
Algorithm Analysis and Data Structures
CSCI 7432 - Fall 2022

Single-Source Shortest Paths
Dr. Yao XU

Assistant Professor

Department of Computer Science
Georgia Southern University

Email: yxu@georgiasouthern.edu

Table of Contents

1. The Single-Source Shortest Path (SSSP) Problem (24)
• Outline of SSSP Algorithms

2. Dijkstra’s Algorithm for SSSP (24.3)
• Dijkstra’s Algorithm
• Correctness of Dijkstra’s Algorithm

3. Bellman-Ford Algorithm for SSSP (24.1)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 2

The Single-Source Shortest
Path problem (SSSP)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 3

Shortest Path

• Recall: In BFS, 𝑣. 𝑑 = smallest # of edges from 𝑠 to 𝑣
• Example:

• If the edges have weights, then a shortest path is a shortest weighted path
= sum of weights of all edges on the path.
• Define 𝛿(𝑠, 𝑣) as the weight of a shortest path from 𝑠 to 𝑣.
• If there is no path from 𝑠 to 𝑣, then we set 𝛿 𝑠, 𝑣 = ∞.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 4

Shortest Path Problems
Input: A digraph 𝐺 = 𝑉, 𝐸 , with weight 𝑤(𝑢, 𝑣) on each edge 𝑢, 𝑣 ∈ 𝐸.
Variants of shortest path problems:
• Single-source shortest-paths problem:
• Additional input: A source vertex 𝑠 ∈ 𝑉.
• Output: A shortest path from 𝑠 to each vertex 𝑣 ∈ 𝑉.

• Single-destination shortest-paths problem:
• Additional input: A destination vertex 𝑡 ∈ 𝑉.
• Output: A shortest path to 𝑡 from each vertex 𝑣 ∈ 𝑉.

• Single-pair shortest-path problem:
• Additional input: A starting vertex 𝑢 and an ending vertex 𝑣.
• Output: A shortest path from 𝑢 to 𝑣.

• All-pairs shortest-paths problem:
• Output: A shortest path from 𝑢 to 𝑣 for every pair of vertices 𝑢 and 𝑣.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 5

Single-Source Shortest Paths (SSSP)
• Edge weights can be negative.
• 𝛿 𝑠, 𝑣 = the shortest path weight from 𝑠 to 𝑣
• 𝛿 𝑠, 𝑣 = ∞ if 𝑣 is not reachable from 𝑠 (no 𝑠 ↝ 𝑣 path).
• 𝛿 𝑠, 𝑣 = −∞ if there is a negative weight cycle on some 𝑠 ↝ 𝑣 path;
• Example: (𝛿 values appear inside the vertices)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 6

Shortest Path Properties

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 7

• Optimal substructure (Lemma 24.1 in textbook):
Let 𝑝 = 𝑣!, 𝑣", ⋯ , 𝑣#$", 𝑣# be a shortest path from 𝑣! to 𝑣#. Then, the subpath
𝑣%, 𝑣%&", ⋯ , 𝑣' of 𝑝 with 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 must be a shortest path from 𝑣% to 𝑣'.

• Triangle inequality (Lemma 24.10 in textbook):
For all (𝑢, 𝑣) ∈ 𝐸, we have 𝛿 𝑠, 𝑣 ≤ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 .

• Example:

The Single-Source Shortest
Path problem (SSSP)

Outline of SSSP Algorithms

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 8

Outline of SSSP Algorithms

Each vertex 𝑣 ∈ 𝑉 will have two attributes:
• 𝑣. 𝑑: Initially = ∞, always ≥ 𝛿 𝑠, 𝑣 , and finally = 𝛿 𝑠, 𝑣
• 𝑣. 𝜋 = predecessor of 𝑣 on a shortest path from 𝑠
All SSSP algorithms
1. Start with INITIALIZE-SINGLE-SOURCE:

2. Then relax edges to update 𝑣. 𝑑 values.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 9

Relaxing An Edge

• In a SSSP algorithm, the 𝑣. 𝑑 value is only updated by RELAX:

• Examples:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 10

Shorted-Paths Tree of SSSP

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 11

• Predecessor-subgraph property (Lemma 24.17 in textbook):
The shortest paths from 𝑠 to all 𝑣 ∈ 𝑉 that are reachable from 𝑠 form a
shorted-paths tree rooted at 𝑠.
• Example:

Algorithms for SSSP

• Dijkstra’s algorithm
• Only works for graphs with NO negative-weight edges.
• Uses greedy approach

• Bellman-Ford algorithm
• Allows negative-weight edges.
• Output:
• If the graph contains a negative-weight cycle, return FALSE;
• Otherwise, return TRUE and compute all the 𝛿 𝑠, 𝑣 values and the

shorted-paths tree.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 12

Dijkstra’s Algorithm for SSSP

Dijkstra’s Algorithm

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 13

Outline of Dijkstra’s Algorithm

• For graphs with NO negative-weight edges.
• Dijkstra’s algorithm is a greedy algorithm.
• Greedy choice: Find the vertex that is the closest to 𝑠.

• Outline of Dijkstra’s algorithm:

• Q: How to implement lines 4 and 6 in the for loop?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 14

DIJKSTRA(𝐺,𝑤, 𝑠)
1 INITIALIZE-SINGLE-SOURCE(𝐺, 𝑠)
2 𝑆 = ∅
3 for i = 1 to n // n = |𝑉|
4 find vertex 𝑢 in 𝑉 − 𝑆 that is the closest to s (i’th closest to s in 𝑉)
5 𝑆 = 𝑆 ∪ {𝑢}
6 update 𝑑 values using RELAX

Finding the i’th Closest Vertex

Claim: Let 𝑣 ∈ 𝑉 be the 𝑖’th closest vertex to 𝑠 and 𝑃 be a shortest path from
𝑠 to 𝑣. If 𝑆 contains the 𝑖 − 1 closest vertices to 𝑠, then all intermediate
vertices in 𝑃 are in 𝑆.
Proof. (by contradiction)
• Suppose there is an intermediate vertex 𝑢 in 𝑃 and 𝑢 ∉ 𝑆.
• 𝑢 is closer to 𝑠 than 𝑣. (Due to no negative-weight edges)
• ⇒ 𝑣 is not the 𝑖’th closest vertex to 𝑠 (since 𝑆 already contains the 𝑖 − 1

closest vertices to 𝑠) ⎯ A contradiction
☐

Claim ⇒ If 𝑣 is the 𝑖’th closest vertex to 𝑠, then we must have
𝛿 𝑠, 𝑣 = 𝛿 𝑠, 𝑢 + 𝑤(𝑢, 𝑣) for some 𝑢 ∈ 𝑆.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 15

Dijkstra’s Algorithm

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 16

At each iteration 𝑖 of the while loop,
• 𝑆 contains the 𝑖 − 1 closest vertices to 𝑠.
• 𝑥. 𝑑 = 𝛿 𝑠, 𝑥 for every 𝑥 ∈ 𝑆.
• 𝑄 = 𝑉 − 𝑆 and vertex 𝑢 with min 𝑑 value in 𝑄 will

be the 𝑖’th closest vertex to 𝑠
• Every edge (𝑢, 𝑣) is then relaxed to update 𝑣. 𝑑 for

each 𝑣 ∈ 𝐴𝑑𝑗[𝑢].
Example:

Dijkstra’s Algorithm Example (1/3)
Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 17

𝑆 = ∅, 𝑄 = {𝑠, 𝑡, 𝑥, 𝑦, 𝑧}

𝑆 = 𝑠 , 𝑄 = {𝑡, 𝑥, 𝑦, 𝑧}

𝑣 s t x y z

𝑣. 𝜋 NIL NIL NIL NIL NIL

𝑣. 𝑑 0 ∞ ∞ ∞ ∞

𝑣 s t x y z

𝑣. 𝜋 NIL s NIL s NIL

𝑣. 𝑑 0 10 ∞ 5 ∞

Dijkstra’s Algorithm Example (2/3)
Example (cont’d):

