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Review: Graphs

Basic Graph Definitions
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Directed and Undirected Graphs (1/2)

• A graph 𝐺 = (𝑉, 𝐸) consists of a vertex set 𝑉 of 𝑛 = |𝑉| vertices/nodes 
and an edge set 𝐸 of 𝑚 = |𝐸| edges.
• Directed graph (digraph): Edge (𝑢, 𝑣) goes from vertex 𝑢 to vertex 𝑣. 
• (𝑢, 𝑣) is an outgoing edge for 𝑢 and an incoming edge for 𝑣.
• (𝑣, 𝑣) is a self-loop goes from 𝑣 to itself.

• Undirected graph: (𝑢, 𝑣) and (𝑣, 𝑢) are the same edge, with 𝑢 ≠ 𝑣.

• Examples:
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Directed and Undirected Graphs (2/2)
• In an undirected graph, the degree of a vertex 𝑣 is:

deg(𝑣) = the number of edges that touch 𝑣
• In a directed graph, the degree of a vertex 𝑣 is:

deg 𝑣 = deg! 𝑣 + deg"(𝑣),
where
• the in-degree of 𝑣 is deg!(𝑣) = the number of incoming edges for 𝑣
• the out-degree of 𝑣 is deg"(𝑣) = the number of edges outgoing from 𝑣

• Examples:
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Simple Path and Cycle

• A path is a sequence of vertices 𝑣#, 𝑣$, ⋯ , 𝑣% such that there exists an edge 
(𝑣&!$, 𝑣&) for 𝑖 = 1, 2,⋯ , 𝑘.
• A simple path is a path where all vertices in the path are distinct.
• A cycle is a path with 𝑣# = 𝑣%.
• A simple cycle is a cycle where all vertices 𝑣$, 𝑣', ⋯ , 𝑣% are distinct.
• A graph with no cycles is called an acyclic graph.
• Unless specified otherwise, we assume
• No multiple edges connecting two vertices
• A path is a simple path
• A cycle is a simple cycle
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Example:



Connectivity in Graphs

• An undirected graph 𝐺 = (𝑉, 𝐸) is called connected if for every pair of 
vertices 𝑢, 𝑣 ∈ 𝑉, there exists a path from 𝑢 to 𝑣.
• A tree is a connected acyclic graph.
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• A connected component of an undirected graph 𝐺 is a 
maximal connected subgraph of 𝐺.
• Example: the subgraph on vertex set {1, 2, 5}

• A directed graph 𝐺 = (𝑉, 𝐸) is called strongly-connected 
if for every pair of vertices 𝑢, 𝑣 ∈ 𝑉, there exist a path 
from 𝑢 to 𝑣 and a path from 𝑣 to 𝑢.
• A strongly connected component of a directed graph 𝐺

is a maximal strongly connected subgraph of 𝐺.
• Example: the subgraph on vertex set {1, 2, 4, 5}



Review: Graphs

Representations of Graphs
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Graph Representation

• Given graph 𝐺 = (𝑉, 𝐸), either directed or undirected, we represent the 
vertex set 𝑉 by 𝐺. 𝑉 and edge set 𝐸 by 𝐺. 𝐸 in pseudocode.
• Two common ways to represent graphs for algorithms:
• Adjacency lists
• Adjacency matrix

• When expressing the running time of a graph algorithm, it’s often in terms 
of both 𝑛 = 𝑉 and 𝑚 = |𝐸|.
• In asymptotic notation — and only in asymptotic notation — we may drop 

the cardinality.  
• Example: 𝑂 𝑉 + 𝐸 = 𝑂(𝑛 +𝑚)
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Graph Representation: Adjacency Matrix

Represent 𝐺 = (𝑉, 𝐸), with 
𝑛 = 𝑉 and 𝑚 = |𝐸|, by
• A 𝑛×𝑛 matrix 𝐴 = {𝑎&(}

• 𝑎&( = ?1, if (𝑖, 𝑗) ∈ 𝐸
0, otherwise

Advantage: can check if some 
edge (𝑢, 𝑣) ∈ 𝐸 in 𝛩(1) time.
Disadvantage: requires Θ(𝑛')
space even when 𝑚 ≪ 𝑛'.
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Example 1:

Example 2:



Graph Representation: Adjacency Lists (1/2)
Represent 𝐺 = (𝑉, 𝐸), with 𝑛 = 𝑉 and 𝑚 = |𝐸|, by
• An array 𝐴𝑑𝑗 of 𝑛 lists.
• List 𝐴𝑑𝑗[𝑢] has all vertices 𝑣 such that (𝑢, 𝑣) ∈ 𝐸.
Disadvantage: requires 𝑂(| 𝐴𝑑𝑗 𝑢 |) time to check if (𝑢, 𝑣) ∈ 𝐸.
In an undirected graph, total length of the 𝑛 lists = ∑)∈+ |𝐴𝑑𝑗(𝑢)| = 2𝑚.
Advantage: Θ(𝑛 +𝑚) space, better than Θ(𝑛') when 𝑚 ≪ 𝑛'.
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Example 1: 𝐴𝑑𝑗



Graph Representation: Adjacency Lists (2/2)
Represent 𝐺 = (𝑉, 𝐸), with 𝑛 = 𝑉 and 𝑚 = |𝐸|, by
• An array 𝐴𝑑𝑗 of 𝑛 lists.
• List 𝐴𝑑𝑗[𝑢] has all vertices 𝑣 such that (𝑢, 𝑣) ∈ 𝐸.
In a digraph, total length of the 𝑛 lists = ∑)∈+ |𝐴𝑑𝑗(𝑢)| = 𝑚.
Space is still Θ(𝑛 +𝑚).
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Example 2:

𝐴𝑑𝑗

Note: In this course, unless specified otherwise, we assume graphs are represented 
by adjacency lists.



Review: Graph Traversal

Breadth-First Search (BFS)
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Breadth-First Search (1/2)
Three attributes for each vertex:
• 𝑣. 𝑐𝑜𝑙𝑜𝑟 = WHITE (unvisited) or GRAY (discovered) or BLACK 

(finished)
• 𝑣. 𝑑 = distance (smallest #edges) from 𝑠 to 𝑣
• 𝑣. 𝜋 = the predecessor of 𝑣 in the breadth-first tree
• Example:
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𝐴𝑑𝑗

𝑣 1 2 3 4 5

𝑣. 𝜋 NIL 1 2 2 1

𝑣. 𝑑 0 1 2 2 1



Breadth-First Search (2/2)

Running time of BFS(G): 
• Using adjacency matrix: 

Θ 𝑛 +2
'∈)

𝑛 = 𝑛 + 𝑛*

= Θ(𝑛*)
• Using adjacency lists: 

Θ 𝑛 +2
'∈)

deg 𝑣 = 𝑛 + 2𝑚

= Θ(𝑛 +𝑚)
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BFS(G)
for each vertex u ∈ G.V
u.color = WHITE
u.d = ∞
u.𝜋 = NIL

for each u ∈ G.V
if u.color == WHITE

BFS-VISIT(G, u)

BFS-VISIT(G, s)
// lines 5-18 of BFS(G, s)

Warning: By BFS(G, s), vertices in other connected 
components wouldn't be discovered!!!



Review: Graph Traversal

Depth-First Search (DFS)
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Depth-First Search (1/2)
Three attributes for each vertex:
• 𝑣. 𝑐𝑜𝑙𝑜𝑟 = WHITE (unvisited) or GRAY (discovered) or BLACK 

(finished)
• 𝑣. 𝜋 = the predecessor of 𝑣 in the depth-first tree/forest
• 𝑣. 𝑑 = discovery time of 𝑣
• 𝑣. 𝑓 = finish time of 𝑣
• Example:
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𝐴𝑑𝑗

𝑣 1 2 3 4 5 6
𝑣. 𝜋 NIL 1 NIL 5 2 3
𝑣. 𝑑 1 2 9 4 3 10
𝑣. 𝑓 8 7 12 5 6 11



Depth-First Search (2/2)

• Running time of DFS(G):
• Using adjacency matrix:

Θ 𝑛 +2
'∈)

𝑛 = 𝑛 + 𝑛* = Θ(𝑛*)

• Using adjacency lists:

Θ 𝑛 +2
'∈)

deg 𝑣 = 𝑛 + 2𝑚 = Θ(𝑛 +𝑚)

