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Complexity Classes: P and NP
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Complexity Classes

• Computational complexity: the amount of computational resources 
required to solve a given task.
• A problem with input size 𝑛 can be solved by a polynomial-time algorithm 

if its worst-case running time is 𝑂(𝑛!) for some constant 𝑘.
• Problems that are solvable by polynomial-time algorithms are called 

tractable, or easy; 
• Problems that require superpolynomial time (𝜔(𝑛!) for some constant 𝑘) are 

called intractable, or hard.
• Three classes of problems:
• P – Problems that are solvable in polynomial time
• NP – Problems that are “verifiable” in polynomial time
• NPC (NP-Complete) – The “hardest” problems in NP

Problems in NPC are intractable (if P ≠ NP)
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Decision Problems

• The class P – Decision problems that are solvable in polynomial time.
• Decision problems: Problems that can be answered by “yes” or “no”.
• An optimization problem can be casted as a related decision problem.

Example: SHORTEST-PATH
• Optimization problem: Given an undirected graph 𝐺 and two vertices 𝑢 and 𝑣, 

find a path from 𝑢 to 𝑣 that uses the fewest number of edges.
• Decision problem: Given an undirected graph 𝐺, two vertices 𝑢 and 𝑣, and an 

integer 𝑘, does a path exist from 𝑢 to 𝑣 consisting of at most 𝑘 edges?
• A decision problem is in a sense “easier,” or at least “no harder”, than its 

related optimization problem.
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The Class NP

• The class NP – Decision problems whose solutions are verifiable in 
polynomial time.
• That is, given an instance 𝐼 and a solution 𝑆, we can verify that 𝑆 is a solution 

to 𝐼 in polynomial time (polynomial in |𝐼|).
• NP stands for “nondeterministic polynomial time”.
• The class NP – Decision problems that are solvable in polynomial time by a 

nondeterministic Turing machine.
• Relationship between P and NP
• P ⊆ NP: A decision problem that is solvable in polynomial time must 

also be verifiable in polynomial time.
• P = NP? - Unknown! (An open problem since 1970s)

It is widely believed that P ≠ NP.
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Examples (1/2)
Example 1: (SP, decision version of the Shortest Path problem) Given an 
undirected graph 𝐺, two vertices 𝑢 and 𝑣, and an integer 𝑘, does a path exist 
from 𝑢 to 𝑣 consisting of at most 𝑘 edges?
1. SP ∈ NP ?

Given 𝐼 = 𝐺, 𝑢, 𝑣, 𝑘 and 𝑃, can we verify 𝑃 is a solution to 𝐼 in 
polynomial time?
• Check if 𝑃 is a path from 𝑢 to 𝑣
• Check if the number of edges on path 𝑃 is ≤ 𝑘
A: SP ∈ NP

2. SP ∈ P ?
• Find shortest path from 𝑢 to every other vertex – Run BFS
• Check if 𝑣. 𝑑 ≤ 𝑘
A: ST ∈ P 
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Examples (2/2)

Example 2: (IntK, decision version of the Integral Knapsack problem) Given 𝑛
items, with integer weight 𝑤" and integer value 𝑣" for each item, a knapsack 
with capacity 𝑊, and an integer 𝑉, is there a subset of items with total 
weight at most 𝑊 and total value at least 𝑉?
1. IntK ∈ NP ?

