
Algorithm Analysis and Data Structures
CSCI 7432 - Fall 2022

Dynamic Programming vs Greedy Algorithms
Dr. Yao XU

Assistant Professor

Department of Computer Science
Georgia Southern University

Email: yxu@georgiasouthern.edu

Table of Contents

1. Dynamic Programming (15)
• The Integral Knapsack Problem (introduced in 16.2)

2. Greedy Approach (16.2)
• The Fractional Knapsack Problem
• Not Work for Integral Knapsack

3. Dynamic Programming vs Greedy Approach
4. An Activity Selection Problem (16.1)
• A Greedy Algorithm (16.1)
• Using Dynamic Programming (Ex. 16.1 - 1)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 2

Dynamic Programming

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 3

Dynamic Programming

• Dynamic Programming (DP) is an algorithm design technique that typically
applies to optimization problems.
• Find a solution with the optimal value.
• Minimization or maximization.

• The given problem can be defined by recurrences with overlapping
subproblems.
• An optimization problem must have two key ingredients for DP to apply:
• Optimal substructure
• Overlapping subproblems

• Key idea of DP: Avoid re-computation of repeated subproblems by storing
the solution to each subproblem in a table.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 4

General Steps of Dynamic Programming

Step 1: Find a recurrence relation
• Relating the original problem’s solution to solutions to its subproblems.
Step 2: Count #subproblems = #distinct recursive calls
• Subproblems overlap, but all recursive calls live in a small domain.
Step 3: Set up a DP table and store solutions to these subproblems in the table
• Solve each subproblem only once. Table size = #subproblems
• Define what each cell holds (solution value of the corresponding subproblem).
• Must make sure that when filling a cell, all values it requires have already been

filled (based on recurrence relation)!

Step 4: Trace the DP table to find solution to the original problem
• Can usually be done by recursion

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 5

Dynamic Programming

The Integral Knapsack Problem

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 6

The Integral Knapsack Problem

Input:
• 𝑛 items
• Item 𝑖 is worth $𝑣!, weighs 𝑤! pounds. 𝑣! and 𝑤! are positive integers.
• A knapsack with capacity 𝑊, also a positive integer.
Output:
• A most valuable subset of items with total weight ≤ 𝑊.
• Integral (0-1): Have to either take an item or not take it - can’t take part of it.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 7

Example:
• 𝑣! = 6, 𝑣" = 10, 𝑣# = 12;
• 𝑤! = 1, 𝑤" = 2, 𝑤# = 3; 𝑊 = 5.

Optimal solution subset of items = {2, 3}
• total weight = 𝑤" +𝑤# = 5 ≤ 𝑊
• total value = 𝑣" + 𝑣# = 22 (maximized)

Solving Integral Knapsack (1/2)

1. Recursion
• Denote 𝑆! as the set of the first 𝑖 items, with 0 ≤ 𝑖 ≤ 𝑛.
• (Optimal substructure) Determine what to do with the last item
• Either take it (if 𝑊 ≥ 𝑤"), gain 𝑣" and recurse on the remaining items in
𝑆"#$ with capacity 𝑊 −𝑤";
• Or leave it, and recurse on the remaining item set 𝑆"#$ with capacity 𝑊.

• Let 𝑉 𝑆",𝑊 be the total value of a most valuable subset of items selected
from 𝑆" with total weight ≤ 𝑊.
• Base cases: 𝑉 𝑆",𝑊 = 0, if 𝑊 = 0 or 𝑛 = 0.
• If 𝑊 ≥ 𝑤", 𝑉 𝑆",𝑊 =max 𝑣 𝑛 + 𝑉 𝑆"#$,𝑊 − 𝑤[𝑛] , 𝑉 𝑆"#$,𝑊
• If 𝑊 < 𝑤", 𝑉 𝑆",𝑊 = 𝑉 𝑆"#$,𝑊

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 8

Solving Integral Knapsack (2/2)

1. Recursion (cont’d)
• Base cases: 𝑉 𝑆$,𝑊 = 0, if 𝑊 = 0 or 𝑛 = 0.
• If 𝑊 ≥ 𝑤$, 𝑉 𝑆$,𝑊 =max 𝑣 𝑛 + 𝑉 𝑆$%!,𝑊 − 𝑤[𝑛] , 𝑉 𝑆$%!,𝑊
• If 𝑊 < 𝑤$, 𝑉 𝑆$,𝑊 = 𝑉 𝑆$%!,𝑊

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 9

REC-KNAPSACK(W, w, v, n)
1 if W == 0 or n == 0
2 return 0
3 if W ≥ w[n]
4 V1 = v[n] + REC-KNAPSACK(W – w[n], w, v, n – 1)
5 V2 = REC-KNAPSACK(W, w, v, n – 1)
6 return MAX(V1, V2)
7 else
8 return REC-KNAPSACK(W, w, v, n – 1)

