edge in 𝐺' is deleted, 𝑣. 𝑑 will not decrease. – Why?
• Only need to discuss the cases when an edge is added to 𝐺'.
• Q: How does 𝐺' change in each iteration?
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𝐺- Breadth-first tree of 𝐺-



Analysis of Edmonds-Karp Algorithm (3/5)

Let 𝑓 be the flow before the current iteration and 𝑓′ be the flow updated with 
augmenting path (BFS path) 𝑝 in the current iteration.
• Recall: Residual capacity is defined as:

For any edge (𝑢, 𝑣), 
• If (𝑢, 𝑣) is added to 𝐺':
• Case 1: 𝑓(𝑢, 𝑣) = 𝑐(𝑢, 𝑣) and 𝑓-(𝑢, 𝑣) < 𝑐(𝑢, 𝑣) ⇒ (𝑣, 𝑢) is on 𝑝.
• Case 2: 𝑓(𝑣, 𝑢) = 0 and 𝑓-(𝑣, 𝑢) > 0 ⇒ (𝑣, 𝑢) is on 𝑝.

• If (𝑢, 𝑣) is deleted from 𝐺': 
• Case 1: 𝑓 𝑢, 𝑣 < 𝑐(𝑢, 𝑣) and 𝑓-(𝑢, 𝑣) = 𝑐(𝑢, 𝑣) ⇒ (𝑢, 𝑣) is on 𝑝.
• Case 2: 𝑓-(𝑣, 𝑢) = 0 and 𝑓(𝑣, 𝑢) > 0 ⇒ (𝑢, 𝑣) is on 𝑝.
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𝑐! 𝑢, 𝑣 = &
𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 , if 𝑢, 𝑣 ∈ 𝐸,
𝑓 𝑣, 𝑢 , if 𝑣, 𝑢 ∈ 𝐸,
0, otherwise.



Analysis of Edmonds-Karp Algorithm (4/5)
Claim: For every 𝑣 ∈ 𝑉, 𝑣. 𝑑 never decreases.
Proof. (cont’d) Discuss cases when an edge (𝑢, 𝑣) is added to 𝐺'.
We’ve shown: if an edge (𝑢, 𝑣) is added to 𝐺', then (𝑣, 𝑢) is on 𝑝.
• Suppose 𝑣. 𝑑 = 𝑘 before edge (𝑢, 𝑣) is added to 𝐺'.
• As 𝑝 is a BFS path, for (𝑣, 𝑢), 𝑢. 𝑑 = 𝑣. 𝑑 + 1 = 𝑘 + 1.
• So, adding (𝑢, 𝑣) will not decrease 𝑣. 𝑑. – Why?                                    ☐
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Analysis of Edmonds-Karp Algorithm (5/5)

Lemma: Each edge (𝑢, 𝑣) in 𝐺' can be deleted and reinserted back later for 
at most 𝑛/2 times.
Proof. Suppose at some point, 𝑢. 𝑑 = 𝑘.
• When edge (𝑢, 𝑣) is deleted from 𝐺', (𝑢, 𝑣) is on the BFS path 𝑝.

So, 𝑣. 𝑑 = 𝑢. 𝑑 + 1 ≥ 𝑘 + 1.
• When edge (𝑢, 𝑣) is later added back into 𝐺'%, (𝑣, 𝑢) is on the BFS path 𝑝-.

So, 𝑢. 𝑑- = 𝑣. 𝑑 + 1 ≥ 𝑘 + 2.
That is, 𝑢. 𝑑 will increase by at least 2.
As 0 ≤ 𝑢. 𝑑 ≤ 𝑛, lemma is proved.                                                                        ☐
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Maximum Bipartite Matching
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The Maximum-Bipartite-Matching Problem

• A graph 𝐺 = (𝑉, 𝐸) is bipartite if we can partition 𝑉 = 𝐿 ∪ 𝑅 (𝐿 ∩ 𝑅 = ∅) 
such that all edges in 𝐸 go between 𝐿 and 𝑅.
• In an undirected graph 𝐺 = (𝑉, 𝐸), a matching is a subset of edges 𝑀 ⊆ 𝐸

s.t. for all 𝑣 ∈ 𝑉, at most one edge of 𝑀 is incident on 𝑣.
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• Vertex 𝑣 is matched by 𝑀 if an edge of 𝑀 is 
incident on it; otherwise 𝑣 is unmatched.
• A maximum matching is a matching of 

maximum cardinality, that is, a matching 𝑀
s.t. |𝑀| ≥ |𝑀-| for any matching 𝑀′.

• The Maximum-Bipartite-Matching Problem:
• Given: A bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸)
• Goal: Find a maximum matching.

