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Heaps
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Heap Data Structure (1/2)

A (binary) heap is an array 𝐴[1. . 𝑛] that we can view as a binary tree with 
keys stored at its nodes (one key per node) as follow:
• Root of the tree is 𝐴[1]
• Parent of 𝐴[𝑖] is 𝐴[ 𝑖/2 ]
• Left child of 𝐴[𝑖] is 𝐴[2𝑖]
• Right child of 𝐴[𝑖] is 𝐴[2𝑖 + 1]
Two types of heaps: Max-heap, Min-heap
Example (of a max-heap):
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0 1 2 3 4 5 6 7 8 9 10

16 14 10 8 7 9 3 2 4 1

Three procedures:
• PARENT(i) returns 𝑖/2
• LEFT(i) returns 2𝑖
• RIGHT(i) returns 2𝑖 + 1



Heap Data Structure (2/2)
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The binary tree representation of a heap should satisfy:
1. The shape property: It is a nearly complete binary tree. – All non-leaf 

nodes have two children except for possibly some rightmost nodes.
2. The heap property:
• For max-heap: The key at each node ≥ the key at its child
• For min-heap: The key at each node ≤ the key at its child



Height of a Heap

• The height of a node 𝒗 is the number of edges on the longest downward 
path from 𝑣 to a leaf.
• The height of the heap (viewing as a tree) is the height of its root.
• Q: What is the height of a heap with 𝑛 elements?
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• #nodes in a complete binary tree 
with height ℎ is
1 + 2 + 2! +⋯+ 2" = 2"#$ − 1
• ⇒ The height of a heap with 𝑛

elements is:
log! 𝑛 + 1 − 1 ≤ ℎ ≤ log! 𝑛

• Ans: ℎ = log! 𝑛 ∈ Θ(log 𝑛)



Heaps

Maintaining the Heap Property
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Max-Heap Property

In the binary tree representation of a max-heap 𝐴[1. . 𝑛],
• For all nodes 𝑖, excluding the root, 𝐴[PARENT(𝑖)] ≥ 𝐴[𝑖].
➔ The largest element is at root 𝐴[1]
➔ The nodes in any subtree also form a max-heap
Example:
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0 1 2 3 4 5 6 7 8 9 10

16 14 10 8 7 9 3 2 4 1

Q: How to convert an arbitrary array to a 
max-heap? 



Maintaining the Heap Property

MAX-HEAPIFY converts an almost-max-heap into a max-heap.
• Almost-max-heap: only the root might violate the max-heap property.
• Before MAX-HEAPIFY, the left and right subtrees of 𝐴[𝑖] are max-heaps.
• After MAX-HEAPIFY, the subtree rooted at 𝐴[𝑖] is a max-heap.
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Example: 𝑖 = 2, 𝐴 𝑖 = 4



MAX-HEAPIFY Example
(1) MAX-HEAPIFY(A, 2, 10)
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(1) 𝐴 2 = 4, 
𝐴[largest] = 14

(2) 𝐴 4 = 4, 
𝐴[largest] = 8

(3) No further changes.

(2) MAX-HEAPIFY(A, 4, 10) (3) MAX-HEAPIFY(A, 9, 10)

LEFT(i) returns 2𝑖
RIGHT(i) returns 2𝑖 + 1



MAX-HEAPIFY Time Complexity

• Running time (in terms of heap size 𝑛):
• Best case: 𝑇 𝑛 ∈ Θ(1)
• Worst case: Let ℎ be the height of the heap

𝑇 ℎ = Θ 1 + 𝑇 ℎ − 1
⇒ 𝑇 ℎ ∈ Θ ℎ ⇒ 𝑇(𝑛) ∈ Θ(log 𝑛)

Together, 𝑇(𝑛) ∈ 𝑂(log 𝑛).
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Example:

LEFT(i) returns 2𝑖
RIGHT(i) returns 2𝑖 + 1



Heaps

Building A Heap
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Building a Max-Heap

Q: How to convert an arbitrary array to a max-heap?
Idea of a bottom-up heap construction algorithm:
• Look at its binary tree representation
• Consider the leaves (the bottom-level of nodes)
➔ Each leaf is a single key
• Consider the nodes on the second-to-last level
➔ The subtrees rooted at these nodes are almost-max-heap
• Consider the nodes on the third-to-last level
➔ Now the subtrees rooted at these nodes are also almost-max-heap
⋮

• The whole tree becomes an almost-max-heap
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⇒MAX-HEAPIFY!

⇒MAX-HEAPIFY!
⇒MAX-HEAPIFY the tree’s root!