• Q: How many recursive calls?
• A: 𝑂(2$&!)
• Not too many distinct ones

(Overlapping subproblems) ⎯⎯
𝑛 + 1 𝑊 + 1 choices overall

Integral Knapsack – A DP Solution (1/5)

2. Dynamic Programming
Step 1: Find a recurrence relation
• Base cases: 𝑉 𝑆$,𝑊 = 0, if 𝑊 = 0 or 𝑛 = 0.
• If 𝑊 ≥ 𝑤$, 𝑉 𝑆$,𝑊 =max 𝑣 𝑛 + 𝑉 𝑆$%!,𝑊 − 𝑤[𝑛] , 𝑉 𝑆$%!,𝑊
• If 𝑊 < 𝑤$, 𝑉 𝑆$,𝑊 = 𝑉 𝑆$%!,𝑊

Step 2: Count #distinct subproblems – (𝑛 + 1)×(𝑊 + 1)
Step 3: Define a (𝑛 + 1)×(𝑊 + 1) array 𝑉 0. . 𝑛 [0. .𝑊].
• 𝑉 𝑖, 𝑗 = 𝑉 𝑆', 𝑗 will hold the value (total value) of an optimal solution (a most

valuable subset of items) to the subproblem defined on item set 𝑆' (the first 𝑖
items) with capacity 𝑗.
• Fill in the array according to the recurrence relation. (See next slide)
• 𝑉 𝑛,𝑊 will be the value of an optimal solution to the original problem.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 10

Integral Knapsack – A DP Solution (2/5)

Step 3 (cont’d): Fill in array 𝑉 according to the recurrence relation:

𝑉 𝑖, 𝑗 = A
0, if 𝑖 = 0 or 𝑗 = 0
𝑉 𝑖 − 1, 𝑗 , if 𝑗 − 𝑤' < 0
max 𝑉 𝑖 − 1, 𝑗 , 𝑣' + 𝑉 𝑖 − 1, 𝑗 − 𝑤' , if 𝑗 − 𝑤' ≥ 0

• Cells 𝑉 𝑖 − 1, 𝑗 and 𝑉 𝑖 − 1, 𝑗 − 𝑤! must be filled before filling 𝑉 𝑖, 𝑗 .

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 11

Example:
• 𝑣! = 6, 𝑣" = 10, 𝑣# = 12;
• 𝑤! = 1, 𝑤" = 2, 𝑤# = 3; 𝑊 = 5.
• Array: 𝑉 0. . 3 [0. . 5]
• 𝑉 3 [5] will be the value of an

optimal solution.

𝑉[𝑖, 𝑗] 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0
2 0
3 0

Integral Knapsack – A DP Solution (3/5)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 12

Step 3 (cont’d): Write pseudocode for generating array 𝑉.
DP-0-1-KNAPSACK(W, w, v, n)
1 let V[0..n, 0..W] be a new array
2 for j = 0 to W
3 V[0, j] = 0
4 for i = 1 to n
5 V[i, 0] = 0
6 for j = 1 to W
7 if w[i] ≤ j and v[i] + V[i - 1, j - w[i]] > V[i - 1, j]
8 V[i, j] = v[i] + V[i - 1, j - w[i]]
9 else V[i, j] = V[i - 1, j]
10 return V

• Running time: Θ(𝑛𝑊)
• Value of an optimal solution

will be 𝑉[𝑛,𝑊].

Step 4: How to find the set of
items in the optimal packing?

𝑉 𝑖, 𝑗 = '
0, if 𝑖 = 0 or 𝑗 = 0
𝑉 𝑖 − 1, 𝑗 , if 𝑗 − 𝑤! < 0
max 𝑉 𝑖 − 1, 𝑗 , 𝑣! + 𝑉 𝑖 − 1, 𝑗 − 𝑤! , if 𝑗 − 𝑤! ≥ 0

Integral Knapsack – A DP Solution (4/5)

Step 4: Extract an optimal solution from array 𝑉.
• Consider the last item 𝑛.

• If 𝑉[𝑛,𝑊] = 𝑉[𝑛 − 1,𝑊], then item 𝑛 is not in the optimal solution;
• Otherwise, item 𝑛 is in the optimal solution and 𝑉 𝑛,𝑊 is obtained from
𝑉[𝑛 − 1,𝑊 − 𝑤$] by adding item 𝑛.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 13

Example:
• 𝑣! = 6, 𝑣" = 10, 𝑣# = 12;
• 𝑤! = 1, 𝑤" = 2, 𝑤# = 3; 𝑊 = 5.

𝑉[𝑖, 𝑗] 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 6 6 6 6 6
2 0 6 10 16 16 16
3 0 6 10 16 18 22

Integral Knapsack – A DP Solution (5/5)

Step 4 (cont’d): Write pseudocode for extracting an optimal solution from 𝑉.
• Consider the last item 𝑛.

