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Randomized Algorithms

Probabilistic Analysis
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Probability Basics

• A (discrete) random variable 𝑋 is a function that takes values (real 
numbers) in some range according to a probability distribution.
• Example 1: Pr 𝑋 = 1 = 0.5, Pr 𝑋 = 2 = 0.2, Pr 𝑋 = 3 = 0.3. 
• Probability must be non-negative and sums to 1.

• The expectation of a random variable is a weighted average of the 
outcome according to the probability distribution:

𝐸 𝑋 =,
!

𝑥 . Pr{𝑋 = 𝑥}
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Indicator Random Variables

• The indicator random variable takes values in 0, 1 indicating whether 
some event happened or didn't happen.

𝑋" = 21, if 𝐴 occurs,
0, if 𝐴 does not occur.

• 𝐸 𝑋" = Pr 𝐴 = Pr{𝑋" = 1}
• Example: Define 𝑋# as the number of heads when tossing a fair coin once.
• Pr 𝑋# = 1 = Pr 𝑋# = 0 = $

%
• The expected number of heads in one toss is

𝐸 𝑋# = Pr 𝑋# = 1 =
1
2
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Linearity of Expectation

• Expectation has a beautiful property – Expectation is linear.

• For any two random variables 𝑋 and 𝑌, we have:
𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸[𝑌].

Example: Given a fair coin, what is the expected number of heads when the 
coin is tossed 1,000,000 times?

Solution: Let 𝑋& be the number of heads in 𝑗-th toss. Then the total number 
of heads in 1,000,000 tosses is 𝑋 = ∑&'$

$,))),)))𝑋&.

𝐸 𝑋 = 𝐸 ,
&'$

$,))),)))

𝑋& = ,
&'$

$,))),)))

𝐸 𝑋& = ,
&'$

$,))),)))

Pr{𝑋& = 1} = 500,000
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Motivation for Studying Expectation

In the previous coin tossing example,
• Tossing the coin many times means we expect to see about 𝐸 𝑋 “heads”. 
• It is very unlikely, for a fair coin, to see < 495,000 “heads”.

For a randomized algorithm, whose behavior is determined not only by its 
input but also by values produced by a random-number generator.
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A random-number generator: 
RANDOM(a, b) returns an 
integer between 𝑎 and 𝑏, 
inclusive, with each such 
integer being equally likely.

• We analyze the expected running time.
• We can have multiple independent 

instances running in parallel and use 
whichever halts first.



Randomly Permuting Arrays

• When an array is part of the input, a randomized algorithm may randomize 
the input by permuting the given input array.
• An 𝑂 𝑛 -time method of permuting a given array:
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RANDOMIZE-IN-PLACE(A)
n = A.length
for i = 1 to n

swap A[i] with A[RANDOM(i, n)]

RANDOM(a, b) returns an 
integer between 𝑎 and 𝑏, 
inclusive, with each such 
integer being equally likely.

• RANDOMIZE-IN-PLACE(A) computes a uniform random permutation.*

• That is, all possible permutations of the array 𝐴 are equally likely.
• Can be proved using LI. *

* See Lemma 5.5 on p.127-128 of the textbook.



Randomized Algorithms

Randomized Linear Search
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Linear Search

• Average-case running time? 
• Assume some probability distribution over the inputs.
• Example: Assume all possible permutations of the array are equally 

likely. - Uniform random permutation
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LINEAR-SEARCH(A, x)
1  for i = 1 to A.length
2      if A[i] == x
3          return i
4  return NIL

1 2 3 4 ... n

28 53 17 36 ... 9

• Worst-case running time:

• Best-case running time:
Θ 𝑛
Θ(1)

Example:



Average Case Analysis

• Let 𝑡* be the number of Key Comparisons (KC) when 𝐴 𝑖 = 𝑥.
• Then, the average number of KC made by LINEAR-SEARCH is

𝐸 𝑇(𝑛) = ∑*'$+ 𝑡* . Pr{𝑇(𝑛) = 𝑡*}

= 1 . $
+
+ 2 . $

+
+ 3 . $

+
+⋯+ 𝑛 . $

+
= +,$

%
.

• Average-case running time: Θ(𝑛)
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LINEAR-SEARCH(A, x)
1  for i = 1 to A.length
2      if A[i] == x
3          return i
4  return NIL

• Assume uniform random permutation.

• Assume there is exactly one index 𝑖 such 
that 𝐴 𝑖 = 𝑥. Then,

Pr 𝐴 𝑖 = 𝑥 = $
+

, where 𝑛 = 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ



Randomized Linear Search (1/2)

• We discuss the expected running time when the algorithm itself makes 
random choices.
• We will compute the expected number of KC made by RANDOMIZED-

LINEAR-SEARCH.
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LINEAR-SEARCH(A, x)
1  for i = 1 to A.length
2      if A[i] == x
3          return i
4  return NIL

RANDOMIZED-LINEAR-SEARCH(A, x)
1  RANDOMIZE-IN-PLACE(A)
2  for i = 1 to A.length
3      if A[i] == x
4          return i
5  return NIL



RANDOMIZED-LINEAR-SEARCH(A, x)
1  RANDOMIZE-IN-PLACE(A)
2  for i = 1 to A.length
3      if A[i] == x
4          return i
5  return NIL

Randomized Linear Search (2/2)

• The expected number of KC made by RANDOMIZED-LINEAR-SEARCH is

𝐸 𝑇(𝑛) = ∑*'$+ 𝑡* . Pr{𝑇(𝑛) = 𝑡*} =
+,$
%

.

