
Algorithm Analysis and Data Structures
CSCI 7432 - Fall 2022

Multithreaded Algorithms
Dr. Yao XU

Assistant Professor

Department of Computer Science
Georgia Southern University

Email: yxu@georgiasouthern.edu

Table of Contents

1. Dynamic Multithreading (27.1)
2. Analyzing Multithreaded Algorithms (27.1)
3. Multithreaded Merge Sort (27.3)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 2

Dynamic Multithreading

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 3

Parallel Algorithms

• All algorithms we’ve discussed are serial algorithms
• Run on a uniprocessor computer
• Execute one instruction at a time

• We will talk about parallel algorithms
• Run on a multiprocessor computer
• Permits multiple instructions to execute concurrently
• Explore an elegant model: dynamic multithreaded algorithms

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 4

Static Threading v.s. Dynamic Multithreading

• Static threading
• Provides the programmer with an abstraction of virtual processors that

are managed explicitly.
• The programmer must specify in advance how many processors to use

at each point.
• Dynamic multithreading
• Programmers specify opportunities for parallelism;
• A concurrency platform manages the decisions of mapping these

opportunities to actual static threads. – Scheduling problem (Will not
be discussed)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 5

Dynamic Multithreading

• Functionality of dynamic-multithreading supports two features:
• Nested parallelism - allows a subroutine to be “spawned” to allow the

caller to proceed while the spawned subroutine is computing its result.
• Parallel loops - like an ordinary loop, except that the iterations of the

loop can execute concurrently.
• Three “concurrency” keywords in pseudocode:
• parallel: add to loop to indicate iterations can be executed in parallel.
• spawn: create a parallel process and keep executing the current one.
• sync: wait until all active parallel threads finish.

• Serialization of a multithreaded algorithm: deleting these keywords, we
get the serial algorithm for the same problem.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 6

Example: Parallel Fibonacci (1/2)

• Recall: Fibonacci numbers
• 𝐹! = 0, 𝐹" = 1, 𝐹# = 𝐹#$" + 𝐹#$% for 𝑖 ≥ 2

• A recursive, serial algorithm to compute 𝐹&:
• Time complexity: 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + Θ(1)
• 𝑇 𝑛 ∈ Θ(𝐹&)*, 𝐹& grows exponentially in 𝑛
• 𝑇 𝑛 ∈ Θ(𝜙&), where 𝜙 = (1 + 5)/2.*

• Observation: The recursive calls operate independently of each other.
• The two recursive calls can run in parallel.

• Q: What improvement can we get?

*See p.775-776 of the textbook for proof of the time complexity.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 7

Example: Parallel Fibonacci (2/2)

• Augment pseudocode to indicate parallelism by adding the concurrency
keywords spawn and sync.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 8

• Notice that without the
concurrency keywords,
P-FIB(n) is identical to
the algorithm FIB(n).
• Nested parallelism:
• spawn precedes a procedure call, as in line 3.
• The child computes P-FIB(n - 1)
• The parent computes P-FIB(n - 2) in parallel with the child
• sync indicates parent must wait for all children to complete before

continuing

Analyzing Multithreaded Algorithms

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 9

A Model for Multithreaded Execution

• 𝑣 ∈ 𝑉 represents a strand: a sequence of
non-parallel instructions.
• 𝑒 ∈ 𝐸 represents dependencies between

two strands: (𝑢, 𝑣) ∈ 𝐸 means 𝑢 must
execute before 𝑣.
• If there is a directed path from 𝑢 to 𝑣,

then they are (logically) in series;
otherwise, they are (logically) in parallel.

Example: Computation DAG of P-FIB(4).
• Black nodes: lines 1-3; Grey nodes: line 4;

White nodes: line 6

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 10

A multithreaded computation can be modeled as a
computation DAG 𝐺 = (𝑉, 𝐸).