• If 𝑉[𝑛,𝑊] = 𝑉[𝑛 − 1,𝑊], then item 𝑛 is not in the optimal solution;
• Otherwise, item 𝑛 is in the optimal solution and 𝑉 𝑛,𝑊 is obtained from
𝑉[𝑛 − 1,𝑊 − 𝑤$] by adding item 𝑛.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 14

PRINT-OPT-KNAPSACK(V, n, W, w)
1 if n > 0 or W > 0
2 if V[n, W] = V[n - 1, W]
3 PRINT-OPT-KNAPSACK(V, n - 1, W, w)
4 else
5 PRINT-OPT-KNAPSACK(V, n - 1, W – w[n], w)
6 Print(n)

• Running time:
𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑐
⇒ 𝑇(𝑛) ∈ 𝑂(𝑛)

Overall running time: Θ(𝑛𝑊)
• DP-0-1-KNAPSACK: Θ(𝑛𝑊)
• PRINT-OPT-KNAPSACK: 𝑂(𝑛)

A Note on Running Time

• Θ(𝑛𝑊) is not polynomial
• Input size for 𝑊: #binary bits 𝑘 ∈ Θ(log𝑊)
• Therefore, the running time in terms of 𝑛 and 𝑘 is:

𝑇 𝑛, 𝑘 ∈ Θ 𝑛𝑊 = Θ(2!𝑛),
which is exponential in 𝑘.
• This is called pseudo-polynomial.
• Running time is polynomial in the numeric value of the input but

exponential in the input size.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 15

Greedy Approach

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 16

The Greedy Approach

• The Greedy Approach is an algorithm design technique that is applicable to
optimization problems only.
• A solution is constructed through a sequence of greedy choices that are
• Feasible - it has to satisfy the problem’s constraints
• Locally optimal - it has to be the best local choice among all feasible

choices available on that step
• Irrevocable - once made, it cannot be changed on subsequent steps

• A greedy algorithm doesn’t always yield a (globally) optimal solution.
• A greedy algorithm works only when the problem has two properties:
• Greedy-choice property
• Optimal substructure

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 17

Correctness of A Greedy Algorithm (1/2)

To tell whether a greedy algorithm will solve an optimization problem, we
usually prove the following two properties:
• Optimal substructure
• Whenever we make a choice, one subproblem remains and it just looks

like the original problem, with same input type and same notion of
optimal solution.
• Show that

OPT to original problem = Greedy choice + OPT to subproblem
• Greedy-choice property
• The greedy choice is always part of some optimal solution.
• Show that there exists an optimal solution that contains the greedy

choice.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 18

Correctness of A Greedy Algorithm (2/2)
With these two properties, the greedy algorithm works:
1. We commit to a greedy choice 𝑐!.
2. Greedy-choice property: ∃ an optimal solution 𝐴! to the problem s.t. 𝑐! ∈ 𝐴!.
3. Optimal substructure: 𝐴! − {𝑐!} is an optimal solution to the remaining subproblem.
4. Now we commit to a greedy choice 𝑐" for this subproblem.
5. Greedy-choice property: ∃ an optimal solution 𝑆" to the subproblem s.t. 𝑐" ∈ 𝑆".

Then, 𝐴" = 𝑆" ∪ {𝑐!} is an optimal solution to the original problem. (𝑐!, 𝑐" ∈ 𝐴")
6. Optimal substructure: 𝑆" − {𝑐"} is an optimal solution to the remaining subproblem.
7. Now we commit to a greedy choice 𝑐# for this subproblem.
8. Greedy-choice property: ∃ an optimal solution 𝑆# to the subproblem s.t. 𝑐# ∈ 𝑆#.

Then, 𝐴# = 𝑆# ∪ {𝑐!, 𝑐"} is an optimal solution to the original problem. (𝑐!, 𝑐", 𝑐# ∈ 𝐴#)
⋮

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 19

Greedy Approach

The Fractional Knapsack Problem

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 20

Fractional Knapsack Problem
Input:
• 𝑛 items
• Item 𝑖 is worth $𝑣", weighs 𝑤" pounds, where 𝑣" and 𝑤" are integers
• A knapsack with capacity 𝑊, also an integer
Output:
• A most valuable subset of items with total weight ≤ 𝑊.
• Fractional: Can take fraction of an item.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 21

Example:
• 𝑣! = 6, 𝑣" = 10, 𝑣# = 12;
• 𝑤! = 1, 𝑤" = 2, 𝑤# = 3; 𝑊 = 5.

Optimal solution:
• Take 𝑙$ pounds of item 𝑖: 𝑙! = 1, 𝑙" = 2, 𝑙# = 2
• Total weight = 𝑙! + 𝑙" + 𝑙# = 5 ≤ 𝑊

• Total value = 𝑣! + 𝑣" +
"
#
𝑣# = 24 (maximized)

Fractional Knapsack - A Greedy Approach

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 22

• Look for a “safe” greedy choice.
• Q: What is the current best choice?
• Take which item? Take how much of it?