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 18



Review: Graph Traversal

Classification of Edges
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Classification of Edges

Based on the breadth-first tree/forest or 
depth-first tree/forest, edges in the 
original graph can be classified into the 
following four types.
1. Tree edge: an edge (𝑢, 𝑣) in the

breadth-first or depth-first tree/forest
2. Back edge: a non-tree edge (𝑢, 𝑣)

where 𝑣 is an ancestor of 𝑢 in the tree, 
including self-loops in digraphs

3. Forward edge: a non-tree edge (𝑢, 𝑣)
where 𝑣 is a descendent of 𝑢 in the tree

“back” = “forward” in undirected graphs. 
4. Cross edge: any other edge
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Example: DFS for a digraph

• Bold gray: Tree edge
• B: Back edge 
• F: Forward edge
• C: Cross edge



BFS Edges
BFS for undirected graphs:
• Have only tree and cross edges
• No back/forward edges
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Example:

BFS for directed graphs:
• Have only tree, back, and cross edges
• No forward edges

Example:

Tree edges: (1, 2), (1, 4), (2, 5), (3, 6)
Back edge: (6, 6)
Cross edge: (3, 5), (4, 2), (5, 4)

Tree edges: (1, 2), (1, 5), (2, 3), (2, 4)
Cross edges: (2, 5), (3, 4), (4, 5)



DFS Edges
DFS for undirected graphs:
• Have only tree and back/forward edges
• No cross edges
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Example:

DFS for directed graphs:
• Can have all four types of edges

Example:

Tree edges: (1, 2), (2, 5), (3, 4), (4, 5)
Back/Forward edges: (1, 5), (2, 3), (2, 4)



Topological Sort
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Topological Sort

• Topological Sort (of a graph): A linear ordering of vertices such that if edge 
(𝑢, 𝑣) ∈ 𝐸, then 𝑢 appears somewhere before 𝑣.
• If a directed graph has a topological sort, we can find an assignment of a 

unique number 1, 2,⋯ , 𝑛 to each vertex such that all edges are heading 
forward.
• Example:
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Topological sort:
• A B C D E



Topological Sort of A DAG

• Directed Acyclic Graph (DAG): A directed graph with no cycles.
Theorem: 𝐺 is a DAG iff 𝐺 has a topological sort.
Proof.
• “⇐”: 
• If 𝐺 has a topological sort, we can find an assignment of a unique 

number 1, 2,⋯ , 𝑛 to each vertex in 𝐺 such that all edges are heading 
forward. 
• So, there must be no cycle in 𝐺 ⇒ 𝐺 is a DAG.

• “⇒”:*

• Algorithm TOPOLOGICAL-SORT will find a topological sort of a DAG.
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* For “⇒”, see the complete proof of Theorem 22.12 on p.614 of the textbook.



Find Topological Sort
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• There is no need to perform 
a sorting algorithm for 
decreasing finishing times. 
• It can be done as part of DFS.
• Running time: Θ(𝑛 +𝑚)

(same as DFS)

TOPOLOGICAL-SORT(G)
1. Call DFS(G) to compute finishing times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉
• During DFS, as each vertex is finished, insert it onto the front of a linked list.

2. return the linked list of vertices



Topological Sort Example
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TOPOLOGICAL-SORT(G)
1. Call DFS(G) to compute finishing times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉
• During DFS, as each vertex is finished, insert it onto the front of a linked list.

2. return the linked list of vertices

Example:



Correctness of Topological Sort

Theorem. Algorithm TOPOLOGICAL-SORT produces a 
topological sort of the input DAG 𝐺.*

Proof. Show that for every edge (𝑢, 𝑣) ∈ 𝐸, 𝑢. 𝑓 > 𝑣. 𝑓. 
Case 1: 𝑢. 𝑑 < 𝑣. 𝑑
• Based on DFS, 𝑣 becomes BLACK before 𝑢.
• Then, we have 𝑢. 𝑓 > 𝑣. 𝑓
Case 2: 𝑢. 𝑑 > 𝑣. 𝑑
• 𝐺 has no cycle, so there is no path from 𝑣 to 𝑢.
• 𝑢 will not be visited by DFS-VISIT(G, v).
• 𝑢. 𝑑 > 𝑣. 𝑑 implies 𝑢. 𝑓 > 𝑣. 𝑓
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* See Theorem 22.12 on p.614 of the textbook.