Performance Measures (1/2)

• Denote 𝑇' = running time of an algorithm on 𝑃 processors.
• Two metrics to measure time complexity of a multithreaded algorithm:

• Work: 𝑇! = total time to execute the entire computation on one processor.
• Work law: 𝑇" ≥ 𝑇!/𝑃

• Span: 𝑇# = longest time to execute the strands along any path in the DAG.
• Span law: 𝑇" ≥ 𝑇#

• Example: P-FIB(4)
• Assuming 1 unit of work per strand.
• Work: 𝑇! = 17
• Span: 𝑇# = 8

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 11

Performance Measures (2/2)

• Speedup of a computation on 𝑃 processors: 𝑇"/𝑇' (≤ 𝑃)
• Linear speedup: 𝑇"/𝑇' ∈ Θ(𝑃)
• Perfect linear speedup: 𝑇"/𝑇' = 𝑃

• The parallelism of a multithreaded computation: 𝑇"/𝑇(
• Ratio: average amount of work that can be performed for each strand

along the longest path in the computation DAG.
• Upper Bound: maximum possible speedup that can be achieved on any

number of processors.
• Limit: limit on the possibility of attaining perfect linear speedup.

• Example: P-FIB(4)
• The parallelism is)!

)"
= "*

+
(achieving ≫ 2 speedup is impossible)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 12

Analysis of P-FIB(n)
• Analyzing work: same as FIB(n)

𝑇" 𝑛 = 𝑇" 𝑛 − 1 + 𝑇" 𝑛 − 2 + Θ(1),
⇒ 𝑇" 𝑛 ∈ Θ 𝜙& .

• Analyzing span:
𝑇(𝑛 = max 𝑇(𝑛 − 1 , 𝑇(𝑛 − 2 + Θ(1),

⇒ 𝑇(𝑛 ∈ Θ(𝑛).

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 13

• The parallelism of P-FIB(n): 𝑇"/𝑇(∈ Θ 𝜙&/𝑛 .
• It grows dramatically as 𝑛 gets large.
• There is potential for near perfect linear speedup.

Parallel Loops Example (1/4)

Multiply an 𝑛×𝑛 matrix 𝐴 = (𝑎#,) by an 𝑛-vector 𝑥 = (𝑥,).
• Result is an 𝑛-vector 𝑦 = (𝑦#), where 𝑦# = ∑,-"& 𝑎#,𝑥,, for 𝑖 = 1, 2,⋯ , 𝑛.

Example: 𝐴 =
1 2 1 3
0
2
1

3
1
0

2
1
2

1
0
1

and 𝑥 =
2
1
0
2

⇒ 𝑦 = 𝐴𝑥 =
10
5
5
4

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 14

• A parallel algorithm
MAT-VEC(A, x):

Parallel Loops Example (2/4)

• A compiler can implement a parallel for loop via divide-and-conquer.
• Lines 5-7 can be implemented with MAT-VEC-MAIN-LOOP(A, x, y, n, 1, n).

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 15

• It is not realistic to think that all 𝑛 iterations in a loop can be spawned
simultaneously with no extra work.

Parallel Loops Example (3/4)

• Example: A DAG representing the
computation of MAT-VEC-MAIN-
LOOP(A, x, y, 8, 1, 8).
• Black nodes: lines 1-5
• Grey nodes: line 6
• White nodes: line 7
• Each leaf node corresponds to

one iteration of the loop.
• To parallelize a for loop with 𝑛

iterations, the extra work of
recursive spawning is:

𝑇./01& 𝑛 ∈ Θ(log 𝑛).

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 16

Parallel Loops Example (4/4)

• Analyzing work: 𝑇" 𝑛 ∈ Θ(𝑛%)
• Analyzing span: 𝑇(𝑛 = 𝑇(" 𝑛 + 𝑇(% 𝑛 + Θ(1),
• parallel for loop in lines 3-4:

𝑇(" 𝑛 = 𝑇./01& 𝑛 + Θ(1) ∈ Θ(log 𝑛),
• parallel for loop in lines 5-7:

𝑇(% 𝑛 = 𝑇./01& 𝑛 + Θ(𝑛) ∈ Θ(𝑛),

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 17

where 𝑇./01& 𝑛 ∈ Θ(log 𝑛).
⇒ 𝑇(𝑛 ∈ Θ(𝑛).
• The parallelism is: 𝑇"/𝑇(∈ Θ 𝑛
Q: Can we improve by making the inner for loop (lines 6-7) parallel as well?
A: NO.