⇒ already a max-heap

Example:



Bottom-Up Heap Construction (1/3)

• Example: BUILD-MAX-HEAP(A, 10)
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BUILD-MAX-HEAP(A, n)
1  for i = 𝑛/2 downto 1
2        MAX-HEAPIFY(A, i, n)

0 1 2 3 4 5 6 7 8 9 10

4 1 3 2 16 9 10 14 8 7

(1) MAX-HEAPIFY(A, 5, 10) (2) MAX-HEAPIFY(A, 4, 10)



Bottom-Up Heap Construction (2/3)

• Example:
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BUILD-MAX-HEAP(A, n)
1  for i = 𝑛/2 downto 1
2        MAX-HEAPIFY(A, i, n)

0 1 2 3 4 5 6 7 8 9 10

4 1 3 2 16 9 10 14 8 7

(3) MAX-HEAPIFY(A, 3, 10) (4) MAX-HEAPIFY(A, 2, 10)



Bottom-Up Heap Construction (3/3)

• Example:
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BUILD-MAX-HEAP(A, n)
1  for i = 𝑛/2 downto 1
2        MAX-HEAPIFY(A, i, n)

0 1 2 3 4 5 6 7 8 9 10

4 1 3 2 16 9 10 14 8 7

(5) MAX-HEAPIFY(A, 1, 10)



Time Complexity (1/3)

• Simple upper bound: 𝑂(𝑛 log 𝑛)
• 𝑂(𝑛) calls to MAX-HEAPIFY
• MAX-HEAPIFY takes 𝑂(log 𝑛) time

• Tighter upper bound:
• In the worst case, for a node 𝐴[𝑖] at height ℎ, 

MAX-HEAPIFY(A, i, n) takes Θ ℎ time. 
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BUILD-MAX-HEAP(A, n)
1  for i = 𝑛/2 downto 1
2        MAX-HEAPIFY(A, i, n)



Time Complexity (2/3)
• Tighter upper bound:
• There are ≤ 𝑛/2 leaves 
• At height 1, we have ≤ 𝑛/4 nodes
• At height 2, we have ≤ 𝑛/8 nodes 
⋮
• At height ℎ = log! 𝑛 , we have 1 node

• Thus, 𝑇 𝑛 ≤ ∑"#$
%&'! ( (

!"#$ < 𝑂 ℎ

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 18

BUILD-MAX-HEAP(A, n)
1  for i = 𝑛/2 downto 1
2        MAX-HEAPIFY(A, i, n)



Time Complexity (2/3)

• Tighter upper bound:

𝑇 𝑛 ≤ ∑"#$
%&'! ( (

!"#$
< 𝑂 ℎ

𝑇 𝑛 ∈ 𝑂 ∑"#$
%&'! ( ("

!"#$

Due to ∑"#$) ℎ $
!

"
= $/!

$+$/! ! = 2,*

𝑇 𝑛 ∈ 𝑂 𝑛∑"#$
%&'! ( "

!"

= 𝑂(𝑛)
Therefore, 𝑇 𝑛 ∈ 𝑂(𝑛).
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BUILD-MAX-HEAP(A, n)
1  for i = 𝑛/2 downto 1
2        MAX-HEAPIFY(A, i, n)

* According to equation A.8 on p.1148 of the textbook.



Priority Queues
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Priority Queues

• A priority queue is a data structure for maintaining a dynamic set 𝑆 of 
elements, each with an associated value called a key, representing the 
priority of the element.
• Two types of priority queues: 
• max-priority queue (using max-heap)
• min-priority queue (using min-heap)

• Example: A set of jobs to be scheduled on a shared computer
• The jobs arrive and should be placed in the queue, each with a priority. 
• To perform a job, we “extract” the one in the queue with highest priority.
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Max-Priority Queue

• Max-priority queue supports the following operations:
1. HEAP-MAXIMUM(A): returns element of A with largest key.
2. HEAP-EXTRACT-MAX(A): removes and returns element of A with the 

largest key.
3. HEAP-INCREASE-KEY(A, i, k): increases A[i] to k. Assume k ≥ A[i].
4. MAX-HEAP-INSERT(A, k): inserts element with value k into A.

• Max-priority queues are implemented with max-heaps.
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Find and Remove Maximum

• Running time of HEAP-MAXIMUM: Θ(1)
• Running time of HEAP-EXTRACT-MAX: 𝑂(log 𝑛)
• Example:
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HEAP-MAXIMUM(A)
1  return A[1]

HEAP-EXTRACT-MAX(A)
1  if A.heapsize < 1
2        error “heap underflow”
3  max = A[1]
4  A[1] = A[A.heapsize]
5  A.heapsize = A.heapsize – 1 
6  MAX-HEAPIFY(A, 1, A.heapsize)
7  return max

4

3

2

5

61

(1) Swap 𝐴[1] with 𝐴[6] (2) MAX-HEAPIFY(A, 1, 5)

1 2 3 4 5 6

6 3 5 1 2 4

5

3

2

4

61



Increasing Key Value

Given set 𝑆, array index i, and a new value k, Update A[i] to k. (Assume k ≥ A[i].)
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HEAP-INCREASE-KEY(A, i, k)
1  if k < A[i]
2        error “new key is smaller than current key”
3  A[i] = k
4  while i > 1 and A[PARENT(i)] < A[i]
5        swap A[i] with A[PARENT(i)]
6        i = PARENT(i)