Given 𝐼 = 𝑛,𝑤, 𝑣,𝑊, 𝑉 and 𝑆, can we verify 𝑆 is a solution to 𝐼 in 
polynomial time?
• Check if total weight ≤ 𝑊 and total value ≥ 𝑉
A: IntK ∈ NP

2. IntK ∈ P ?
• DP for Integral Knapsack takes Θ(𝑛𝑊) time - pseudo-polynomial
A: Not known.
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Complexity Class: NPC

NP-Completeness and Reducibility
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NP-Completeness

• If P ≠ NP, problems in NPC are intractable.
• That is, if P ≠ NP, then all NP-complete problems are not in P.
• Contrapositive: If an NP-complete problem can be solved in polynomial 

time, then all problems in NP can be solved in polynomial time.
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• A decision problem 𝐴 is NP-complete if 
1. 𝐴 is in NP, and
2. Every problem in NP is polynomial-time 

reducible to 𝐴.
• Relationships among P, NP, and NPC (if P ≠ NP):



Reducibility

• A decision problem 𝐴 is said to be polynomial-time reducible to a decision 
problem 𝐵, written 𝐴 ≤# 𝐵, if there is a procedure 𝑡 that can transform 
any instance 𝛼 of problem 𝐴 to an instance 𝛽 of problem 𝐵 such that
• 𝑡 runs in polynomial-time (𝑡 is called a polynomial-time reduction algorithm);
• The answer for 𝛼 is “yes” iff the answer for 𝛽 is also “yes”.

• If we can solve problem 𝐵 in polynomial time, then we can use that 
algorithm to solve problem 𝐴 in polynomial time.
• Contrapositive: If problem 𝐴 is not in P, then problem 𝐵 is not in P.
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Complexity Class: NPC

NP-Completeness Proofs
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A First NP-Complete Problem

• The circuit-satisfiability problem
• Problem definition can be found on p.1070-1072 of the textbook
• NP-completeness proof: Theorem 34.7 on p.1077 of the textbook

• The (formula) satisfiability (SAT) problem
• Problem definition on next slide
• NP-completeness proof: 
• Theorem 34.9 on p.1080 of the textbook (prove by reduction from circuit-

satisfiability)
• Cook-Levin Theorem (Cook’s Theorem), which shows that every problem 

in NP is polynomial-time reducible to SAT (the CNF-SAT problem, to be 
specific).
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The Satisfiability (SAT) Problem

• Notions for a Boolean formula 𝜙:
• Boolean variables: 𝑥", 𝑥#, ⋯ , 𝑥$
• Boolean operations: AND (∧), OR (∨), NOT (¬), implication (→), iff (↔)
• Truth assignment: a set of values for all variables of 𝜙
• Satisfying (truth) assignment: a truth assignment that causes the Boolean 

formula 𝜙 to evaluate to true

• The SAT problem: Given a Boolean formula 𝜙, is 𝜙 satisfiable?

• Example: 𝜙 = 𝑥$ → 𝑥% ∨ ¬ ¬𝑥$ ↔ 𝑥& ∨ 𝑥' ∧ ¬𝑥%
• Q: Is 𝜙 satisfiable?
• A: Yes. 𝜙 has the satisfying truth assignment:

𝑥" = F, 𝑥# = F, 𝑥% = T, 𝑥& = T.
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The CNF-SAT Problem

• Additional notions:
• Literal: 𝑥 or ¬𝑥
• Clause: disjunction of literals, e.g., 𝑥" ∨ 𝑥# ∨ ¬𝑥%
• Conjunctive normal form (CNF): conjunction of clauses, e.g.,

𝑥" ∨ ¬𝑥# ∨ ¬𝑥% ∧ ¬𝑥" ∨ 𝑥# ∧ ¬𝑥" ∨ ¬𝑥# ∨ ¬𝑥% .
• The CNF-SAT problem: Given a Boolean CNF formula 𝜙, is 𝜙 satisfiable?
• Example: 𝜙 = 𝑥" ∨ ¬𝑥# ∨ ¬𝑥% ∧ ¬𝑥" ∨ 𝑥# ∧ ¬𝑥" ∨ ¬𝑥# ∨ ¬𝑥%
• Q: Is 𝜙 satisfiable?
• A: Yes. 𝜙 has the satisfying truth assignment:

𝑥" = T, 𝑥# = T, 𝑥% = F.
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NP-Completeness Proof