Topological Sort

Longest Path in a DAG
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Longest Path in a DAG

• Given a DAG 𝐺, define 𝐿 𝐺, 𝑣 as the length of 
the longest path in 𝐺 starting with 𝑣.
• Then the length of the longest path in 𝐺 will be 

max
-∈+

𝐿(𝐺, 𝑣)

• If 𝑆 is a topological sort of 𝐺 and 𝑢 is the first 
vertex in 𝑆, then

𝐿 𝐺, 𝑢 = max
-∈.!())

𝐿(𝐺, 𝑣) + 1,

where 𝑁"(𝑢) is the set of out-neighbors of 𝑢.
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Example:



DP for Longest Path in DAG (1/3)

Step 1: Find a recurrence relation
• The length of the longest path in 𝐺 starting with 𝑢 is

𝐿 𝐺, 𝑢 = [
0, if𝑁" 𝑢 = ∅
1 + max

-∈.!())
𝐿(𝐺, 𝑣) , otherwise

Step 2: Count #distinct recursive calls ⎯⎯ 𝑛 = |𝑉|
Step 3: Define an array 𝐿 of size 𝑛.
• 𝐿[𝑘] will hold the value of 𝐿 𝐺, 𝑣% , where 𝑣% is the 𝑘-th vertex in the 

topological sort of 𝐺.
• Fill the array 𝐿 according to the recurrence relation. 
• The largest element in 𝐿 will be the length of the longest path in 𝐺.
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DP for Longest Path in DAG (2/3)

Step 3 (cont’d): Fill the array 𝐿 according to the following recurrence

𝐿[𝑢] = [
0, if 𝑁" 𝑢 = ∅
1 + max

-∈.!())
𝐿[𝑣] , otherwise
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LONGEST-PATH-DAG(G)
1  S = TOPOLOGICAL-SORT(G)
2  for each v in downward order of S
3  L[v] = 0
4        for each u ∈ N+[v]
5              if 1 + L[u] > L[v]
6                    L[v] = 1 + L[u]

Example:
𝑣 A B C D E
𝐿[𝑣]

Running time: Θ(𝑛 +𝑚)



DP for Longest Path in DAG (3/3)

Step 4: Extract a longest path from array 𝐿.
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PRINT-LONGEST-PATH-DAG(G, S, L)
1  i = FIND-MAX(L) // return the index
2  v = S[i]
3  while v ≠ NIL
4  PRINT(v)
5  nextnode = NIL
6  for each u ∈ N+[v]
7              if L[v] == 1 + L[u]
8                    nextnode = u
9  v = nextnode

Example:

Running time: Θ(𝑛 +𝑚)

𝑣 A B C D E
𝐿[𝑣] 4 3 2 1 0



Strongly Connected Components

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 34



Strongly Connected Components

• Given a digraph 𝐺 = (𝑉, 𝐸), a strongly connected component (SCC) of 𝐺 is 
a maximal set of vertices 𝐶 ⊆ 𝑉 such that for any two vertices 𝑢, 𝑣 ∈ 𝐶, 
there is a path from 𝑢 to 𝑣 and also a path from 𝑣 to 𝑢. 
• Define 𝑆𝐶𝐶(𝑢) as the set of all nodes that are reachable from 𝑢 and that 𝑢

is also reachable from every one of them.
• Claim 1: If 𝑢 and 𝑣 are reachable from each other, then 𝑆𝐶𝐶 𝑢 = 𝑆𝐶𝐶(𝑣).
• Example:
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Properties of SCCs (1/3)

• Define 𝐺1 = (𝑉, 𝐸1) as the transpose of 𝐺, with all edges reversed.
• Claim 2: 𝐺 and 𝐺1 have the same SCCs.
• Claim 3: The SCCs of 𝐺 form a partition of 𝑉 into 𝐶$, 𝐶', ⋯𝐶% . That is, 
𝐶$ ∪ 𝐶' ∪⋯∪ 𝐶% = 𝑉 and 𝐶& ∩ 𝐶( = ∅ for any 𝑖 ≠ 𝑗.
• Example:
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Properties of SCCs (2/3)

• Create a component graph 𝐺233 = (𝑉233 , 𝐸233), where 
• 𝑉233 = {𝑥$, 𝑥', ⋯ , 𝑥%}, with each vertex 𝑥& representing a SCC 𝐶&
• 𝐸233 has an edge (𝑥& , 𝑥() iff (𝑢, 𝑣) ∈ 𝐸 with 𝑢 ∈ 𝐶& and 𝑣 ∈ 𝐶(.