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 18

𝑆 = {𝑠, 𝑦}, 𝑄 = {𝑡, 𝑥, 𝑧}

𝑆 = {𝑠, 𝑦, 𝑧}, 𝑄 = {𝑡, 𝑥}

𝑣 s t x y z

𝑣. 𝜋 NIL y y s y

𝑣. 𝑑 0 8 14 5 7

𝑣 s t x y z

𝑣. 𝜋 NIL y z s y

𝑣. 𝑑 0 8 13 5 7

Dijkstra’s Algorithm Example (3/3)
Example (cont’d):

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 19

𝑆 = 𝑠, 𝑦, 𝑧, 𝑡 , 𝑄 = {𝑥}

𝑆 = {𝑠, 𝑦, 𝑧, 𝑡, 𝑥}, 𝑄 = ∅

𝑣 s t x y z

𝑣. 𝜋 NIL y z s y

𝑣. 𝑑 0 8 9 5 7

𝑣 s t x y z

𝑣. 𝜋 NIL y z s y

𝑣. 𝑑 0 8 9 5 7

Running Time of Dijkstra’s Algorithm

• Assume 𝐺 is represented by adjacency lists.
• 𝑄 can be implemented as a min-heap,
• Line 3: BUILD-MIN-HEAP takes 𝑂(𝑛) time
• Line 5: EXTRACT-MIN takes 𝑂(log 𝑛) time
• Add line 4 DECREASE-KEY to RELAX: takes
𝑂(log 𝑛) time.

• Running time of DIJKSTRA:
𝑇 𝑛 = 𝑂 𝑛 + 𝑂 ∑, log 𝑛 + deg(𝑣) K log 𝑛

= 𝑂 (𝑛 +𝑚) log 𝑛
= 𝑂(𝑚 log 𝑛)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 20

4 DECREASE-KEY(Q, v, v.d)

Dijkstra’s Algorithm for SSSP

Correctness of Dijkstra’s Algorithm

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 21

Correctness of Dijkstra’s Algorithm (1/3)

Theorem: For a digraph G with no negative-weight
edges and a source vertex 𝑠, Algorithm DIJKSTRA
terminates with 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for every 𝑣 ∈ 𝑉.
Proof. Use loop invariant.
LI: At the beginning of each iteration of the while
loop, 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for every 𝑣 ∈ 𝑆.
• Initialization: 𝑆 = ∅, LI is trivially true.
• Maintenance: If LI is true for some iteration and 𝑢

is the vertex selected in line 5, then LI is still true at
the end of this iteration. (See next slide)
• Termination: At the end of the while loop, 𝑄 = ∅,

so 𝑆 = 𝑉. LI implies that 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for every
𝑣 ∈ 𝑉.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 22

Correctness of Dijkstra’s Algorithm (2/3)
Proof. (cont’d)
LI: At the beginning of each iteration of the while loop,
𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for every 𝑣 ∈ 𝑆.
Maintenance:
• Suppose that 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for every 𝑣 ∈ 𝑆 at the

beginning of some iteration.
• Let 𝑢 be the vertex selected in line 5 in this iteration.
• Need to show that 𝑢. 𝑑 = 𝛿 𝑠, 𝑢 at the end of this

iteration. (Only 𝑢’s 𝑑 value might be changed by the
RELAX procedure.)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 23

Consider a shortest path from
𝑠 to 𝑢, through edge 𝑥, 𝑦 ,
where 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑄.

Correctness of Dijkstra’s Algorithm (3/3)
Proof. (cont’d)
Need to show: 𝑢. 𝑑 = 𝛿 𝑠, 𝑢
Consider a shortest path from
𝑠 to 𝑢, through 𝑥, 𝑦 .