• Greedy choice: Take the item with largest value per pound, 𝑣"/𝑤".
• Sort the items so that 𝑣"/𝑤" ≥ 𝑣"#$/𝑤"#$ for all 1 ≤ 𝑖 < 𝑛.
• Example:
𝑊 = 5.

𝑖 1 2 3
𝑣! 6 10 12
𝑤! 1 2 3
𝑣!/𝑤! 6 5 4

• Q: Is this a “safe” greedy choice?

Greedy solution:
• 𝑙! = 1, 𝑙" = 2, 𝑙# = 2

• Total value = 𝑣! + 𝑣" +
"
#𝑣# = 24

⎯ Optimal

Is This Greedy Approach Correct?

• Greedy approach: Start picking items by largest value per pound, 𝑣"/𝑤",
continue as long as the knapsack isn’t full.
• Let 𝐿 = 𝑙$, 𝑙%, ⋯ , 𝑙& be the solution found by this greedy approach. (We

take 𝑙" pounds of item 𝑖.)
• If 𝑂𝑃𝑇 = 𝑙$∗, 𝑙%∗ , ⋯ , 𝑙&∗ is an optimal solution (take 𝑙"∗ pounds of item 𝑖),

then we need to show that

J
"($

&

𝑙" K
𝑣"
𝑤"
=J

"($

&

𝑙"∗ K
𝑣"
𝑤"

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 23

Correctness of The Greedy Approach (1/3)

1. Optimal substructure
OPT to original problem - Greedy/Any choice = OPT to subproblem

Claim: Let 𝑂𝑃𝑇 = 𝑙$, 𝑙%, ⋯ 𝑙& be an optimal solution to the original
problem, where 𝑙" is the amount of item 𝑖 to be picked. Let 𝑗 be any item.
Then, 𝑂𝑃𝑇)* = 𝑙$, ⋯ , 𝑙*)$, 𝑙*#$, ⋯ , 𝑙& must be an optimal solution to the
subproblem defined on all items excluding 𝑗 with knapsack capacity 𝑊 − 𝑙*.
Proof. (by contradiction)
• Assume 𝑂𝑃𝑇%(is not optimal to the subproblem.
• Then, there must be an 𝑂𝑃𝑇′%(with total value greater than that of 𝑂𝑃𝑇%(.
• Thus, for the original problem, 𝑂𝑃𝑇′%(together with 𝑙(is also feasible and the

total value is greater than that of 𝑂𝑃𝑇.
⇒𝑂𝑃𝑇 is not optimal ⎯ A contradiction. ☐

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 24

Correctness of The Greedy Approach (2/3)

2. Greedy-choice property
Assume the items are sorted s.t. 𝑣$/𝑤$ ≥ 𝑣%/𝑤% ≥ ⋯ ≥ 𝑣&/𝑤&.
Claim: There exists an optimal solution where item 1 is saturated – we
cannot pick anymore of item 1, i.e., 𝑙$ = min{𝑊,𝑤$}.
Proof. Let 𝑂𝑃𝑇 = 𝑙!, 𝑙", ⋯ 𝑙$ be an optimal solution to the original problem.
We will show that if 𝑙! < min{𝑊,𝑤!}, we can alter 𝑂𝑃𝑇 to obtain another
optimal solution 𝑂𝑃𝑇′ = 𝑙!) , 𝑙") , ⋯ , 𝑙$) with 𝑙!) = min{𝑊,𝑤!}.
• Observation: We must have ∑' 𝑙' = 𝑊. - Why?
• Let Δ = min 𝑊,𝑤! − 𝑙!.
• We alter the solution 𝑂𝑃𝑇 by
• taking Δ more of item 1: 𝑙!) = 𝑙! + Δ
• taking Δ less of other item(s): ∑"*'*$ 𝑙') = ∑"*'*$ 𝑙' − Δ

- Need to show ∑"*'*$ 𝑙' ≥ Δ for this change to be valid.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 25

Correctness of The Greedy Approach (3/3)

2. Greedy-choice property (cont’d)
Assume the items are sorted s.t. 𝑣$/𝑤$ ≥ 𝑣%/𝑤% ≥ ⋯ ≥ 𝑣&/𝑤&.
Claim: There exists an optimal solution where item 1 is saturated – we
cannot pick anymore of item 1, i.e., 𝑙$ = min{𝑊,𝑤$}.
Proof. (cont’d)
• We alter the solution 𝑂𝑃𝑇 by
• taking Δ more of item 1: 𝑙!) = 𝑙! + Δ
• taking Δ less of other item(s): ∑"*'*$ 𝑙') = ∑"*'*$ 𝑙' − Δ