• Example: HEAP-INCREASE-KEY(A, 5, 9)

6

3

9

5

41

6

9

3

5

41

9

6

3

5

41

1st swap: 2nd swap: 3rd swap:

1 2 3 4 5 6

6 3 5 1 2 4

• Running time: 𝑇 𝑛 ∈ 𝑂 ℎ = O(log 𝑛)



Inserting into the Heap
• Example: MAX-HEAP-INSERT(A, 8)

• Running time: O(log 𝑛)
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MAX-HEAP-INSERT(A, k)
1  A.heapsize = A.heapsize + 1 
2  A[A.heapsize] = – ∞  
3  HEAP-INCREASE-KEY(A, A.heapsize, k)

1 2 3 4 5 6

9 6 5 1 3 4

9

6

3

5

41 −∞

(1) A[7] = – ∞ (2) HEAP-INCREASE-KEY(A, 7, 8)

9

6

3

8

41 5

9

6

3

5

41 8



Max-Priority Queue Operations

• Max-priority queue supports the following operations:
1. HEAP-MAXIMUM(A): returns element of A with largest key.
2. HEAP-EXTRACT-MAX(A): removes and returns element of A with the 

largest key.
3. HEAP-INCREASE-KEY(A, i, k): increases A[i] to k. Assume k ≥ A[i].
4. MAX-HEAP-INSERT(A, k): inserts element with value k into A.

• Time complexity:
• HEAP-MAXIMUM(A) takes Θ(1) time
• The other three take O(log 𝑛) time
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Review: Binary Search Trees
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Binary Search Trees

• Binary search trees (BST) are an important data structure for dynamic sets.
• Stored keys in a BST must satisfy the BST property:
• If 𝑦 is in 𝑥’s left subtree, then 𝑦. 𝑘𝑒𝑦 ≤ 𝑥. 𝑘𝑒𝑦.
• If 𝑦 is in 𝑥’s right subtree, then 𝑦. 𝑘𝑒𝑦 ≥ 𝑥. 𝑘𝑒𝑦.

• Example:
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Implementing A Binary Search Tree

• A BST T is represented by a linked 
data structure, with each node being 
an object.
• T.root points to the root of tree T.
• Each node contains attributes key, 

left, right, and parent (or just p).
• For an empty child or parent, the 

attribute contains the value NIL.
• Empty children are called external 

nodes, and the original nodes are 
called internal nodes.
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Example:



Height of a Binary Search Tree

• The height of a tree is the length of the longest root-to-leaf path.
• Consider a size-𝑛 binary search tree of height ℎ. 
• The height ℎ is
• Θ(𝑛) in the worst case and
• Θ(log 𝑛) in the best case (balanced)
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• Note: on the same set of nodes/keys, there 
could be many binary trees of different heights.
• Example:



Review: Binary Search Trees

Binary Tree Traversals
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Binary Tree Traversals (1/3)

• Inorder tree walk: print out the left subtree first, then the root, and finally 
the right subtree (print all the keys in sorted order)
• Example: INORDER-TREE-WALK(T.root)
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INORDER-TREE-WALK(x)
1  if x ≠ NIL
2 INORDER-TREE-WALK(x.left)
3  print x.key
4        INORDER-TREE-WALK(x.right)



Binary Tree Traversals (2/3)

• Preorder tree walk: print out the root first, then the left subtree, and 
finally the right subtree
• Example: PREORDER-TREE-WALK(T.root)
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PREORDER-TREE-WALK(x)
1  if x ≠ NIL
2 print x.key
3        PREORDER-TREE-WALK(x.left)
4        PREORDER-TREE-WALK(x.right)



Binary Tree Traversals (3/3)

• Postorder tree walk: print out the left subtree first, then the right subtree, 
and finally the root
• Example: POSTORDER-TREE-WALK(T.root)
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POSTORDER-TREE-WALK(x)
1  if x ≠ NIL
2        POSTORDER-TREE-WALK(x.left)
3        POSTORDER-TREE-WALK(x.right)
4        print x.key



Analysis of Binary Tree Traversals

• Running time:

𝑇 𝑛 = ?0, 𝑛 = 0
𝑇 𝑛, + 𝑇 𝑛- + 1, 𝑛 > 0

• Solves to 𝑇(𝑛) ∈ Θ(𝑛).*
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INORDER-TREE-WALK(x)
1  if x ≠ NIL
2 INORDER-TREE-WALK(x.left)
3  print x.key
4        INORDER-TREE-WALK(x.right)

PREORDER-TREE-WALK(x)
1  if x ≠ NIL
2 print x.key
3        PREORDER-TREE-WALK(x.left)
4        PREORDER-TREE-WALK(x.right)

POSTORDER-TREE-WALK(x)
1  if x ≠ NIL
2        POSTORDER-TREE-WALK(x.left)
3        POSTORDER-TREE-WALK(x.right)
4        print x.key

* See Theorem 12.1 on p.288 of the textbook for a formal proof.



