
Algorithm Analysis and Data Structures
CSCI 7432 – Fall 2022

DFS-Based Algorithms
Dr. Yao XU

Assistant Professor

Department of Computer Science
Georgia Southern University

Email: yxu@georgiasouthern.edu

Table of Contents

1. Review: Graphs
• Basic Graph Definitions (B.4)
• Representations of Graphs (22.1)

2. Review: Graph Traversal
• Breadth-First Search (BFS) (22.2)
• Depth-First Search (DFS) (22.3)
• Classification of Edges (22.3)

3. Topological Sort (22.4)
• Application: Longest Path in a DAG

4. Strongly Connected Components (22.5)

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 2

Review: Graphs

Basic Graph Definitions

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 3

Directed and Undirected Graphs (1/2)

• A graph 𝐺 = (𝑉, 𝐸) consists of a vertex set 𝑉 of 𝑛 = |𝑉| vertices/nodes
and an edge set 𝐸 of 𝑚 = |𝐸| edges.
• Directed graph (digraph): Edge (𝑢, 𝑣) goes from vertex 𝑢 to vertex 𝑣.
• (𝑢, 𝑣) is an outgoing edge for 𝑢 and an incoming edge for 𝑣.
• (𝑣, 𝑣) is a self-loop goes from 𝑣 to itself.

• Undirected graph: (𝑢, 𝑣) and (𝑣, 𝑢) are the same edge, with 𝑢 ≠ 𝑣.

• Examples:

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 4

Directed and Undirected Graphs (2/2)
• In an undirected graph, the degree of a vertex 𝑣 is:

deg(𝑣) = the number of edges that touch 𝑣
• In a directed graph, the degree of a vertex 𝑣 is:

deg 𝑣 = deg! 𝑣 + deg"(𝑣),
where
• the in-degree of 𝑣 is deg!(𝑣) = the number of incoming edges for 𝑣
• the out-degree of 𝑣 is deg"(𝑣) = the number of edges outgoing from 𝑣

• Examples:

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 5

Simple Path and Cycle

• A path is a sequence of vertices 𝑣#, 𝑣$, ⋯ , 𝑣% such that there exists an edge
(𝑣&!$, 𝑣&) for 𝑖 = 1, 2,⋯ , 𝑘.
• A simple path is a path where all vertices in the path are distinct.
• A cycle is a path with 𝑣# = 𝑣%.
• A simple cycle is a cycle where all vertices 𝑣$, 𝑣', ⋯ , 𝑣% are distinct.
• A graph with no cycles is called an acyclic graph.
• Unless specified otherwise, we assume
• No multiple edges connecting two vertices
• A path is a simple path
• A cycle is a simple cycle

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 6

Example:

Connectivity in Graphs

• An undirected graph 𝐺 = (𝑉, 𝐸) is called connected if for every pair of
vertices 𝑢, 𝑣 ∈ 𝑉, there exists a path from 𝑢 to 𝑣.
• A tree is a connected acyclic graph.

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 7

• A connected component of an undirected graph 𝐺 is a
maximal connected subgraph of 𝐺.
• Example: the subgraph on vertex set {1, 2, 5}

• A directed graph 𝐺 = (𝑉, 𝐸) is called strongly-connected
if for every pair of vertices 𝑢, 𝑣 ∈ 𝑉, there exist a path
from 𝑢 to 𝑣 and a path from 𝑣 to 𝑢.
• A strongly connected component of a directed graph 𝐺

is a maximal strongly connected subgraph of 𝐺.
• Example: the subgraph on vertex set {1, 2, 4, 5}

Review: Graphs

Representations of Graphs

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 8

Graph Representation

• Given graph 𝐺 = (𝑉, 𝐸), either directed or undirected, we represent the
vertex set 𝑉 by 𝐺. 𝑉 and edge set 𝐸 by 𝐺. 𝐸 in pseudocode.
• Two common ways to represent graphs for algorithms:
• Adjacency lists
• Adjacency matrix

• When expressing the running time of a graph algorithm, it’s often in terms
of both 𝑛 = 𝑉 and 𝑚 = |𝐸|.
• In asymptotic notation — and only in asymptotic notation — we may drop

the cardinality.
• Example: 𝑂 𝑉 + 𝐸 = 𝑂(𝑛 +𝑚)

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 9

Graph Representation: Adjacency Matrix

Represent 𝐺 = (𝑉, 𝐸), with
𝑛 = 𝑉 and 𝑚 = |𝐸|, by
• A 𝑛×𝑛 matrix 𝐴 = {𝑎&(}

• 𝑎&(= ?1, if (𝑖, 𝑗) ∈ 𝐸
0, otherwise

Advantage: can check if some
edge (𝑢, 𝑣) ∈ 𝐸 in 𝛩(1) time.
Disadvantage: requires Θ(𝑛')
space even when 𝑚 ≪ 𝑛'.