Race Conditions

• An algorithm is deterministic if it always does the same thing on the same
input; it is nondeterministic if the result might vary from run to run.
• A multithreaded algorithm that is intended to be deterministic fails to be

when it contains a “determinacy race.”
• A determinacy race occurs when two logically parallel instructions access

the same memory location and at least one of them performs a write.
• Example: RACE-EXAMPLE should always print 2, but it could print 1 instead.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 18

To cope with races, ensure that
• strands that operate in parallel are independent,
• including all iterations in a parallel loop.

Multithreaded Merge Sort

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 19

Parallelizing Merge Sort

• Work: 𝑇" 𝑛 = 2𝑇" 𝑛/2 + 𝑐𝑛
⇒ 𝑇" 𝑛 ∈ Θ(𝑛 log 𝑛).

• Span: 𝑇(𝑛 = 𝑇(𝑛/2 + 𝑐𝑛
⇒ 𝑇(𝑛 ∈ Θ(𝑛).

• Parallelism: 𝑇"/𝑇(∈ Θ log 𝑛

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 20

Serial Merge Sort: A parallel Merge Sort:

• The serial MERGE procedure seems
to be inherently serial.

• How to make it parallel?

The Merge Procedure

• Input: Array 𝐴 with indices 𝑝, 𝑞, 𝑟, s.t.
• 𝑝 ≤ 𝑞 < 𝑟
• 𝐴[𝑝. . 𝑞] and 𝐴[𝑞 + 1. . 𝑟] are sorted

• Output: 𝐴[𝑝. . 𝑟] is sorted.
Example:
• 𝐴[𝑝. . 𝑟] = 1, 4, 5, 7, 9, 0, 2, 3, 6, 8
• 𝑝 = 1, 𝑞 = 5, 𝑟 = 10. 𝑛! = 5, 𝑛$ = 5.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 21

1 2 3 4 5 6

L 1 4 5 7 9 ∞

1 2 3 4 5 6

R 0 2 3 6 8 ∞

1 2 3 4 5 6 7 8 9 10

A

A Divide-and-Conquer Merge (1/2)

• There is a divide-and-conquer
strategy to make it parallel.
• Idea: Break the two sorted

lists into four, two merged to
form the head and two
merged to form the tail.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 22

1. Choose the longer list to be the first one 𝑇[𝑝!. . 𝑟!].
2. Find the median 𝑥 = 𝑇[𝑞!], where 𝑞! = (𝑝! + 𝑟!)/2 .
3. Break the other list into two with binary search taking 𝑥 as the key.
4. Recursively merge 𝑇[𝑝!. . 𝑞! − 1] and 𝑇[𝑝$. . 𝑞$ − 1] to form the head of 𝐴, and

merge 𝑇[𝑞! + 1. . 𝑟!] and 𝑇[𝑞$. . 𝑟$] to form the tail of 𝐴.
5. Place 𝑥 between them.

A Divide-and-Conquer Merge (2/2)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 23

1. Choose the longer list to be the first one 𝑇[𝑝!. . 𝑟!].
2. Find the median 𝑥 = 𝑇[𝑞!], where 𝑞! = (𝑝! + 𝑟!)/2 .
3. Break the other list into two with binary search taking 𝑥 as the key.
4. Recursively merge 𝑇[𝑝!. . 𝑞! − 1] and 𝑇[𝑝$. . 𝑞$ − 1] to form the head of 𝐴, and

merge 𝑇[𝑞! + 1. . 𝑟!] and 𝑇[𝑞$. . 𝑟$] to form the tail of 𝐴.
5. Place 𝑥 between them.
Example: 𝑇[𝑝!. . 𝑟!] = 1, 4, 5, 7, 9 , 𝑇[𝑝$. . 𝑟$] = 0, 2, 3, 6, 8