• The expected running time of RANDOMIZED-LINEAR-SEARCH is the same 
as the average-case running time of LINEAR-SEARCH.
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• Assume there is exactly one index 𝑖 such 
that 𝐴 𝑖 = 𝑥.

• Then, Pr 𝐴 𝑖 = 𝑥 = $
+

.

• Let 𝑡* be the number of KC made when 
𝐴 𝑖 = 𝑥.



Review: Quicksort Algorithm
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The Quicksort Algorithm

• Divide-and-conquer
• Ideas:
• Pick one key (pivot), compare it to all others.
• Rearrange 𝐴 to be:

• Recursively sort subarrays before and after the 
pivot.

• The PARTITION procedure returns 𝑞 such that
• 𝐴 𝑞 = 𝑝𝑖𝑣𝑜𝑡
• All elements ≤ 𝑝𝑖𝑣𝑜𝑡 are in 𝐴 𝑝. . (𝑞 − 1)
• All elements > 𝑝𝑖𝑣𝑜𝑡 are in 𝐴 𝑞 + 1 . . 𝑟
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QUICKSORT(A, p, r)
if p < r

q = PARTITION(A, p, r)
QUICKSORT(A, p, q - 1)
QUICKSORT(A, q + 1, r)

PARTITION(A, p, r)
x = A[r]  // pivot is the last element
i = p – 1
for j = p to r - 1
if A[j] ≤ x

i = i + 1
swap A[i] and A[j]

swap A[i + 1] and A[r]
return i + 1

≤ 𝑝𝑖𝑣𝑜𝑡 𝑝𝑖𝑣𝑜𝑡 > 𝑝𝑖𝑣𝑜𝑡



Quicksort Running Time

• Running time of PARTITION: 
Θ(𝑛), where 𝑛 = 𝑟 − 𝑝 + 1.

• Running time of QUICKSORT:

𝑇 𝑛 = 2Θ 1 , 𝑛 ≤ 1
𝑇 𝑛$ + 𝑇 𝑛 − 1 − 𝑛$ + Θ 𝑛 , 𝑛 ≥ 2

where 0 ≤ 𝑛$ ≤ 𝑛 − 1.
• This raises the question: 

How can we estimate 𝑛$?
There is no single answer.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 16

QUICKSORT(A, p, r)
if p < r

q = PARTITION(A, p, r)
QUICKSORT(A, p, q - 1)
QUICKSORT(A, q + 1, r)

PARTITION(A, p, r)
x = A[r]
i = p – 1
for j = p to r - 1
if A[j] ≤ x

i = i + 1
swap A[i] and A[j]

swap A[i + 1] and A[r]
return i + 1



Quicksort Worst-Case Running Time

• Running time recurrence:

𝑇 𝑛 = 2Θ 1 , 𝑛 ≤ 1
𝑇 𝑛$ + 𝑇 𝑛 − 1 − 𝑛$ + Θ 𝑛 , 𝑛 ≥ 2

where 0 ≤ 𝑛$ ≤ 𝑛 − 1.
• WC running time:

𝑇 𝑛 = 𝑇 0 + 𝑇 𝑛 − 1 + Θ 𝑛
• Solving the recurrence (by substitution method):

𝑇 𝑛 ∈ Θ(𝑛%).
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Quicksort Best-Case Running Time

• Running time recurrence:

𝑇 𝑛 = 2Θ 1 , 𝑛 ≤ 1
𝑇 𝑛$ + 𝑇 𝑛 − 1 − 𝑛$ + Θ 𝑛 , 𝑛 ≥ 2

where 0 ≤ 𝑛$ ≤ 𝑛 − 1.
• BC running time: each partition is a bipartition

𝑇 𝑛 = 𝑇 𝑛/2 + 𝑇 𝑛/2 − 1 + Θ 𝑛
≈ 2𝑇 𝑛/2 + Θ 𝑛

• Solving the recurrence (by case 2 of Master Theorem):
𝑇 𝑛 ∈ Θ(𝑛 log 𝑛)
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Quicksort Almost-BC Running Time

• Assume that at each round we get an approximated bipartition.

• If each split is -
.
𝑛 and $

.
𝑛, the recurrence will be

𝑇 𝑛 ≈ 𝑇 -+
.

+ 𝑇 +
.
+ Θ 𝑛 ,

• A more extreme case with split /
$)
𝑛 and $

$)
𝑛 resulting in recurrence

𝑇 𝑛 ≈ 𝑇 /+
$)

+ 𝑇 +
$)

+ Θ 𝑛 .