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 10

Example 1:

Example 2:

Graph Representation: Adjacency Lists (1/2)
Represent 𝐺 = (𝑉, 𝐸), with 𝑛 = 𝑉 and 𝑚 = |𝐸|, by
• An array 𝐴𝑑𝑗 of 𝑛 lists.
• List 𝐴𝑑𝑗[𝑢] has all vertices 𝑣 such that (𝑢, 𝑣) ∈ 𝐸.
Disadvantage: requires 𝑂(| 𝐴𝑑𝑗 𝑢 |) time to check if (𝑢, 𝑣) ∈ 𝐸.
In an undirected graph, total length of the 𝑛 lists = ∑)∈+ |𝐴𝑑𝑗(𝑢)| = 2𝑚.
Advantage: Θ(𝑛 +𝑚) space, better than Θ(𝑛') when 𝑚 ≪ 𝑛'.

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 11

Example 1: 𝐴𝑑𝑗

Graph Representation: Adjacency Lists (2/2)
Represent 𝐺 = (𝑉, 𝐸), with 𝑛 = 𝑉 and 𝑚 = |𝐸|, by
• An array 𝐴𝑑𝑗 of 𝑛 lists.
• List 𝐴𝑑𝑗[𝑢] has all vertices 𝑣 such that (𝑢, 𝑣) ∈ 𝐸.
In a digraph, total length of the 𝑛 lists = ∑)∈+ |𝐴𝑑𝑗(𝑢)| = 𝑚.
Space is still Θ(𝑛 +𝑚).

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 12

Example 2:

𝐴𝑑𝑗

Note: In this course, unless specified otherwise, we assume graphs are represented
by adjacency lists.

Review: Graph Traversal

Breadth-First Search (BFS)

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 13

Breadth-First Search (1/2)
Three attributes for each vertex:
• 𝑣. 𝑐𝑜𝑙𝑜𝑟 = WHITE (unvisited) or GRAY (discovered) or BLACK

(finished)
• 𝑣. 𝑑 = distance (smallest #edges) from 𝑠 to 𝑣
• 𝑣. 𝜋 = the predecessor of 𝑣 in the breadth-first tree
• Example:

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 14

𝐴𝑑𝑗

𝑣 1 2 3 4 5

𝑣. 𝜋 NIL 1 2 2 1

𝑣. 𝑑 0 1 2 2 1

Breadth-First Search (2/2)

Running time of BFS(G):
• Using adjacency matrix:

Θ 𝑛 +2
'∈)

𝑛 = 𝑛 + 𝑛*

= Θ(𝑛*)
• Using adjacency lists:

Θ 𝑛 +2
'∈)

deg 𝑣 = 𝑛 + 2𝑚

= Θ(𝑛 +𝑚)

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 15

BFS(G)
for each vertex u ∈ G.V
u.color = WHITE
u.d = ∞
u.𝜋 = NIL

for each u ∈ G.V
if u.color == WHITE

BFS-VISIT(G, u)

BFS-VISIT(G, s)
// lines 5-18 of BFS(G, s)

Warning: By BFS(G, s), vertices in other connected
components wouldn't be discovered!!!

Review: Graph Traversal

Depth-First Search (DFS)

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 16

Depth-First Search (1/2)
Three attributes for each vertex:
• 𝑣. 𝑐𝑜𝑙𝑜𝑟 = WHITE (unvisited) or GRAY (discovered) or BLACK

(finished)
• 𝑣. 𝜋 = the predecessor of 𝑣 in the depth-first tree/forest
• 𝑣. 𝑑 = discovery time of 𝑣
• 𝑣. 𝑓 = finish time of 𝑣
• Example:

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 17

𝐴𝑑𝑗

𝑣 1 2 3 4 5 6
𝑣. 𝜋 NIL 1 NIL 5 2 3
𝑣. 𝑑 1 2 9 4 3 10
𝑣. 𝑓 8 7 12 5 6 11

Depth-First Search (2/2)