• This will not decrease the total value:

T
'

𝑙') U
𝑣'
𝑤'

≥T
'

𝑙' U
𝑣'
𝑤'

as 𝑣!/𝑤! is the largest. ☐

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 26

Fractional Knapsack - A Greedy Algorithm

• Greedy approach: Start picking items by largest value per pound, 𝑣"/𝑤",
continue as long as the knapsack isn’t full.
• First, sort the items so that 𝑣"/𝑤" ≥ 𝑣"#$/𝑤"#$ for all 1 ≤ 𝑖 < 𝑛.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 27

FRACTIONAL-KNAPSACK(W, w, v, n)
1 let L[1..n] be a new array
2 load = 0
3 i = 1
4 while load < W and i ≤ n
5 if w[i] ≤ W – load
6 L[i] = w[i]
7 else L[i] = W – load
8 load = load + w[i]
9 i = i + 1
10 return L

• Solution: 𝐿 = 1, 2, 2
• Overall running time: 𝑂(𝑛 log 𝑛)

• Sorting takes 𝑂(𝑛 log 𝑛) time
• FRACTIONAL-KNAPSACK takes 𝑂(𝑛) time

• Example:
𝑊 = 5

𝑖 1 2 3
𝑣! 6 10 12
𝑤! 1 2 3
𝑣!/𝑤! 6 5 4

Greedy Approach

Not Work for Integral Knapsack

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 28

Greedy Approach Not Work for Integral Knapsack

• Consider the greedy approach: start picking the items by largest value per
pound, 𝑣"/𝑤", continue as long as the knapsack isn’t full.
• Example:
𝑊 = 5.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 29

𝑖 1 2 3
𝑣! 6 10 12
𝑤! 1 2 3
𝑣!/𝑤! 6 5 4

• Greedy solution: Take items 1 and 2
Total value = 𝑣! + 𝑣" = 16
• Optimal solution: Take items 2 and 3

Total value = 𝑣" + 𝑣# = 22

To show that a greedy algorithm does not always yield an optimal solution,
we usually find a counterexample (an instance) for which
• The algorithm fails to produce an optimal solution (like above).
• Or, we find an optimal solution and show that it can never be altered to

include our greedy choice without changing the optimal value.

Dynamic Programming
vs Greedy Approach

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 30

Dynamic Programming vs Greedy Approach
Dynamic Programming
• Two key ingredients for applying DP to solve an optimization problem: optimal

substructure and overlapping subproblems
• Solves all dependent subproblems first and then makes a choice that will lead to

an optimal solution;
• Always yields an optimal solution;
• Is usually less efficient as compared to a greedy algorithm.
Greedy Approach
• Makes a locally optimal choice at every step and never look back;
• NOT always lead to an overall optimal solution;
• Yields an optimal solution iff the following two properties are satisfied

(correctness proof): greedy-choice property and optimal substructure;
• Is usually an efficient algorithm.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 31

An Activity Selection Problem

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 32

An Activity Selection Problem

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 33

Input:
• 𝑛 jobs: job 𝑖 has start time 𝑠', finish time 𝑓', and 0 ≤ 𝑠' ≤ 𝑓'.
• We have one machine that can execute only one job at a time.
• Two jobs 𝑖, 𝑗 are compatible if their intervals [𝑠', 𝑓') and [𝑠(, 𝑓() do not overlap.

Output:
• A maximum-size subset of mutually compatible jobs.
Example 1:

Optimal solutions: 1, 2 , 1, 4 , {3, 4}

𝑖 1 2 3 4
𝑠! 1 3 1 4
𝑓! 3 5 4 5

Another Example

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 34

Q: Is there a greedy algorithm that always produces an optimal solution?

Optimal solutions:
• {𝑎!, 𝑎#, 𝑎+, 𝑎,}
• {𝑎!, 𝑎#, 𝑎+, 𝑎-}
• {𝑎!, 𝑎#, 𝑎., 𝑎,}
• {𝑎!, 𝑎#, 𝑎., 𝑎-}
• {𝑎!, 𝑎/, 𝑎., 𝑎,}
• {𝑎!, 𝑎/, 𝑎., 𝑎-}
• {𝑎", 𝑎/, 𝑎., 𝑎,}
• {𝑎", 𝑎/, 𝑎., 𝑎-}

Example 2:
𝑖 1 2 3 4 5 6 7 8 9

𝑠! 1 2 4 1 5 8 9 11 13

𝑓! 3 5 7 8 9 10 11 14 16

An Activity Selection Problem

A Greedy Algorithm

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 35

A Greedy Choice (1/4)
• Is there always a “safe” greedy choice?
• Possible greedy choices:

1) Earliest start time?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 36

Counterexample:

𝑎! 𝑎" 𝑎# 𝑎$ 𝑎%

𝑎&

• Greedy solution: {𝑎%} ⎯ NOT optimal
• Optimal solution: {𝑎!, 𝑎", 𝑎#, 𝑎&, 𝑎'}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

⟵ NOT a “safe” greedy choice!