Example:



Maximum-Bipartite-Matching as Maximum-Flow

Given a bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸), we define the corresponding flow 
network 𝐺- = (𝑉-, 𝐸′) as follows: 
• 𝑉- = 𝑉 ∪ 𝑠, 𝑡 ,
• 𝐸- = 𝑠, 𝑢 : 𝑢 ∈ 𝐿 ∪ 𝑢, 𝑣 : 𝑢, 𝑣 ∈ 𝐸 ∪ { 𝑣, 𝑡 : 𝑣 ∪ 𝑅},
• 𝑐 𝑢, 𝑣 = 1 for all 𝑢, 𝑣 ∈ 𝐸′.
Example:
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Integrality Theorem

Integrality Theorem*. If the capacities of all edges in a flow network are 
integers, then
1. The value of the maximum flow 𝑓 produced by the Ford-Fulkerson

method, |𝑓|, is also an integer.
2. For every edge (𝑢, 𝑣), the value of 𝑓(𝑢, 𝑣) is an integer.
Lemma**: Let 𝐺 = (𝐿 ∪ 𝑅, 𝐸) be a bipartite graph and 𝐺- = (𝑉-, 𝐸′) be its 
corresponding flow network. Then, a matching 𝑀 in 𝐺 corresponds to a flow 
𝑓 in 𝐺-, with 𝑀 = |𝑓|.
Proof. See next slide.
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* This is Theorem 26.10 on p.734 of the textbook.
**See Lemma 26.9 on p.733-734 of the textbook for a complete proof.



Correspondence Between Matchings and Flows (1/2)

Lemma: Let 𝐺 = (𝐿 ∪ 𝑅, 𝐸) be a bipartite graph and 𝐺- = (𝑉-, 𝐸′) be its 
corresponding flow network. Then, a matching 𝑀 in 𝐺 corresponds to a flow 
𝑓 in 𝐺-, with 𝑀 = |𝑓|.
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Proof.
• “⇒”: Show 𝑀 = 𝑘 ⟹ ∃𝑓 s.t. 𝑓 = 𝑘.

• For each edge (𝑢, 𝑣) ∈ 𝑀, with 𝑢 ∈ 𝐿, 𝑣 ∈ 𝑅, 
𝑓 𝑢, 𝑣 = 1, 𝑓 𝑠, 𝑢 = 1, and 𝑓 𝑣, 𝑡 = 1.

• 𝑓 = ∑!∈# 𝑓(𝑠, 𝑣) = 𝑘.
• “⇐”: Show 𝑓 = 𝑘 ⟹ ∃𝑀 s.t. 𝑀 = 𝑘.
• If 𝑓 𝑢, 𝑣 > 0, then 𝑓 𝑢, 𝑣 = 1
• 𝑀 = { 𝑢, 𝑣 : 𝑢 ∈ 𝐿, 𝑣 ∈ 𝑅, 𝑓 𝑢, 𝑣 = 1}
• 𝑀 is a matching. – Why?
• 𝑀 = 𝑓 𝐿 ∪ 𝑠 , 𝑅 ∪ 𝑡 = 𝑓 = 𝑘.             ☐

Example:



Correspondence Between Matchings and Flows (2/2)

Integrality Theorem. If the capacities of all edges in a flow network are 
integers, then
1. The value of the maximum flow 𝑓 produced by the Ford-Fulkerson

method, |𝑓|, is also an integer.
2. For every edge (𝑢, 𝑣), the value of 𝑓(𝑢, 𝑣) is an integer.
Lemma: Let 𝐺 = (𝐿 ∪ 𝑅, 𝐸) be a bipartite graph and 𝐺- = (𝑉-, 𝐸′) be its 
corresponding flow network. Then, a matching 𝑀 in 𝐺 corresponds to a flow 
𝑓 in 𝐺-, with 𝑀 = |𝑓|.
The Integrality Theorem and the Lemma lead to the following conclusion.
Corollary (26.11): The cardinality of a maximum matching in a bipartite 
graph = the value of a maximum flow in its corresponding flow network.
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Finding a Maximum Bipartite Matching

Given a bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸), with 𝑛 = |𝐿 ∪ 𝑅| and 𝑚 = |𝐸|,
1. Create flow network 𝐺′ = (𝑉′, 𝐸′)
• 𝑉′ = 𝑛 + 2 and 𝐸- = 𝑚 + 𝑛 ∈ Θ(𝑚);
• 𝑐 𝑢, 𝑣 = 1 for all 𝑢, 𝑣 ∈ 𝐸′.
• Running time: Θ(𝑚 + 𝑛)

2. Apply the Ford-Fulkerson method on 𝐺′
• Let 𝑀 be max matching in 𝐺,
• 𝑀 ≤ min 𝐿 , 𝑅 ∈ 𝑂 𝑛 .
• If is 𝑓′ is max flow in 𝐺′, then 𝑓- = |𝑀| ∈ 𝑂 𝑛 .
• Running time: 𝑂(𝑚𝑛)
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Thank you!
Questions?
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