• Running time of DFS(G):
• Using adjacency matrix:

Θ 𝑛 +2
'∈)

𝑛 = 𝑛 + 𝑛* = Θ(𝑛*)

• Using adjacency lists:

Θ 𝑛 +2
'∈)

deg 𝑣 = 𝑛 + 2𝑚 = Θ(𝑛 +𝑚)

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 18

Review: Graph Traversal

Classification of Edges

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 19

Classification of Edges

Based on the breadth-first tree/forest or
depth-first tree/forest, edges in the
original graph can be classified into the
following four types.
1. Tree edge: an edge (𝑢, 𝑣) in the

breadth-first or depth-first tree/forest
2. Back edge: a non-tree edge (𝑢, 𝑣)

where 𝑣 is an ancestor of 𝑢 in the tree,
including self-loops in digraphs

3. Forward edge: a non-tree edge (𝑢, 𝑣)
where 𝑣 is a descendent of 𝑢 in the tree

“back” = “forward” in undirected graphs.
4. Cross edge: any other edge

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 20

Example: DFS for a digraph

• Bold gray: Tree edge
• B: Back edge
• F: Forward edge
• C: Cross edge

BFS Edges
BFS for undirected graphs:
• Have only tree and cross edges
• No back/forward edges

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 21

Example:

BFS for directed graphs:
• Have only tree, back, and cross edges
• No forward edges

Example:

Tree edges: (1, 2), (1, 4), (2, 5), (3, 6)
Back edge: (6, 6)
Cross edge: (3, 5), (4, 2), (5, 4)

Tree edges: (1, 2), (1, 5), (2, 3), (2, 4)
Cross edges: (2, 5), (3, 4), (4, 5)

DFS Edges
DFS for undirected graphs:
• Have only tree and back/forward edges
• No cross edges

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 22

Example:

DFS for directed graphs:
• Can have all four types of edges

Example:

Tree edges: (1, 2), (2, 5), (3, 4), (4, 5)
Back/Forward edges: (1, 5), (2, 3), (2, 4)

Topological Sort

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 23

Topological Sort

• Topological Sort (of a graph): A linear ordering of vertices such that if edge
(𝑢, 𝑣) ∈ 𝐸, then 𝑢 appears somewhere before 𝑣.
• If a directed graph has a topological sort, we can find an assignment of a

unique number 1, 2,⋯ , 𝑛 to each vertex such that all edges are heading
forward.
• Example:

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 24

Topological sort:
• A B C D E

Topological Sort of A DAG

• Directed Acyclic Graph (DAG): A directed graph with no cycles.
Theorem: 𝐺 is a DAG iff 𝐺 has a topological sort.
Proof.
• “⇐”:
• If 𝐺 has a topological sort, we can find an assignment of a unique

number 1, 2,⋯ , 𝑛 to each vertex in 𝐺 such that all edges are heading
forward.
• So, there must be no cycle in 𝐺 ⇒ 𝐺 is a DAG.

• “⇒”:*

• Algorithm TOPOLOGICAL-SORT will find a topological sort of a DAG.

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 25

* For “⇒”, see the complete proof of Theorem 22.12 on p.614 of the textbook.

Find Topological Sort

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 26

• There is no need to perform
a sorting algorithm for
decreasing finishing times.
• It can be done as part of DFS.
• Running time: Θ(𝑛 +𝑚)

(same as DFS)

TOPOLOGICAL-SORT(G)
1. Call DFS(G) to compute finishing times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉
• During DFS, as each vertex is finished, insert it onto the front of a linked list.

2. return the linked list of vertices

Topological Sort Example

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 27

TOPOLOGICAL-SORT(G)
1. Call DFS(G) to compute finishing times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉
• During DFS, as each vertex is finished, insert it onto the front of a linked list.

2. return the linked list of vertices

Example:

Correctness of Topological Sort

Theorem. Algorithm TOPOLOGICAL-SORT produces a
topological sort of the input DAG 𝐺.*

Proof. Show that for every edge (𝑢, 𝑣) ∈ 𝐸, 𝑢. 𝑓 > 𝑣. 𝑓.
Case 1: 𝑢. 𝑑 < 𝑣. 𝑑
• Based on DFS, 𝑣 becomes BLACK before 𝑢.
• Then, we have 𝑢. 𝑓 > 𝑣. 𝑓
Case 2: 𝑢. 𝑑 > 𝑣. 𝑑
• 𝐺 has no cycle, so there is no path from 𝑣 to 𝑢.
• 𝑢 will not be visited by DFS-VISIT(G, v).
• 𝑢. 𝑑 > 𝑣. 𝑑 implies 𝑢. 𝑓 > 𝑣. 𝑓

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 28

* See Theorem 22.12 on p.614 of the textbook.