1 2 3 4 5 ⋯ 15 16 17 18 19

T 1 4 5 7 9 ⋯ 0 2 3 6 8

A 0 1 2 3 4 5 6 7 8 9

recursively
merge

recursively
merge

The Parallel Merge Procedure

BINARY-SEARCH(x, T, p, r)
returns the position of 𝑥 if
it were to be inserted into
the list 𝑇[𝑝. . 𝑟].
• It is a serial procedure.
• Running time: 𝑂(log 𝑛),

where 𝑛 = 𝑟 − 𝑝 + 1.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 24

Parallel Merge:

The Parallel Merge Procedure

Example: 𝑥 = 5

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 25

Parallel Merge:

1 2 3 4 5

0 2 3 6 8

Example of Parallel Merge

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 26

1 2 3 4 5 ⋯ 15 16 17 18 19

T 1 4 5 7 9 ⋯ 0 2 3 6 8

1 2 3 4 5 6 7 8 9 10

A 5

𝑝! 𝑟! 𝑝" 𝑟" 𝑝#
1 5 15 19 1

𝑞! 𝑇(𝑞!) 𝑞" 𝑞#
3 5 18 6

Analyzing P-MERGE (1/2)

• min 𝑙#, 𝑙$ ≥ #
$
max 𝑛#, 𝑛$ ≥ #

$
%
$
= #

&
𝑛

• Analyzing work: 𝑃𝑀# 𝑛 ∈ Ω(𝑛) (Why?)
Upper bound: 𝑃𝑀# 𝑛
≤ 𝑃𝑀# 𝛼𝑛 + 𝑃𝑀# 1 − 𝛼 𝑛 + 𝑂(log 𝑛),

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 27

* See p.802 of the textbook for how 𝑂(𝑛) is obtained.

Together, 𝑃𝑀# 𝑛 ∈ Θ(𝑛).

where #
&
≤ 𝛼 ≤ '

&
. ⇒ 𝑇# 𝑛 ∈ 𝑂(𝑛)*

Let 𝑙# and 𝑙$ be the input size of the two
recursive P-MERGE calls, respectively.

Analyzing P-MERGE (1/2)

min 𝑙!, 𝑙$ ≥ !
.𝑛 and max 𝑙!, 𝑙$ ≤ /

.𝑛.

• Analyzing work: 𝑃𝑀! 𝑛 ∈ Θ(𝑛)
• Analyzing span:

Worst case: 𝑃𝑀(𝑛 = 𝑃𝑀(
'%
&

+ 𝑐 log 𝑛

Best case: 𝑃𝑀(𝑛 = 𝑃𝑀(
%
&
+ 𝑐 log 𝑛

Both cases solve to 𝑃𝑀# 𝑛 ∈ Θ log$𝑛 .*

• Parallelism: 𝑃𝑀!/𝑃𝑀# ∈ Θ 𝑛/log$𝑛

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 28

* By Case 2 of the Master Theorem.

Analyzing P-MERGE-SORT
• Analyzing work:

𝑃𝑀𝑆! 𝑛 = 2𝑃𝑀𝑆! 𝑛/2 + Θ(𝑛)
⇒ 𝑃𝑀𝑆! 𝑛 ∈ Θ(𝑛 log 𝑛)

• Analyzing span:
𝑃𝑀𝑆# 𝑛 = 𝑃𝑀𝑆# 𝑛/2 + Θ log$𝑛

⇒ 𝑃𝑀𝑆# 𝑛 ∈ Θ(log/𝑛)*

• Parallelism: 𝑃𝑀𝑆!/𝑃𝑀𝑆# ∈ Θ 𝑛/log$𝑛 .
• Much better than Θ log 𝑛 , the parallelism

of MERGE-SORT’ with serial Merge.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 29

Note: For small 𝑛, we may coarsen the
parallelism by using an ordinary serial
sort instead.

* By Case 2 of the Master Theorem.

Thank you!
Questions?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 30