Review: Binary Search Trees

Querying a Binary Search Tree
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Querying a Binary Search Tree

• Search for a particular key stored in a binary search tree (BST):
1) Searching: TREE-SEARCH(x, k)
2) Find minimum: TREE-MINIMUM(x)
3) Find maximum: TREE-MAXIMUM(x)
4) Find successor: TREE-SUCCESSOR(x)
5) Find predecessor: TREE-PREDECESSOR(x)
• TREE-PREDECESSOR is symmetric to TREE-SUCCESSOR.

• The time complexity of every operation is 𝑂(ℎ) on any BST of height ℎ.
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Searching

• TREE-SEARCH returns a pointer to a node with key 𝑘 if one exists; 
otherwise, it returns NIL.
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Example: TREE-SEARCH(T.root, 4)TREE-SEARCH(x, k) 
1  while x ≠ NIL and k ≠ x.key
2  if k < x.key
3  x = x.left
4  else
5  x = x.right
6  return x

• Time complexity: 𝑇(𝑛) ∈ 𝑂(ℎ)



Find Minimum and Maximum

• The BST property guarantees that
• the minimum key of a BST is located at the leftmost node, and
• the maximum key of a BST is located at the rightmost node.

• Assume input x ≠ NIL.
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TREE-MINIMUM(x) 
1  while x.left ≠ NIL
2  x = x.left
3  return x

TREE-MAXIMUM(x) 
1  while x.right ≠ NIL
2 x = x.right
3  return x

Example: TREE-MINIMUM(T.root)

• Time complexity: 𝑇 𝑛 ∈ 𝑂(ℎ).



Successor and Predecessor

• Given a node in a binary search tree, find its successor/predecessor in the 
sorted order determined by an inorder tree walk.
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• If all keys are distinct,
• The successor of a node 𝑥 is the 

node with the smallest key > 𝑥. 𝑘𝑒𝑦.
• The predecessor of a node 𝑥 is the 

node with the largest key < 𝑥. 𝑘𝑒𝑦.
• If 𝑥 has the largest key in the BST, then 
𝑥’s successor is NIL.
• If 𝑥 has the smallest key in the BST, then 
𝑥’s predecessor is NIL.

Example:

Inorder tree walk: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20



Find Successor (1/3)
Case 1: 𝑥 has a non-empty right subtree.
• The successor of 𝑥 is the node with the minimum key in its right subtree.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 41

TREE-SUCCESSOR(x) 
1  if x.right ≠ NIL
2 return TREE-MINIMUM(x.right)
3  y = x.p
4  while y ≠ NIL and x == y.right
5  x = y
6  y = y.p
7  return y

Example:

Inorder tree walk: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20



Find Successor (2/3)
Case 2: The right sub-tree of 𝑥 is empty
• The successor of 𝑥, say 𝑦, is the first ancestor for which 𝑥 is in its left

subtree. (𝑥 is the maximum in 𝑦’s left subtree)
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TREE-SUCCESSOR(x) 
1  if x.right ≠ NIL
2 return TREE-MINIMUM(x.right)
3  y = x.p
4  while y ≠ NIL and x == y.right
5  x = y
6  y = y.p
7  return y

Example:

Inorder tree walk: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20



Find Successor (3/3)

• Time complexity:
• Either visit nodes on a path down 

the tree:
• TREE-MINIMUM: 𝑂(ℎ)

• Or visit nodes on a path up the 
tree:
• while loop: 𝑂(ℎ)

Thus, 𝑇 𝑛 ∈ 𝑂(ℎ).
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TREE-SUCCESSOR(x) 
1  if x.right ≠ NIL
2 return TREE-MINIMUM(x.right)
3  y = x.p
4  while y ≠ NIL and x == y.right
5  x = y
6  y = y.p
7  return y



Review: Binary Search Trees

Insertion

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 44



Insertion (1/2)

• Insertion and deletion allows the dynamic set represented by a BST to 
change. The BST property must hold after the change.
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• To insert a new value v into the 
BST, procedure TREE-INSERT
takes a node z with
• z.key = v
• z.left = NIL
• z.right = NIL

Example:
6

2

1 5

7

9

Insert 3: 3



Insertion (2/2)
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TREE-INSERT(T, z)
1   y = NIL
2   x = T.root
3   while x ≠ NIL
4         y = x
5   if z.key < x.key
6   x = x.left
7   else x = x.right
8   z.p = y
9   if y == NIL
10 T.root = z // Tree T was empty
11 elseif z.key < y.key
12 y.left = z
13 else y.right = z

Example: Insert 3 to the following BST

6

2

1 5

7

9

• Time complexity: 𝑇 𝑛 ∈ 𝑂(ℎ)



Sorting Using BST

• To sort a given list of 𝑛 keys, we can
1. Make 𝑛 TREE-INSERT calls. - 𝑂(𝑛ℎ)
2. Call INORDER-TREE-WALK. - 𝑂(𝑛)