• Recall: A decision problem 𝐴 is NP-complete if 
1. 𝐴 is in NP, and
2. Every problem in NP is polynomial-time 

reducible to 𝐴.
• Note: If a problem satisfies condition 2, but not 

necessarily condition 1, then we say it is NP-hard.
• To show that a problem 𝐵 is NP-complete, we show

1. 𝐵 is in NP
2. 𝐵 is NP-hard

1) Select a known NP-complete problem 𝐴;
2) Show that 𝐴 is polynomial-time reducible to 𝐵, 

i.e., 𝐴 ≤' 𝐵.
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NP-Completeness Proof of 3-CNF-SAT (1/3)

• Recall the CNF-SAT problem: Given a Boolean CNF formula 𝜙, is 𝜙
satisfiable?
• 3-CNF-SAT problem: A CNF-SAT problem with every clause containing 

exactly three distinct literals. E.g.,
𝜙 = 𝑥$ ∨ ¬𝑥% ∨ ¬𝑥& ∧ ¬𝑥$ ∨ 𝑥% ∨ 𝑥' ∧ ¬𝑥% ∨ 𝑥& ∨ ¬𝑥' .

NP-Completeness Proof:
1. Show: 3-CNF-SAT is in NP
• Given a Boolean 3-CNF formula 𝜙 with 𝑛 variables, 𝑚 clauses, and a truth 

assignment for 𝑥", 𝑥#, ⋯ , 𝑥$
• For each clause, it takes 𝑂(1) time to check if at least one literal is T.
Can be verified in 𝑂(𝑚) time.
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NP-Completeness Proof of 3-CNF-SAT (2/3)

NP-Completeness Proof (cont’d):
2. Show: CNF-SAT ≤𝑷 3-CNF-SAT

1) For any CNF-SAT formula 𝜙, construct a 3-CNF-SAT formula 𝜙′ in 𝑂(𝑛) time.
• For 1-literal clause 𝑥( , construct a 3-CNF formula:
𝑥( ∨ 𝑦" ∨ 𝑦# ∧ 𝑥( ∨ 𝑦" ∨ ¬𝑦# ∧ 𝑥( ∨ ¬𝑦" ∨ 𝑦# ∧ 𝑥( ∨ ¬𝑦" ∨ ¬𝑦# .

• For 2-literal clause 𝑥( ∨ 𝑥) , construct a 3-CNF formula:
𝑥( ∨ 𝑥) ∨ 𝑦" ∧ 𝑥( ∨ 𝑥) ∨ ¬𝑦" .

• For 3-literal clause 𝑥( ∨ 𝑥) ∨ 𝑥! , unchanged.
• For more-than-3-literal clause 𝑥(! ∨ 𝑥(" ∨ ⋯∨ 𝑥(# , construct a 3-CNF formula:
𝑥(! ∨ 𝑥(" ∨ 𝑦" ∧ ¬𝑦" ∨ 𝑥($ ∨ 𝑦# ∧ ⋯∧ ¬𝑦!*% ∨ 𝑥(#%! ∨ 𝑥(# .

• All 𝑦 literals are distinct for different clauses.
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NP-Completeness Proof of 3-CNF-SAT (3/3)

NP-Completeness Proof (cont’d):
2. Show: CNF-SAT ≤𝑷 3-CNF-SAT

2) Formula 𝜙 is satisfiable iff formula 𝜙′ is satisfiable.
• For 1-literal clause in 𝜙, 
𝑥( = T iff in 𝜙′, 𝑥( ∨ 𝑦" ∨ 𝑦# ∧ 𝑥( ∨ 𝑦" ∨ ¬𝑦# ∧ 𝑥( ∨ ¬𝑦" ∨ 𝑦#

∧ 𝑥( ∨ ¬𝑦" ∨ ¬𝑦# = T.
• For 2-literal clause in 𝜙,
𝑥( ∨ 𝑥) = T iff in 𝜙′, 𝑥( ∨ 𝑥) ∨ 𝑦" ∧ 𝑥( ∨ 𝑥) ∨ ¬𝑦" = T.