Topological Sort

Longest Path in a DAG

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 29

Longest Path in a DAG

• Given a DAG 𝐺, define 𝐿 𝐺, 𝑣 as the length of
the longest path in 𝐺 starting with 𝑣.
• Then the length of the longest path in 𝐺 will be

max
-∈+

𝐿(𝐺, 𝑣)

• If 𝑆 is a topological sort of 𝐺 and 𝑢 is the first
vertex in 𝑆, then

𝐿 𝐺, 𝑢 = max
-∈.!())

𝐿(𝐺, 𝑣) + 1,

where 𝑁"(𝑢) is the set of out-neighbors of 𝑢.

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 30

Example:

DP for Longest Path in DAG (1/3)

Step 1: Find a recurrence relation
• The length of the longest path in 𝐺 starting with 𝑢 is

𝐿 𝐺, 𝑢 = [
0, if𝑁" 𝑢 = ∅
1 + max

-∈.!())
𝐿(𝐺, 𝑣) , otherwise

Step 2: Count #distinct recursive calls ⎯⎯ 𝑛 = |𝑉|
Step 3: Define an array 𝐿 of size 𝑛.
• 𝐿[𝑘] will hold the value of 𝐿 𝐺, 𝑣% , where 𝑣% is the 𝑘-th vertex in the

topological sort of 𝐺.
• Fill the array 𝐿 according to the recurrence relation.
• The largest element in 𝐿 will be the length of the longest path in 𝐺.

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 31

DP for Longest Path in DAG (2/3)

Step 3 (cont’d): Fill the array 𝐿 according to the following recurrence

𝐿[𝑢] = [
0, if 𝑁" 𝑢 = ∅
1 + max

-∈.!())
𝐿[𝑣] , otherwise

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 32

LONGEST-PATH-DAG(G)
1 S = TOPOLOGICAL-SORT(G)
2 for each v in downward order of S
3 L[v] = 0
4 for each u ∈ N+[v]
5 if 1 + L[u] > L[v]
6 L[v] = 1 + L[u]

Example:
𝑣 A B C D E
𝐿[𝑣]

Running time: Θ(𝑛 +𝑚)

DP for Longest Path in DAG (3/3)

Step 4: Extract a longest path from array 𝐿.

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 33

PRINT-LONGEST-PATH-DAG(G, S, L)
1 i = FIND-MAX(L) // return the index
2 v = S[i]
3 while v ≠ NIL
4 PRINT(v)
5 nextnode = NIL
6 for each u ∈ N+[v]
7 if L[v] == 1 + L[u]
8 nextnode = u
9 v = nextnode

Example:

Running time: Θ(𝑛 +𝑚)

𝑣 A B C D E
𝐿[𝑣] 4 3 2 1 0

Strongly Connected Components

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 34

Strongly Connected Components

• Given a digraph 𝐺 = (𝑉, 𝐸), a strongly connected component (SCC) of 𝐺 is
a maximal set of vertices 𝐶 ⊆ 𝑉 such that for any two vertices 𝑢, 𝑣 ∈ 𝐶,
there is a path from 𝑢 to 𝑣 and also a path from 𝑣 to 𝑢.
• Define 𝑆𝐶𝐶(𝑢) as the set of all nodes that are reachable from 𝑢 and that 𝑢

is also reachable from every one of them.
• Claim 1: If 𝑢 and 𝑣 are reachable from each other, then 𝑆𝐶𝐶 𝑢 = 𝑆𝐶𝐶(𝑣).
• Example:

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 35

Properties of SCCs (1/3)

• Define 𝐺1 = (𝑉, 𝐸1) as the transpose of 𝐺, with all edges reversed.
• Claim 2: 𝐺 and 𝐺1 have the same SCCs.
• Claim 3: The SCCs of 𝐺 form a partition of 𝑉 into 𝐶$, 𝐶', ⋯𝐶% . That is,
𝐶$ ∪ 𝐶' ∪⋯∪ 𝐶% = 𝑉 and 𝐶& ∩ 𝐶(= ∅ for any 𝑖 ≠ 𝑗.
• Example:

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 36

Properties of SCCs (2/3)

• Create a component graph 𝐺233 = (𝑉233 , 𝐸233), where
• 𝑉233 = {𝑥$, 𝑥', ⋯ , 𝑥%}, with each vertex 𝑥& representing a SCC 𝐶&
• 𝐸233 has an edge (𝑥& , 𝑥() iff (𝑢, 𝑣) ∈ 𝐸 with 𝑢 ∈ 𝐶& and 𝑣 ∈ 𝐶(.