A Greedy Choice (2/4)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 37

Counterexample:

𝑎! 𝑎"

𝑎#

• Greedy solution: {𝑎#} ⎯ NOT optimal
• Optimal solution: {𝑎!, 𝑎"}

• Is there always a “safe” greedy choice?
• Possible greedy choices:

2) Smallest processing time (𝑓 − 𝑠)?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

⟵ NOT a “safe” greedy choice!

A Greedy Choice (3/4)
• Is there always a “safe” greedy choice?
• Possible greedy choices:

3) Overlaps the fewest other remaining jobs?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 38

Counterexample:

𝑎! 𝑎" 𝑎# 𝑎$

𝑎% 𝑎& 𝑎'

𝑎(𝑎)

𝑎!* 𝑎!!

• Greedy solution: {𝑎%, 𝑎!, 𝑎&} ⎯ NOT optimal
• Optimal solution: {𝑎!, 𝑎", 𝑎#, 𝑎&}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

⟵ NOT a “safe” greedy choice!

A Greedy Choice (4/4)
• Is there always a “safe” greedy choice?
• Possible greedy choices:

4) Earliest finish time?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 39

Example:

𝑎! 𝑎" 𝑎#

𝑎$ 𝑎% 𝑎&

𝑎' 𝑎(𝑎) 𝑎!*

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

• Greedy solution: {𝑎(, 𝑎), 𝑎", 𝑎#, 𝑎!*} ⎯ Optimal
No counterexamples can be found ⎯ Need to prove correctness!

⟵ This is a “safe” greedy choice!

Is This Greedy Algorithm Correct?

• A greedy algorithm:
1. Select a job with earliest finish time.
2. Remove all jobs that overlap with the selected job.
3. Repeat steps 1 and 2 until there is no job left.

• Let 𝐴 be the set of jobs selected by this greedy algorithm.
• If 𝑂𝑃𝑇 is an optimal solution (maximum-size set of mutually compatible

jobs), then 𝐴 = 𝑂𝑃𝑇?
• Not likely!
• Instead, we will show that |𝐴| = |𝑂𝑃𝑇|.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 40

Proving Optimality (1/3)

First, show that our greedy choice is always part of some optimal solution.
Theorem. There exists an optimal solution that contains the job with the
earliest finish time. *

• Re-arrange the jobs so that 𝑓$ ≤ 𝑓% ≤ ⋯ ≤ 𝑓&.
Proof. Consider an arbitrary optimal solution 𝑂𝑃𝑇.
• If 𝑎$ ∈ 𝑂𝑃𝑇, we are done.
• If 𝑎$ ∉ 𝑂𝑃𝑇, there is a job 𝑎* ∈ 𝑂𝑃𝑇 such that replacing 𝑎* by 𝑎$ also

results in an optimal solution. (Prove in the next slide)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 41

* See the complete proof of Theorem 16.1 on p.481 of the textbook.

Proving Optimality (2/3)

Theorem. There exists an optimal solution that contains the job with the
earliest finish time.
Proof. (cont’d)
If 𝑎$ ∉ 𝑂𝑃𝑇, let 𝑎* ∈ 𝑂𝑃𝑇 be the job with earliest finish time in 𝑂𝑃𝑇.
Claim: 𝑎* must be the only job in 𝑂𝑃𝑇 that overlaps with 𝑎$. (Prove in the
next slide)
• Let 𝑂𝑃𝑇+ = 𝑂𝑃𝑇 − 𝑎* ∪ {𝑎$}.
• The claim implies that
• 𝑂𝑃𝑇+ is feasible (no overlapping jobs)
• 𝑂𝑃𝑇+ = |𝑂𝑃𝑇|.

☐

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 42

Proving Optimality (3/3)

If 𝑎$ ∉ 𝑂𝑃𝑇, let 𝑎* ∈ 𝑂𝑃𝑇 be the job with earliest finish time in 𝑂𝑃𝑇.
Claim: 𝑎* must be the only job in 𝑂𝑃𝑇 that overlaps with 𝑎$.
Proof.
• Every job 𝑎! ∈ 𝑂𝑃𝑇 − {𝑎*} is compatible with 𝑎$.
• 𝑓3 > 𝑓! ⇒ 𝑓! ≤ 𝑓(< 𝑠3 < 𝑓3

• 𝑎$ and 𝑎* must overlap.
• Otherwise, 𝑂𝑃𝑇 is not optimal.

☐
CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 43

𝑎+ 𝑎,

𝑎!

Activity Selection – Greedy Algorithm Correctness

• Greedy-choice property
Theorem. There exists an optimal solution that contains the job with the earliest
finish time. (Proved on slides 12-14.)