• For more-than-3-literal clause in 𝜙,
𝑥(! ∨ 𝑥(" ∨ ⋯∨ 𝑥(# is satisfiable iff in 𝜙′, 
𝑥(! ∨ 𝑥(" ∨ 𝑦" ∧ ¬𝑦" ∨ 𝑥($ ∨ 𝑦# ∧ ⋯∧ ¬𝑦!*% ∨ 𝑥(#%! ∨ 𝑥(# is satisfiable.
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NP-Complete Problems
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NP-Complete Problems

• Each problem in the figure can be proved to be NP-complete by a 
polynomial-time reduction from the problem that points to it.
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NP-Complete Problems

The Clique Problem
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The Clique Problem

• A clique in an undirected graph 𝐺 = (𝑉, 𝐸) is a subset 𝑉′ ⊆ 𝑉 of vertices, 
each pair of which is connected by an edge in 𝐸.
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• A clique is a complete subgraph of G.
• The size of a clique is the number of vertices 

it contains.
• The clique problem is the optimization problem 

of finding a clique of maximum size in a graph.
• The decision problem (CLIQUE): Given an 

undirected graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘, is 
there a clique of size at lease 𝑘 in 𝐺?

Example:



NP-Completeness Proof of CLIQUE (1/4)

1. Show that CLIQUE is in NP
Given 𝐼 = 𝐺, 𝑘 and 𝑉′, verify if 𝑉′ is a solution to 𝐼 in polynomial time.
• Check whether for each pair 𝑢, 𝑣 ∈ 𝑉′, the edge (𝑢, 𝑣) is in 𝐸.

2. Show that 3-CNF-SAT ≤𝑷 CLIQUE
1) Let 𝜙 = 𝐶" ∧ 𝐶# ∧ ⋯∧ 𝐶! be a 3-CNF-SAT formula with 𝑘 clauses. We will 

construct a graph 𝐺 corresponding to 𝜙 in polynomial time.
• For each clause 𝐶( = 𝑙("⋁ 𝑙(#⋁ 𝑙(% , we create a triple of three vertices 
𝑣(", 𝑣(#, 𝑣(%.
• Two vertices 𝑣(+ and 𝑣), are adjacent iff

• 𝑙(+ and 𝑙), are from different clauses, that is, 𝑖 ≠ 𝑗, and
• 𝑙(+ and 𝑙), are consistent, that is, 𝑙(+ is not the negation of 𝑙),.
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NP-Completeness Proof of CLIQUE (2/4)

2. Show that 3-CNF-SAT ≤𝑷 CLIQUE (cont’d)
1) Construct a graph 𝐺 corresponding to 𝜙 in polynomial time. (cont’d) 

Example: 𝜙 = 𝐶$ ∧ 𝐶% ∧ 𝐶&, where
𝐶$ = 𝑥$ ∨ ¬𝑥% ∨ ¬𝑥& , 𝐶% = ¬𝑥$ ∨ 𝑥% ∨ 𝑥& , 𝐶& = 𝑥$ ∨ 𝑥% ∨ 𝑥& .
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• The constructed graph 𝐺 = (𝑉, 𝐸)
is shown on the right.
• Recall: Two vertices 𝑣") and 𝑣*+

are adjacent iff
• 𝑖 ≠ 𝑗 and 
• 𝑙") and 𝑙*+ are consistent.