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 24

(1) 𝑥 ∈ 𝑆 ⇒ 𝑥. 𝑑 = 𝛿 𝑠, 𝑥
(2) 𝑦. 𝑑 ≥ 𝛿 𝑠, 𝑦 and 𝑢. 𝑑 ≥ 𝛿 𝑠, 𝑢
(3) (𝑥, 𝑦) was relaxed when 𝑥 was added to 𝑆:

𝑦. 𝑑 ≤ 𝑥. 𝑑 + 𝑤 𝑥, 𝑦 = 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 = 𝛿 𝑠, 𝑦
(4) 𝛿 𝑠, 𝑦 ≤ 𝛿 𝑠, 𝑢 as 𝑦 is on the shortest path from 𝑠 to 𝑢
(5) (2)-(4) ⇒ 𝑦. 𝑑 = 𝛿 𝑠, 𝑦 ≤ 𝛿 𝑠, 𝑢 ≤ 𝑢. 𝑑
(6) 𝑢. 𝑑 ≤ 𝑦. 𝑑 as 𝑢 = EXTRACT-MIN(Q)
(7) (5)&(6) ⇒ 𝑢. 𝑑 = 𝑦. 𝑑 = 𝛿 𝑠, 𝑦 = 𝛿 𝑠, 𝑢 ☐

When There are Negative-Weight Edges

• The following example shows that Dijkstra’s
algorithm may fail when the input graph has
negative-weight edges.
• Example: Source vertex is 𝑠.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 25

s x

y z

3

15
-4 𝑣 𝑠 𝑥 𝑦 𝑧

𝑣. 𝜋
𝑣. 𝑑 0 ∞ ∞ ∞

Before the while loop:
𝑆 = ∅, 𝑄 = {𝑠, 𝑥, 𝑦, 𝑧}

Bellman-Ford Algorithm for SSSP

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 26

Bellman-Ford Algorithm

• Allows negative-weight edges.
• Returns FALSE if the graph contains a negative-weight cycle;
• Otherwise, returns TRUE and computes all the 𝛿 𝑠, 𝑣 values and the

shorted-paths tree.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 27

• The nested for loops (in lines 2-4) relax
all edges 𝑛 − 1 times.
• Running time of BELLMAN-FORD:

𝑇 𝑛 = 𝑂 𝑛 + 𝑂 𝑛𝑚 + 𝑂(𝑚)
⇒ 𝑇(𝑛) ∈ 𝑂(𝑛𝑚)

Bellman-Ford Algorithm Example 1 (1/2)

Example 1: 𝐺 has no negative cycle. Source is 𝑠.
Edge order: 𝑥, 𝑧 , 𝑦, 𝑥 , 𝑠, 𝑥 , 𝑠, 𝑦

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 28

𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL NIL NIL NIL
𝑣. 𝑑 0 ∞ ∞ ∞

0 ∞

∞ ∞

3

15 -4

𝑠 𝑥

𝑦 𝑧

𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL 𝑠 𝑠 NIL
𝑣. 𝑑 0 3 5 ∞

0 3

5 ∞

3

15 -4

𝑠 𝑥

𝑦 𝑧

1st iteration:

Bellman-Ford Algorithm Example 1 (2/2)

Example 1: Edge order: 𝑥, 𝑧 , 𝑦, 𝑥 , 𝑠, 𝑥 , 𝑠, 𝑦

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 29

𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL 𝑦 𝑠 𝑥
𝑣. 𝑑 0 1 5 4

0 1

5 4

3

15 -4

𝑠 𝑥

𝑦 𝑧

𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL 𝑦 𝑠 𝑥
𝑣. 𝑑 0 1 5 2

0 1

5 2

3

15 -4

𝑠 𝑥

𝑦 𝑧

3rd iteration:

2nd iteration:

Correctness of Bellman-Ford Algorithm (1/2)

Lemma 1: Suppose that 𝐺 has no negative-weight cycle reachable from
source 𝑠. Then after 𝑛 − 1 iterations, 𝑣. 𝑑 = 𝛿(𝑠, 𝑣) for all 𝑣 ∈ 𝑉.
Proof. Consider any vertex 𝑣 ∈ 𝑉 and let path 𝑝 = 𝑣!, 𝑣", ⋯ , 𝑣#$", 𝑣# be the
shortest path from 𝑠 to 𝑣, where 𝑣! = 𝑠 and 𝑣# = 𝑣.
We prove by induction on 𝑖 that after iteration 𝑖 ≥ 0, 𝑣%. 𝑑 = 𝛿(𝑠, 𝑣%).
• Base case: 𝑖 = 0 is trivial.
• Inductive step: IH: 𝑣%. 𝑑 = 𝛿(𝑠, 𝑣%) after iteration 𝑖, for 0 ≤ 𝑖 ≤ 𝑘 − 1.