• Example: Sort a sequence of 7 numbers 16, 4, 3, 9, 1, 35, 23 .
1) Initialize T = NIL
2) TREE-INSERT(T, 16)
3) TREE-INSERT(T, 4)
4) TREE-INSERT(T, 3)
5) TREE-INSERT(T, 9)
6) TREE-INSERT(T, 1)
7) TREE-INSERT(T, 35)
8) TREE-INSERT(T, 23)
9) INORDER-TREE-WALK(T.root)
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Review: Binary Search Trees

Deletion
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Three Cases of Deletion

• The BST property must hold after deletion.
• To delete a node z from BST T:
• Case 1: z has no left child
• E.g.: Delete 7

• Case 2: z has no right child
• E.g.: Delete 5

• Case 3: z has two children
• Will discuss shortly
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Example:

6

2

1 5

7

9

3

4

8



Deletion Cases 1&2

• TRANSPLANT(T, u, v) replaces 
the subtree rooted at u by the 
subtree rooted at v.
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TRANSPLANT(T, u, v)
1  if u.p == NIL
2  T.root = v
3  elseif u == u.p.left
4  u.p.left = v
5  else u.p.right = v
6  if v ≠ NIL
7        v.p = u.p

Example: TRANSPLANT(T, u, v)
where u.key = 2 and v.key = 5

6

2

1 5

7

9

3

4

8

6

5 7

93

4 8



Deletion Cases 1
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• Case 1: z has no left childTREE-DELETE(T, z)
1    if z.left == NIL
2          TRANSPLANT(T, z, z.right)
3    elseif z.right == NIL
4   TRANSPLANT(T, z, z.left)
5    else y = TREE-MINIMUM(z.right)
6    if y.p ≠ z
7                TRANSPLANT(T, y, y.right)
8    y.right = z.right
9    y.right.p = y
10 TRANSPLANT(T, z, y)
11 y.left = z.left
12 y.left.p = y

6

2

1 5

7

9

3

4

8

• Example: 
Delete 7



Deletion Cases 2
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• Case 2: z has no right childTREE-DELETE(T, z)
1    if z.left == NIL
2          TRANSPLANT(T, z, z.right)
3    elseif z.right == NIL
4   TRANSPLANT(T, z, z.left)
5    else y = TREE-MINIMUM(z.right)
6    if y.p ≠ z
7                TRANSPLANT(T, y, y.right)
8    y.right = z.right
9    y.right.p = y
10 TRANSPLANT(T, z, y)
11 y.left = z.left
12 y.left.p = y

• Example: 
Delete 5

6

2

1 5

7

9

3

4

8



Deletion Case 3 (1/3)

Case 3: z has two children
1. Find z’s successor y: TREE-MINIMUM(z.right). 
• We must have y.left = NIL.

2. Replace z by y.
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TREE-DELETE(T, z)
1    if z.left == NIL
2          TRANSPLANT(T, z, z.right)
3    elseif z.right == NIL
4   TRANSPLANT(T, z, z.left)
5    else y = TREE-MINIMUM(z.right)
6    if y.p ≠ z
7                TRANSPLANT(T, y, y.right)
8    y.right = z.right
9    y.right.p = y
10 TRANSPLANT(T, z, y)
11 y.left = z.left
12 y.left.p = y

• Case 3.1:
y is z’s right child
• E.g.: Delete 6

• Case 3.2:
y is not z’s right child
• E.g.: Delete 2

6

2

1 5

7

9

3

4

8



Deletion Case 3 (2/3)
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TREE-DELETE(T, z)
1    if z.left == NIL
2          TRANSPLANT(T, z, z.right)
3    elseif z.right == NIL
4   TRANSPLANT(T, z, z.left)
5    else y = TREE-MINIMUM(z.right)
6    if y.p ≠ z
7                TRANSPLANT(T, y, y.right)
8    y.right = z.right
9    y.right.p = y
10 TRANSPLANT(T, z, y)
11 y.left = z.left
12 y.left.p = y

• Case 3.1: y is z’s right child

6

2

1 5

7

9

3

4

8

• Example: 
Delete 6
(y.key = 7)



Deletion Case 3 (3/3)
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TREE-DELETE(T, z)
1    if z.left == NIL
2          TRANSPLANT(T, z, z.right)
3    elseif z.right == NIL
4   TRANSPLANT(T, z, z.left)
5    else y = TREE-MINIMUM(z.right)
6    if y.p ≠ z
7                TRANSPLANT(T, y, y.right)
8    y.right = z.right
9    y.right.p = y
10 TRANSPLANT(T, z, y)
11 y.left = z.left
12 y.left.p = y

• Case 3.2: y is not z’s right child

6

2

1 5

7

9

3

4

8

• Example: 
Delete 2
(y.key = 3)



Deletion Time Complexity

Time complexity:

• TREE-MINIMUM: 𝑂(ℎ)
• Everything else: 𝑂(1)
In total, 𝑇 𝑛 ∈ 𝑂(ℎ).
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TREE-DELETE(T, z)
1    if z.left == NIL
2          TRANSPLANT(T, z, z.right)
3    elseif z.right == NIL
4   TRANSPLANT(T, z, z.left)
5    else y = TREE-MINIMUM(z.right)
6    if y.p ≠ z
7                TRANSPLANT(T, y, y.right)
8    y.right = z.right
9    y.right.p = y
10 TRANSPLANT(T, z, y)
11 y.left = z.left
12 y.left.p = y

TRANSPLANT(T, u, v)
1  if u.p == NIL
2  T.root = v
3  elseif u == u.p.left
4  u.p.left = v
5  else u.p.right = v
6  if v ≠ NIL
7        v.p = u.p



Balanced BST: Red-Black Trees
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Balanced BST

• Recall: To sort a given list of 𝑛 keys, we can
1. Make 𝑛 TREE-INSERT calls. - 𝑂(𝑛ℎ)
2. Call INORDER-TREE-WALK. - 𝑂(𝑛)

• In the worst case, ℎ ∈ Θ(𝑛)
⟹ Sorting using BST takes 𝑂(𝑛') time.

• Whereas we can sort already in 𝑂(𝑛 log 𝑛) time.
• Observation: If we maintain the tree of height 𝑂(log 𝑛), then sorting 

via BST would take 𝑂(𝑛 log 𝑛) time.
• For that end, we need a balanced BST: ℎ ∈ 𝑂(log 𝑛)
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Balanced BST: Red-Black Trees

Properties of Red-Black Trees
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Properties of Red-Black Trees

• A red-black tree (RB-tree) is a BST with one extra bit of storage per node: 
its color, which can be either RED or BLACK.
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• Red-black properties:
1) Every node is either red or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then both its 

children are black.
5) Each root-to-leaf simple path has 

the same number of black nodes. 
(Black-heights matter!)

• Example:



Implementing RB-Trees

• Each node of a RB-tree contains the attributes color, key, left, right, and p.
• We use a single sentinel, T.nil, for all the leaves and the root’s parent.
• T.nil.color is black, and we don’t care about the key in T.nil.
• Black-height of a node 𝑥: 𝑏ℎ(𝑥) is the number of black nodes (including 

NIL) on the 𝑥-to-leaf path, not counting 𝑥.
• Example:
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Height of a RB-Tree (1/2)

Lemma: A RB-tree with 𝑛 internal nodes has height ℎ ≤ 2 log(𝑛 + 1).
Proof. Consider the longest root-to-leaf path 𝑃 in the RB-tree.
• There are ℎ + 1 nodes on 𝑃.
• 𝑃 has no two consecutive red nodes (due to property 4).

⟹ # black nodes on 𝑃 ≥ ℎ/2
• Claim: The first ℎ/2 layers in the tree are full.
• Can be proved by induction.*

➔ Continued on next slide...

*See the complete proof of Lemma 13.1 on p.309 of the textbook.
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Height of a RB-Tree (2/2)

Lemma: A RB-tree with 𝑛 internal nodes has height ℎ ≤ 2 log(𝑛 + 1).
Proof. Consider the longest root-to-leaf path 𝑃 in the RB-tree. (cont’d)
• The first ℎ/2 layers in the tree are full.
• Thus,

𝑛 ≥ 1 + 2 + 2! +⋯+ 2
!
" %$ = 2

!
" − 1

⟹ log 𝑛 + 1 ≥
ℎ
2

⟹ ℎ ≤ 2 log(𝑛 + 1) ☐
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Operations in RB-Trees

• These five BST operations
1) Searching: TREE-SEARCH(x, k)
2) Find minimum: TREE-MINIMUM(x)
3) Find maximum: TREE-MAXIMUM(x)
4) Find successor: TREE-SUCCESSOR(x)
5) Find predecessor: TREE-PREDECESSOR(x)

all take 𝑂(log 𝑛) time on RB-trees.
• Insertion and deletion are not so easy.
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Insertion and Deletion in RB-Trees

• Insertion and deletion on RB-trees are not so easy.
• If we insert, what color to make the new node?
• If we delete, thus removing a node, what color was the node that was 

removed?
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• Red-black properties:
1) Every node is either red or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then both its children are black.
5) Each root-to-leaf simple path has the same number of black nodes.