• Optimal substructure
Claim: Let 𝑂𝑃𝑇 be an optimal solution to the original problem and let 𝑎(be any
job in 𝑂𝑃𝑇. Then 𝑂𝑃𝑇 − 𝑎(is an optimal solution to the subproblem defined
on all jobs that are compatible with 𝑎(.
Proof. (by contradiction) Assume 𝑂𝑃𝑇 − 𝑎(is not optimal to the subproblem.
• 𝑆 is an optimal solution to the subproblem.
• 𝑆 > 𝑂𝑃𝑇 − 1 and all jobs in 𝑆 are compatible with 𝑎(.
• Thus, 𝑂𝑃𝑇) = 𝑆 ∪ {𝑎(} is feasible and 𝑂𝑃𝑇′ > |𝑂𝑃𝑇|.

⇒𝑂𝑃𝑇 is not optimal ⎯ A contradiction. ☐

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 44

A Recursive Greedy Algorithm
• First, re-arrange the jobs so that 𝑓! ≤ 𝑓" ≤ ⋯ ≤ 𝑓$.
• The following recursive greedy algorithm solves a subproblem defined on the job

set 𝐴3 = {𝑎3&!, 𝑎3&", ⋯ , 𝑎$}.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 45

REC-ACTIVITY-SELECTOR(s, f, k, n)

1 i = k + 1
2 while i ≤ n and s[i] < f [k]

3 i = i + 1
4 if i ≤ n
5 return {ai}∪ REC-ACTIVITY-SELECTOR(s, f, i, n)

6 else
7 return ∅

Example:
𝑖 1 2 3 4 5 6 7 8 9

𝑠! 1 2 4 1 5 8 9 11 13

𝑓! 3 5 7 8 9 10 11 14 16

Returned optimal solution: {𝑎!, 𝑎", 𝑎#, 𝑎$}
Initial call:
REC-ACTIVITY-SELECTOR(s, f, 0, n)

Running Time of Recursive Greedy

• Sorting takes 𝑂(𝑛 log 𝑛) time.
• REC-ACTIVITY-SELECTOR takes 𝑂(𝑛) time.
• Total running time: 𝑇(𝑛) ∈ 𝑂(𝑛 log 𝑛)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 46

REC-ACTIVITY-SELECTOR(s, f, k, n)

1 i = k + 1
2 while i ≤ n and s[i] < f [k]

3 i = i + 1
4 if i ≤ n
5 return {ai}∪ REC-ACTIVITY-SELECTOR(s, f, i, n)

6 else
7 return ∅

• REC-ACTIVITY-SELECTOR(s, f, k, n)
solves a subproblem defined on job set
𝐴3 = {𝑎3&!, 𝑎3&", ⋯ , 𝑎$}.

• Running time:
• while loop: 𝑙 iterations

The first 𝑙 jobs in 𝐴3 have 𝑠 < 𝑓3
and the next job has 𝑠 ≥ 𝑓3.

• 𝑇789 𝑛 = 𝑂 𝑙 + 𝑇789 𝑛 − 𝑙
⇒ 𝑇789(𝑛) ∈ 𝑂(𝑛)Initial call: REC-ACTIVITY-SELECTOR(s, f, 0, n)

An Iterative Greedy Algorithm
A non-recursive (iterative) version of this greedy algorithm:
• Still, re-arrange the jobs first so that 𝑓! ≤ 𝑓" ≤ ⋯ ≤ 𝑓$. ⎯ takes 𝑂(𝑛 log 𝑛) time

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 47

ITR-ACTIVITY-SELECTOR(s, f)

1 n = s.length
2 A = {a1}

3 k = 1
4 for i = 2 to n
5 if s[i] ≥ f [k]

6 A = A ∪ {ai}
7 k = i

8 return A

Example:
𝑖 1 2 3 4 5 6 7 8 9

𝑠! 1 2 4 1 5 8 9 11 13

𝑓! 3 5 7 8 9 10 11 14 16

Returned optimal solution: {𝑎!, 𝑎", 𝑎#, 𝑎$}
• Running time: 𝑇;<=(𝑛) ∈ 𝑂(𝑛)
• Total running time: 𝑇(𝑛) ∈ 𝑂(𝑛 log 𝑛)

An Activity Selection Problem

Using Dynamic Programming

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 48

Activity Selection – A DP Solution (1/6)

Step 1: Find a recurrence relation.
• Select job 𝑘.
• Remove all jobs incompatible with 𝑘.
• Recurse on the remaining jobs.
Jobs are re-arranged so that 𝑓$ ≤ 𝑓% ≤ ⋯ ≤ 𝑓& - takes 𝑂(𝑛 log 𝑛) time.
Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 49