NP-Completeness Proof of CLIQUE (3/4)

2. Show that 3-CNF-SAT ≤𝑷 CLIQUE (cont’d)
2) Formula 𝜙 is satisfiable iff 𝐺 has a clique of size 𝑘.

Prove “⇒”: Suppose 𝜙 is satisfiable.
• Each clause 𝐶" has at least one literal being TRUE.
• Pick the vertices corresponding to these literals (one for each clause).
• Claim: These vertices form a clique of size 𝑘.
Example: 𝜙 = 𝐶$ ∧ 𝐶% ∧ 𝐶&
• 𝐶$ = 𝑥$ ∨ ¬𝑥% ∨ ¬𝑥&
• 𝐶% = ¬𝑥$ ∨ 𝑥% ∨ 𝑥&
• 𝐶& = 𝑥$ ∨ 𝑥% ∨ 𝑥&
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NP-Completeness Proof of CLIQUE (4/4)

2. Show that 3-CNF-SAT ≤𝑷 CLIQUE (cont’d)
2) Formula 𝜙 is satisfiable iff 𝐺 has a clique of size 𝑘. (cont’d)

Prove “⇐”: Suppose 𝐺 has a clique 𝑉′ of size 𝑘.
• 𝑉′ contains exactly one vertex from each triple. (Why?)
• Claim: 𝜙 is a satisfied by assigning TRUE to the literals corresponding 

to all the vertices in 𝑉′ and assigning arbitrary truth values to the 
remaining variables.

Example: 𝜙 = 𝐶$ ∧ 𝐶% ∧ 𝐶&
• 𝐶$ = 𝑥$ ∨ ¬𝑥% ∨ ¬𝑥&
• 𝐶% = ¬𝑥$ ∨ 𝑥% ∨ 𝑥&
• 𝐶& = 𝑥$ ∨ 𝑥% ∨ 𝑥&
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Independent Set

• An independent set of a graph 𝐺 = (𝑉, 𝐸) is a subset 𝑉′ ⊆ 𝑉 of vertices 
such that there is no edge between any pair of vertices in 𝑉′.
• The independent-set problem is the optimization problem of finding an 

independent set of maximum size in a graph.
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• The decision problem (IS): Given a graph 
𝐺 = (𝑉, 𝐸) and an integer 𝑘, is there an 
independent set of size at lease 𝑘 in 𝐺?
• Observation: If 𝑉′ is an independent set in 
𝐺, then it is a clique of the complement of 
𝐺, �̅� = (𝑉, N𝐸) (in which 𝑒 ∉ N𝐸 iff 𝑒 ∈ 𝐸), 
and vice-versa.

Example:



NP-Completeness Proof of IS

1. Show that IS is in NP
Given 𝐼 = 𝐺, 𝑘 and 𝑉′, verify if 𝑉′ is a solution to 𝐼 in polynomial time.
• Check whether for each pair 𝑢, 𝑣 ∈ 𝑉′, (𝑢, 𝑣) ∉ 𝐸.

2. Show that CLIQUE ≤𝑷 IS
1) Given an instance 𝐼 = 𝐺, 𝑘 of CLIQUE, construct the complement of 

𝐺, �̅� = (𝑉, N𝐸). − Can be easily done in polynomial time.
2) 𝑉′ ⊆ 𝑉 is an independent set of 𝐺 iff 𝑉′ is a clique of �̅�.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 29



NP-Complete Problems

The Vertex Cover Problem
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Vertex Cover

• A vertex cover of an undirected graph 𝐺 = (𝑉, 𝐸) is a subset 𝑉′ ⊆ 𝑉 of 
vertices such that if (𝑢, 𝑣) ∈ 𝐸, then 𝑢 ∈ 𝑉′ or 𝑣 ∈ 𝑉′ (or both).
• The vertex-cover problem is the optimization problem of finding a vertex 

cover of minimum size in a given graph.
• The decision problem (VC): Given a graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘, is 

there a vertex cover of size at most 𝑘 in 𝐺?
• To prove that VC is NP-complete*,

1. Show that VC is in NP;
2. Show that CLIQUE ≤𝑷 VC or IS ≤𝑷 VC.
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* See Theorem 34.12 on p.1090-1091 of the textbook for the NP-completeness 
proof with the second part showing that CLIQUE ≤𝑷 VC.