Need to show: 𝑣%&". 𝑑 = 𝛿(𝑠, 𝑣%&") after iteration 𝑖 + 1.
• When (𝑣%, 𝑣%&") is relaxed during iteration 𝑖 + 1, we have
𝑣%&". 𝑑 ≤ 𝑣%. 𝑑 + 𝑤 𝑣%, 𝑣%&"

= 𝛿 𝑠, 𝑣% +𝑤 𝑣%, 𝑣%&" = 𝛿(𝑠, 𝑣%&")
• 𝑣%&". 𝑑 ≥ 𝛿(𝑠, 𝑣%&") ⇒ 𝑣%&". 𝑑 = 𝛿 𝑠, 𝑣%&" . ☐

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 30

Correctness of Bellman-Ford Algorithm (2/2)

Lemma 2: If 𝐺 has a negative-weight cycle reachable from source 𝑠, then the
algorithm returns FALSE.
Proof. Suppose there is a negative-weight cycle 𝑐 = 𝑣!, 𝑣", ⋯ , 𝑣# , with 𝑣! = 𝑣#.
The weight of 𝑐 is 𝑤 𝑐 = ∑%1"# 𝑤(𝑣%$", 𝑣%) < 0.
• Suppose (for contradiction) that the algorithm returns TRUE. Then,

𝑣%. 𝑑 ≤ 𝑣%$". 𝑑 + 𝑤 𝑣%$", 𝑣% for all 𝑖 = 1, 2,⋯ , 𝑘.
• Sum around cycle 𝑐:

∑%1"# 𝑣%. 𝑑 ≤ ∑%1"# 𝑣%$". 𝑑 + 𝑤 𝑣%$", 𝑣%
= ∑%1"# 𝑣%$". 𝑑 + ∑%1"# 𝑤 𝑣%$", 𝑣% ,

• but ∑%1"# 𝑣%. 𝑑 = ∑%1"# 𝑣%$". 𝑑 as 𝑣! = 𝑣#
• This implies: 𝑤(𝑐) ≥ 0 – contradicts 𝑤 𝑐 < 0. ☐

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 31

Bellman-Ford Algorithm Example 2 (1/2)

Example 2: 𝐺 has negative cycle. Source is 𝑠.
Edge order: 𝑧, 𝑦 , 𝑥, 𝑧 , 𝑦, 𝑥 , 𝑠, 𝑥 , 𝑠, 𝑦

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 32

0 ∞

∞ ∞

3

15 -4

2

𝑠 𝑥

𝑦 𝑧

𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL NIL NIL NIL
𝑣. 𝑑 0 ∞ ∞ ∞

0 3

5 ∞

3

15 -4

2

𝑠 𝑥

𝑦 𝑧

𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL 𝑠 𝑠 NIL
𝑣. 𝑑 0 3 5 ∞

1st iteration:

Bellman-Ford Algorithm Example 2 (2/2)

Example 2: Edge order: 𝑧, 𝑦 , 𝑥, 𝑧 , 𝑦, 𝑥 , 𝑠, 𝑥 , 𝑠, 𝑦

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 33

0 1

5 4

3

15 -4

2

𝑠 𝑥

𝑦 𝑧

𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL 𝑦 𝑠 𝑥
𝑣. 𝑑 0 1 5 4

0 1

5 2

3

15 -4

2

𝑠 𝑥

𝑦 𝑧

𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL 𝑦 𝑠 𝑥
𝑣. 𝑑 0 1 5 2

3rd iteration:

2nd iteration:

Thank you!
Questions?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 34