• Example:
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𝐺

𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

𝐺344



Properties of SCCs (3/3)

Claim 4: 𝐺233 is a DAG.
Proof. By contradiction.
• If 𝐺344 is not a DAG, then there is a cycle 𝑥5, 𝑥6, ⋯ , 𝑥5 in 𝐺344.
• Consider vertices 𝑣5 ∈ 𝐶5 and 𝑣6 ∈ 𝐶6. There is a path from 𝑣5 to 𝑣6 and also a 

path from 𝑣6 to 𝑣5. 𝑣5 and 𝑣6 should be in the same SCC. (Claim 1)
A contradiction: 𝐶5 and 𝐶6 are different SCCs.
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𝐺

𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

𝐺344



Finding SCCs
SCC(G)
1. Call DFS(G) to get a decreasing 𝑣. 𝑓 order
2. Create 𝐺"

3. Call DFS(GT) with the main DFS loop traversing nodes in a decreasing 𝑣. 𝑓 order 
(computed in step 1)

4. return the vertex set of each tree of the depth-first forest of 𝐺" formed in step 3
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Running time: Θ(𝑛 +𝑚)
Example:



Intuition for the Correctness (Optional) (1/5)

• First, observe that (𝐺1)233= (𝐺233)1.
• Example:
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𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

𝐺344

𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

(𝐺7)344



Intuition for the Correctness (Optional) (2/5)

• For any SCC 𝐶& of 𝐺, let 𝑤& be the node with the largest finishing time.
• Let 𝑤$, 𝑤', ⋯ , 𝑤% be in descending order of finishing time.
• As 𝐺233 is a DAG (Claim 4), 𝑥$, 𝑥', ⋯ , 𝑥% is a topological sort of 𝐺233.
• Example:
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𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

𝐺344𝐺



Intuition for the Correctness (Optional) (3/5)

• As 𝐺233 is a DAG (Claim 4), 𝑥$, 𝑥', ⋯ , 𝑥% is a topological sort of 𝐺233.
• So, 𝑥$, 𝑥', ⋯ , 𝑥% is the inverse of a topological sort of (𝐺1)233. 
• This means that not a single edge leaves 𝑥$ in (𝐺1)233.
• Example:
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𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

𝐺344

𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

(𝐺7)344



Intuition for the Correctness (Optional) (4/5)

• Not a single edge leaves 𝑥8 in (𝐺7)344.
• 𝑤8 (with largest finishing time) is the first vertex in the DFS(GT) call. 
• Therefore, all vertices reachable from 𝑤8 are the vertices in 𝑆𝐶𝐶 𝑤8 = 𝐶8.
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𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

(𝐺7)344𝐺7

SCC(G)
1. Call DFS(G) to get a decreasing 𝑣. 𝑓 order
2. Create 𝐺!

3. Call DFS(GT) with the main DFS loop traversing nodes in a decreasing 𝑣. 𝑓 order (computed in step 1)
4. return the vertex set of each tree of the depth-first forest of 𝐺! formed in step 3



Intuition for the Correctness (Optional) (5/5)

• Continue inductively to argue that:
• By the time 𝑤5 is discovered in the DFS(GT) call, all the vertices in SCCs 𝐶8, 𝐶*, ⋯ ,
𝐶598 are already BLACK, so 𝑤5 will only reach vertices in 𝐶5.
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SCC(G)
1. Call DFS(G) to get a decreasing 𝑣. 𝑓 order
2. Create 𝐺!

3. Call DFS(GT) with the main DFS loop traversing nodes in a decreasing 𝑣. 𝑓 order (computed in step 1)
4. return the vertex set of each tree of the depth-first forest of 𝐺! formed in step 3

𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

(𝐺7)344𝐺7



Thank you!
Questions?
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