NP-Completeness Proof of VC (1/2)

1. Show that VC is in NP
Given 𝐼 = 𝐺, 𝑘 and 𝑉′, verify if 𝑉′ is a solution to 𝐼 in polynomial time.
• Check whether for (𝑢, 𝑣) ∈ 𝐸, we have 𝑢 ∈ 𝑉′ or 𝑣 ∈ 𝑉′, or both.

2. Show that IS ≤𝑷 VC
Claim: 𝑉′ ⊆ 𝑉 is a vertex cover iff 𝑉 − 𝑉′ is an independent set.
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Proof.
“⇒”: 𝑉′ is a vertex cover ⇒𝑉 − 𝑉′ is an independent set
• Suppose 𝑉 − 𝑉′ is not an independent set.
• Then there is a pair 𝑢, 𝑣 ∈ 𝑉 − 𝑉′ s.t. (𝑢, 𝑣) ∈ 𝐸.
• ⇒ (𝑢, 𝑣) is not covered by 𝑉′
• ⇒𝑉′ is not a vertex cover ⎯ A contradiction



NP-Completeness Proof of VC (2/2)

2. Show that IS ≤𝑷 VC (cont’d)
Claim: 𝑉′ ⊆ 𝑉 is a vertex cover iff 𝑉 − 𝑉′ is an independent set.
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Proof (cont’d).
“⇐”: 𝑉 − 𝑉′ is an independent set ⇒𝑉′ is a vertex cover
• Suppose 𝑉′ is not a vertex cover.
• Then there is at least one edge (𝑢, 𝑣) ∈ 𝐸 s.t. 𝑢 ∉ 𝑉′

and 𝑣 ∉ 𝑉′.
• ⇒ 𝑢, 𝑣 ∈ 𝑉 − 𝑉′
• ⇒𝑉 − 𝑉′ is not an independent set ⎯ A contradiction  

☐

The Claim implies that: 𝐺 has a vertex cover of size at most 𝑘 iff 𝐺 has an 
independent set of size at least 𝑛 − 𝑘.



NP-Complete Problems

Other NP-Complete Problems
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The Hamiltonian-Cycle Problem

• A Hamiltonian cycle of an undirected graph 𝐺 = (𝑉, 𝐸) is a simple cycle 
that contains each vertex in 𝑉.

HAM-CYCLE: Given an undirected graph 𝐺, is there a Hamiltonian cycle in 𝐺?
To prove that HAM-CYCLE is NP-complete*,
1. Show that HAM-CYCLE is in NP
2. Show that VC ≤𝑷 HAM-CYCLE
Proofs are omitted.
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* See Theorems 34.13 on p.1091 of the textbook for the NP-completeness proofs.

Example:



The Traveling-Salesman Problem

The traveling-salesman problem (optimization problem):
• Input: A complete graph 𝐺 = (𝑉, 𝐸), with 𝑛 vertices (representing 𝑛 cities), 

a nonnegative integer cost 𝑐(𝑖, 𝑗) on each edge (𝑖, 𝑗) ∈ 𝐸 (for a salesman to 
travel from city 𝑖 to city 𝑗)
• Output: A minimum-cost tour (Hamiltonian cycle).
The decision problem (TSP): Given a complete graph 𝐺, a nonnegative integer 
cost on each edge, and a nonnegative integer 𝑘, is there a tour (Hamiltonian 
cycle) with cost at most 𝑘?
To prove that TSP is NP-complete*,
1. Show that TSP is in NP
2. Show that HAM-CYCLE ≤𝑷 TSP
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* See Theorems 34.14 on p.1096 of the textbook for the NP-completeness proofs.