• Example:

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 37

𝐺

𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

𝐺344

Properties of SCCs (3/3)

Claim 4: 𝐺233 is a DAG.
Proof. By contradiction.
• If 𝐺344 is not a DAG, then there is a cycle 𝑥5, 𝑥6, ⋯ , 𝑥5 in 𝐺344.
• Consider vertices 𝑣5 ∈ 𝐶5 and 𝑣6 ∈ 𝐶6. There is a path from 𝑣5 to 𝑣6 and also a

path from 𝑣6 to 𝑣5. 𝑣5 and 𝑣6 should be in the same SCC. (Claim 1)
A contradiction: 𝐶5 and 𝐶6 are different SCCs.

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 38

𝐺

𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

𝐺344

Finding SCCs
SCC(G)
1. Call DFS(G) to get a decreasing 𝑣. 𝑓 order
2. Create 𝐺"

3. Call DFS(GT) with the main DFS loop traversing nodes in a decreasing 𝑣. 𝑓 order
(computed in step 1)

4. return the vertex set of each tree of the depth-first forest of 𝐺" formed in step 3

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 39

Running time: Θ(𝑛 +𝑚)
Example:

Intuition for the Correctness (Optional) (1/5)

• First, observe that (𝐺1)233= (𝐺233)1.
• Example:

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 40

𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

𝐺344

𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

(𝐺7)344

Intuition for the Correctness (Optional) (2/5)

• For any SCC 𝐶& of 𝐺, let 𝑤& be the node with the largest finishing time.
• Let 𝑤$, 𝑤', ⋯ , 𝑤% be in descending order of finishing time.
• As 𝐺233 is a DAG (Claim 4), 𝑥$, 𝑥', ⋯ , 𝑥% is a topological sort of 𝐺233.
• Example:

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 41

𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

𝐺344𝐺

Intuition for the Correctness (Optional) (3/5)

• As 𝐺233 is a DAG (Claim 4), 𝑥$, 𝑥', ⋯ , 𝑥% is a topological sort of 𝐺233.
• So, 𝑥$, 𝑥', ⋯ , 𝑥% is the inverse of a topological sort of (𝐺1)233.
• This means that not a single edge leaves 𝑥$ in (𝐺1)233.
• Example:

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 42

𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

𝐺344

𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

(𝐺7)344

Intuition for the Correctness (Optional) (4/5)

• Not a single edge leaves 𝑥8 in (𝐺7)344.
• 𝑤8 (with largest finishing time) is the first vertex in the DFS(GT) call.
• Therefore, all vertices reachable from 𝑤8 are the vertices in 𝑆𝐶𝐶 𝑤8 = 𝐶8.

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 43

𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

(𝐺7)344𝐺7

SCC(G)
1. Call DFS(G) to get a decreasing 𝑣. 𝑓 order
2. Create 𝐺!

3. Call DFS(GT) with the main DFS loop traversing nodes in a decreasing 𝑣. 𝑓 order (computed in step 1)
4. return the vertex set of each tree of the depth-first forest of 𝐺! formed in step 3

Intuition for the Correctness (Optional) (5/5)

• Continue inductively to argue that:
• By the time 𝑤5 is discovered in the DFS(GT) call, all the vertices in SCCs 𝐶8, 𝐶*, ⋯ ,
𝐶598 are already BLACK, so 𝑤5 will only reach vertices in 𝐶5.

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 44

SCC(G)
1. Call DFS(G) to get a decreasing 𝑣. 𝑓 order
2. Create 𝐺!

3. Call DFS(GT) with the main DFS loop traversing nodes in a decreasing 𝑣. 𝑓 order (computed in step 1)
4. return the vertex set of each tree of the depth-first forest of 𝐺! formed in step 3

𝑎, 𝑏, 𝑒 𝑐, 𝑑

𝑓, 𝑔 ℎ

(𝐺7)344𝐺7

Thank you!
Questions?

CSCI 4330, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 45