Balanced BST: Red-Black Trees

Rotations
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Rotations (1/2)

• Only insertion and deletion will alter the tree structure.
• In order to maintain the RB-tree as a balanced BST and preserve the BST 

property, we introduce two kinds of rotations:
• Left-rotation: the old root becomes the left child of the new root.
• Right-rotation: the old root becomes the right child of the new root.
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• Examples:
• Do left-rotation on 17
• Do right-rotation on 8



Rotations (2/2)

• RIGHT-ROTATE is symmetric.
• Time complexity for both LEFT-ROTATE and 

RIGHT-ROTATE: Θ 1
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LEFT-ROTATE(T, x)
1    y = x.right
2    x.right = y.left
3    if y.left ≠ T.nil
4    y.left.p = x
5    y.p = x.p
6    if x.p == T.nil
7    T.root = y
8    elseif x == x.p.left
9    x.p.left = y
10  else x.p.right = y
11  y.left = x
12  x.p = y

• For LEFT-ROTATE(T, x), assume x is a node in T and 
x.right ≠ T.nil



Balanced BST: Red-Black Trees

Insertion
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Insertion on A RB-Tree
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1. Insert node 𝑧 by TREE-INSERT (insertion for 
BST) and color it red.
Q: Why color it red initially?

2. Recolor and/or rotate nodes to fix violation.
Relationships of z:
• b: z’s grandparent (z.p.p)
• a: z’s parent (z.p)
• y: z’s uncle
• w: z’s sibling

b

a

w z

y

w

Red-black properties:
1) Every node is either red

or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then 

both its children are 
black.

5) Each root-to-leaf simple 
path has the same
number of black nodes.



Four Cases of Insertion

Recolor and/or rotate nodes to fix violation.
• Case 0: z is the root

Just color it black. Done.
• Cases 1-3: z.p is also red

z.p.p must be black – why?
Consider z’s uncle, y:
• Case 1: y is red
• Case 2: y is black (LR/RL)
• E.g.: b - a - z1

• Case 3: y is black (LL/RR)
• E.g.: b - a - z2
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Red-black properties:
1) Every node is either red

or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then 

both its children are 
black.

5) Each root-to-leaf simple 
path has the same
number of black nodes.

b

a

z2 z1

yy



Insertion Case 1

Case 1: z’s uncle, y, is red
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Red-black properties:
1) Every node is either red

or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then 

both its children are 
black.

5) Each root-to-leaf simple 
path has the same
number of black nodes.

1) Color 𝑧. 𝑝 and 𝑦 black
2) Color 𝑧. 𝑝. 𝑝 red
3) Recurse up with 𝑧 = 𝑧. 𝑝. 𝑝



Insertion Case 1 Example

Case 1: z’s uncle, y, is red
1) Color 𝑧. 𝑝 and 𝑦 black
2) Color 𝑧. 𝑝. 𝑝 red
3) Recurse up with 𝑧 = 𝑧. 𝑝. 𝑝
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2

85
4

15

2

85
4

157
2

7

4

15

Example: Insert 4

Step 3):Steps 1) – 2):



Insertion Case 2

Case 2: z’s uncle, y, is black (LR/RL)
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Red-black properties:
1) Every node is either red

or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then 

both its children are 
black.

5) Each root-to-leaf simple 
path has the same
number of black nodes.

1) Let 𝑧 = 𝑧. 𝑝
2) Make it Case 3 by 
• Calling LEFT-ROTATE(T, z) for the LR case
• Calling RIGHT-ROTATE(T, z) for the RL case

3) Solve Case 3



Insertion Case 2 Example

Case 2: z’s uncle, y, is black (LR/RL)
1) Let 𝑧 = 𝑧. 𝑝
2) Make it Case 3 by 
• Calling LEFT-ROTATE(T, z) for 

the LR case
• Calling RIGHT-ROTATE(T, z) for 

the RL case
3) Solve Case 3: z’s uncle, y, is black

(LL/RR)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 75

Example: 𝑧. 𝑘𝑒𝑦 = 7

2
7

4

15

Steps 1) – 2):

15
7

4

2



Insertion Case 3

Case 3: z’s uncle, y, is black (LL/RR)
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Red-black properties:
1) Every node is either red

or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then 

both its children are 
black.

5) Each root-to-leaf simple 
path has the same
number of black nodes.

1) Flip colors of 𝑧. 𝑝. 𝑝 and 𝑧. 𝑝
2) Call 
• RIGHT-ROTATE(T, z.p.p) for the LL case 
• LEFT-ROTATE(T, z.p.p) for the RR case

Done.



Insertion Case 3 Example

Case 3: z’s uncle, y, is black (LL/RR)
1) Flip colors of 𝑧. 𝑝. 𝑝 and 𝑧. 𝑝
2) Call 
• RIGHT-ROTATE(T, z.p.p) for 

the LL case 
• LEFT-ROTATE(T, z.p.p) for the 

RR case
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Example: 𝑧. 𝑘𝑒𝑦 = 7

15
7

4

2

Steps 1) – 2):

15

112

4



Running Time of Insertion

In RB-INSERT,
• Lines 1-16: 𝑂(ℎ)
In RB-INSERT-FIXUP,
• # iterations: 𝑂(ℎ)
Thus, running time of 
RB-INSERT:

𝑇 𝑛 ∈ 𝑂 ℎ
⟹ 𝑇(𝑛) ∈ 𝑂(log 𝑛)
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Exercise: RB-Tree Insertion

• Show the red-black trees that result after successively inserting the keys 41, 38, 
31, 12, 19, 8 into an initially empty red-black tree.
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Balanced BST: Red-Black Trees

Deletion
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Deletion on A RB-Tree
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1. Delete a node 𝑧 by TREE-DELETE (deletion 
for BST) with a slight modification.
• Observation: TREE-DELETE eventually 

deletes/moves a node with at least one 
child missing. - See next slide
• 𝑦: the node either removed from the tree 

or moved within the tree.
2. Recolor and/or rotate nodes to fix violation.
• If 𝑦 was red, no violation occurs.
• If 𝑦 was black, we fix-up with 𝑦’s child 𝑥
• that moves into 𝑦’s original position
• could be black NIL

Red-black properties:
1) Every node is either red

or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then 

both its children are 
black.