Example:



HAM-CYCLE ≤𝑷 TSP

An instance 𝐼,- of HAM-CYCLE: An undirected graph 𝐺 = (𝑉, 𝐸).
Transform 𝐼,- to an instance 𝐼./# of TSP:
• 𝐺′ = (𝑉, 𝐸′), where 𝐸′ contains every edge (𝑖, 𝑗) for 𝑖, 𝑗 ∈ 𝑉

• 𝑐 𝑖, 𝑗 = T0, if 𝑖, 𝑗 ∈ 𝐸
1, if (𝑖, 𝑗) ∉ 𝐸 and  𝑘 = 0
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Example:

Claim: G has a Hamiltonian cycle iff 𝐺′ has 
a tour of cost at most 0.



The Subset-Sum Problem

SUBSET-SUM: Given a finite set 𝑆 of positive integers and an integer target 
𝑡 > 0, is there a subset 𝑆′ ⊆ 𝑆 whose elements sum to 𝑡?
• Example 1: 𝑆 = {1, 2, 3, 4} and 𝑡 = 8.

Answer: Yes. 𝑆. = {1, 3, 4}
• Example 2: 𝑆 = {1, 2, 3, 4} and 𝑡 = 11.

Answer: No.
To prove that SUBSET-SUM is NP-complete*,
1. Show that SUBSET-SUM is in NP
2. Show that 3-CNF-SAT ≤𝑷 SUBSET-SUM
Proofs are omitted.
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* See Theorems 34.15 on p.1097 of the textbook for the NP-completeness proof.



The Integral Knapsack Problem

Integral Knapsack (Optimization problem): 
• Input: 𝑛 items, with integer weight 𝑤" and integer value 𝑣" for each item, a 

knapsack with capacity 𝑊, and an integer 𝑉.
• Output: A most valuable subset of items with total weight ≤ 𝑊.
The decision problem (INT-KNAPSACK): Is there a subset of items with total 
weight at most 𝑊 and total value at least 𝑉?
To prove that INT-KNAPSACK is NP-complete,
1. Show that INT-KNAPSACK is in NP
2. Show that SUBSET-SUM ≤𝑷 INT-KNAPSACK
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SUBSET-SUM ≤𝑷 INT-KNAPSACK

An instance 𝐼// of SUBSET-SUM:
• A set of positive integers 𝑆 = {𝑠$, 𝑠%, ⋯ , 𝑠0} and an integer 𝑡 > 0
Transform 𝐼// to an instance 𝐼12 of INT-KNAPSACK:
• 𝑛 items, with integer weight 𝑤" = 𝑠" and integer value 𝑣" = 𝑠" for each 

item, a knapsack with capacity 𝑊 = 𝑡, and an integer 𝑉 = 𝑡.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 40

Example: 𝑆 = {1, 2, 3, 4}, 𝑡 = 8.Claim: There is a subset 𝑆′ ⊆ 𝑆 whose 
elements sum to 𝑡 iff there is a subset of 
items with total weight at most 𝑡 and total 
value at least 𝑡.
• ∑"3$0 𝑤" ≤ 𝑊 ⟺ ∑"3$0 𝑠" ≤ 𝑡
• ∑"3$0 𝑣" ≥ 𝑉 ⟺ ∑"3$0 𝑠" ≥ 𝑡

∑"3$0 𝑠" = 𝑡



Ways to Deal with NP-completeness
• A problem is NP-complete means: (currently) unlikely to find a polynomial 

time algorithm to solve it exactly for all instances.
• To tackle an NP-complete problem, we can

1. Solve it exactly, but in exponential time
• for small instances, may be perfectly satisfactory
• for important special cases, may be satisfactory

2. Recognize special structure for the important special cases
• design polynomial time algorithms if possible

3. Design polynomial time algorithms to solve it approximately
• no guaranteed performance - heuristics
• provably guaranteed performance - approximation algorithms

• We will talk about approximation algorithms for optimization problems 
whose decision versions are NP-complete.
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Thank you!
Questions?
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