𝑖 1 2 3 4
𝑠! 1 3 1 4
𝑓! 3 5 4 5

𝑖 1 2 3 4
𝑠! 1 1 3 4
𝑓! 3 4 5 5

Activity Selection – A DP Solution (2/6)
Step 1 (cont’d): Find a recurrence relation.
Denote 𝑆",* as the set of jobs that start after job 𝑖 finishes and that finish
before job 𝑗 starts.
• Create two fictious jobs: job 0 with 𝑓- = 0 and job 𝑛 + 1 with 𝑠&#$ = ∞.
• The size of an optimal set of mutually compatible jobs in 𝑆",* will be

𝑂𝑝𝑡𝐶 𝑆",* = max
!∈/%,'

{𝑂𝑝𝑡𝐶 𝑆",! + 𝑂𝑝𝑡𝐶 𝑆!,* + 1}.

• Base cases: 𝑂𝑝𝑡𝐶 𝑆",* = 0 if 𝑆",* = ∅.
• 𝑆-,&#$ will be an optimal solution to the original problem.
Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 50

𝑖 0 1 2 3 4 5
𝑠! 1 1 3 4 ∞
𝑓! 0 3 4 5 5

Activity Selection – A DP Solution (3/6)

Step 2: Count distinct subproblems – (𝑛 + 2)×(𝑛 + 2)
Step 3: Define an (𝑛 + 2)×(𝑛 + 2) array 𝐶.
• 𝐶 𝑖, 𝑗 = 𝑂𝑝𝑡𝐶 𝑆",* , 0 ≤ 𝑖, 𝑗 ≤ 𝑛 + 1, will hold the size of an optimal set

of mutually compatible jobs for the subproblem defined on the job set 𝑆",*.
• Fill in the array 𝐶 according to the following recurrence

𝐶 𝑖, 𝑗 = \
0, if 𝑆",* = ∅
max
!∈/%,'

{𝐶 𝑖, 𝑘 + 𝐶 𝑘, 𝑗 + 1} , if 𝑆",* ≠ ∅

• 𝐶 0, 𝑛 + 1 = 𝑂𝑝𝑡𝐶 𝑆-,&#$ will be the size of an optimal set of mutually
compatible jobs for the original problem.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 51

Activity Selection – A DP Solution (4/6)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 52

𝐶 𝑖, 𝑗 = \
0, if 𝑆",* = ∅
max
!∈/%,'

{𝐶 𝑖, 𝑘 + 𝐶 𝑘, 𝑗 + 1} , if 𝑆",* ≠ ∅

Example: 𝐶 𝑖, 𝑗 0 1 2 3 4 5

0 0 0

1 - 0 0

2 - - 0 0

3 - - - 0 0

4 - - - - 0 0

5 - - - - - 0

𝑖 0 1 2 3 4 5
𝑠! 1 1 3 4 ∞
𝑓! 0 3 4 5 5

Activity Selection – A DP Solution (5/6)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 53

Step 3 (cont’d): Pseudocode
for generating the DP table.
• Running time: 𝑂(𝑛0)

DP-ACTIVITY-SELECTION(s, f, n)
let C[0..n+1, 0..n+1] and J[0..n+1, 0..n+1] be new arrays
for i = 0 to n

C[i, i] = 0
C[i, i + 1] = 0

C[n + 1, n + 1] = 0
for c = 2 to n + 1

for i = 0 to n – c + 1
j = i + c
C[i, j] = 0
k = j - 1
while f [i] < f [k]

if f [i] ≤ s[k] and f [k] ≤ s[j] and C[i, k] + C[k, j] + 1 > C[i, j]
C[i, j] = C[i, k] + C[k, j] + 1
J[i, j] = k

k = k – 1
PRINT-ACTIVITIES(C, J, 0, n + 1)

𝐶 𝑖, 𝑗 0 1 2 3 4 5
0 0 0
1 - 0 0
2 - - 0 0
3 - - - 0 0
4 - - - - 0 0
5 - - - - - 0

Activity Selection – A DP Solution (6/6)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 54

Step 4: Trace arrays 𝐶 and 𝐽 to find an optimal set of mutually compatible jobs.
• Example: PRINT-ACTIVITIES(C, J, i, j)

if C[i, j] > 0
k = J[i, j]
PRINT-ACTIVITIES(C, J, i, k)
Print(k)
PRINT-ACTIVITIES(C, J, k, j)

𝐶 𝑖, 𝑗 0 1 2 3 4 5
0 0 0 0 1 1 2
1 - 0 0 0 0 1
2 - - 0 0 0 1
3 - - - 0 0 0
4 - - - - 0 0
5 - - - - - 0

• Running time: 𝑂(𝑛)
• Overall running time

(including sorting): 𝑂(𝑛#)

𝑖 1 2 3 4
𝑠! 1 1 3 4
𝑓! 3 4 5 5

Thank you!
Questions?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 55