5) Each root-to-leaf simple 
path has the same
number of black nodes.



Review: TREE-DELETE
Example:
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6

2

1 5

7

9

3

4

8
3.1) Delete 6:

𝑦 =

6

2

1 5

9

3

4

8

7

2

1 5

9

3

4

8

3.2) Delete 2:
𝑦 =

6

3

1 5

7

9

4 8

1) Delete 7:
𝑦 = 𝑧

2) Delete 5:
𝑦 = 𝑧

6

2

1 3

7

9

4 8

7 3



Cases of Deletion (1/2)
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If 𝑦 was black, we fix-up with 𝑦’s child 𝑥.
Recall: 𝑥 is the node that moves into 𝑦’s original 
position.
• Case 0: 𝑥 is the root or 𝑥 is red

Just color it black. Done. 
• Cases 1-4: 𝑥 is black and not the root
• 𝑥 is considered “doubly black” (𝑦 and 𝑥)
• Goal: preserve the number of black nodes 

in each sub-path.
We look into 𝑥’s sibling 𝑤.

Red-black properties:
1) Every node is either red

or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then 

both its children are 
black.

5) Each root-to-leaf simple 
path has the same
number of black nodes.



Cases of Deletion (2/2)
Cases 1-4: 𝑥 is black and not the root – 𝑥 is “doubly black”. Look into 𝑥’s sibling 𝑤.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 84

Case 1: 𝑤 is red Case 2: 𝑤 and both its children are all black

Case 3: 𝑤 is black and it has exactly ONE 
red child on the opposite side (RL/LR).

Case 4: 𝑤 is black and its child on the same 
side (RR/LL) is red.



Deletion Case 1
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Case 1: 𝑤 is red

1) Color 𝑤 black, color 𝑥. 𝑝 red
2) Call LEFT-ROTATE(T, x.p) if 𝑥 is a left child OR

Call RIGHT-ROTATE(T, x.p) if 𝑥 is a right child
3) New 𝑤 is 𝑥’s new sibling, which must be black – Why?
4) Check Cases 2, 3, and 4.



Deletion Case 2
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Case 2: 𝑤 and both its children are all black

1) Color 𝑤 red
2) The color of 𝑤. 𝑝 is unknown.

• Case 2.1: 𝑥. 𝑝 is red ➞ Color 𝑥. 𝑝 black. Done.
• Case 2.2: 𝑥. 𝑝 is black ➞ Recurse up with 𝑥 = 𝑥. 𝑝

2.1

2.2



Deletion Case 3
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Case 3: 𝑤 is black and it has exactly ONE red child on the opposite side (RL/LR).

1) Color 𝑤 red and w’s red child black 
2) Make it Case 4 by calling
• RIGHT-ROTATE(T, w) for the RL case (𝑤 is a right child and w.left is red)
• LEFT-ROTATE(T, w) for the LR case (𝑤 is a left child and w.right is red)

3) New 𝑤 is 𝑥’s new sibling ➔ Check Case 4.



Deletion Case 4
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Case 4: 𝑤 is black and its child on the same side (RR/LL) is red.

1) Give 𝑤 the color of 𝑥. 𝑝;
2) Color 𝑥. 𝑝 and 𝑤’s same side red child black.
3) Call LEFT-ROTATE(T, x.p) for the RR case (𝑤 is a right child and w.right is red) OR

Call RIGHT-ROTATE(T, x.p) for the LL case (𝑤 is a left child and w.left is red)
Done.



Running Time of Deletion
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In RB-DELETE,
• Lines 1-21: 𝑂(ℎ)
In RB-DELETE-FIXUP,
• # iterations only 

depends on Case 2: 
𝑂(ℎ)

Thus, running time of 
RB-DELETE:

𝑇 𝑛 ∈ 𝑂 ℎ
⟹ 𝑇(𝑛) ∈ 𝑂(log 𝑛)



Exercise: RB-Tree Deletion

• In the Exercise for RB-tree insertion, you found the red-black tree that results 
from successively inserting the keys 41, 38, 31, 12, 19, 8 into an initially empty 
tree. Now show the red-black trees that result from the successive deletion of the 
keys in the order 8, 12, 19, 31, 38, 41.
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Thank you!
Questions?
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