• In both cases, 𝑇 𝑛 ∈ Θ(𝑛 log 𝑛).
• In fact, for any split of constant proportionality, the running time remains 

to be Θ(𝑛 log 𝑛).*

* See p.175-176 of the textbook for detailed explanations.
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Quicksort Average-Case Running Time

• Running time recurrence:

𝑇 𝑛 = 2Θ 1 , 𝑛 ≤ 1
𝑇 𝑛$ + 𝑇 𝑛 − 1 − 𝑛$ + Θ 𝑛 , 𝑛 ≥ 2

where 0 ≤ 𝑛$ ≤ 𝑛 − 1.
• Q: “What is the probability for the left subarray to have size 𝑛$?”
• Average Case (AC): always ask “average over what input distribution?”
• Ans: We make a huge assumption about the input data. 
• Example: Assume each possible input is equiprobable (uniform distribution).

That is, 𝑛$ can be 0, 1, 2,⋯ , 𝑛 − 2, 𝑛 − 1, with the same probability $
+

.
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Quicksort Space Complexity

• Extra space required at each recursive call is only 
constant.
• Space complexity is Θ(1).
• A sorting algorithm is said to be in place if 
• it rearranges all the elements within the array, 
• with at most a constant number of extra memory 

units required.
• QUICKSORT is an in-place sorting algorithm.
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QUICKSORT(A, p, r)
if p < r

q = PARTITION(A, p, r)
QUICKSORT(A, p, q - 1)
QUICKSORT(A, q + 1, r)

PARTITION(A, p, r)
x = A[r]
i = p – 1
for j = p to r - 1
if A[j] ≤ x

i = i + 1
swap A[i] and A[j]

swap A[i + 1] and A[r]
return i + 1



Randomized Quicksort
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Randomized Algorithm v.s. AC Analysis

• AC analysis means we make an assumption on the input
• No guarantee that the assumption holds.
• Input is chosen once: on avg we might have a good running time, but 

once input is given our running time is determined.
• A randomized algorithm works for any input (WC)
• Randomness in the coins we toss (not in the input) - so we control the 

distribution of the coin toss.
• We can always start the algorithm anew if it takes too long; or run it 

multiple times in parallel and use whichever halts first.
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Randomized Quicksort

• How to analyze the expected running time of RANDOMIZED-QUICKSORT?
• Technique #1: Find the recurrence relation for the expectation.
• Technique #2 (Optional): Find sum of expected indicator random variables, 
𝑋!,#, indicating whether elements 𝑎! and 𝑎# are compared. 
(See p.182-184 of the textbook for details.)
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• To improve the QUICKSORT algorithm, we use a random pivot.
• We invoke RANDOMIZED-PARTITION rather than PARTITION.

RANDOMIZED-QUICKSORT(A, p, r)
if p < r

q = RANDOMIZED-PARTITION(A, p, r)
RANDOMIZED-QUICKSORT(A, p, q - 1)
RANDOMIZED-QUICKSORT(A, q + 1, r)

RANDOMIZED-PARTITION(A, p, r)
// Randomly choose an integer between p and r
i = RANDOM(p, r)
swap A[r] with A[i]
return PARTITION(A, p, r)



Randomized Partition

• Running time of PARTITION: Θ(𝑛)
• Expected running time of RANDOMIZED-

PARTITION:
• Each element 𝐴[𝑖] gets swapped with 𝐴[𝑟]

with the same probability, $
+

.

• ∑*'$+ Θ(𝑛)· $
+
= Θ(𝑛)

• Same as the running time of PARTITION.
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RANDOMIZED-PARTITION(A, p, r)
1  i = RANDOM(p, r)
2  swap A[r] with A[i]
3  return PARTITION(A, p, r)

PARTITION(A, p, r)
1  x = A[r]
2  i = p – 1
3  for j = p to r - 1
4  if A[j] ≤ x
5  i = i + 1
6              swap A[i] and A[j]
7  swap A[i + 1] and A[r]
8  return i + 1



Expected Running Time of Randomized Quicksort (1/3)

Technique #1: Find the recurrence relation for the expectation.
• Recall: If PARTITION put 𝑛$ elements in one side of the pivot and 𝑛 − 𝑛$ − 1

on the other side, then
𝑇 𝑛 = 𝑇 𝑛$ + 𝑇 𝑛 − 1 − 𝑛$ + Θ(𝑛).

• Since the pivot is chosen uniformly at random, for 𝑘 = 0, 1, 2,⋯ , 𝑛 − 1,

Pr 𝑛$ = 𝑘 = Pr 𝑝𝑖𝑣𝑜𝑡 = 𝑘 + 1 −st smallest element = $
+

.

• Thus, 𝐸 𝑇 𝑛 = ∑0')+1$ 𝐸 𝑇 𝑘 + 𝐸 𝑇 𝑛 − 1 − 𝑘 + Θ(𝑛) . $
+

= Θ(𝑛) + %
+
∑0')+1$𝐸 𝑇 𝑘 .

• Need to solve this recurrence relation.
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Expected Running Time of Randomized Quicksort (2/3)

Solve the recurrence

𝐸 𝑇 𝑛 = Θ(𝑛) +
2
𝑛,
0')

+1$

𝐸 𝑇 𝑘
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• Running time of PARTITION is dominated by the 
total number of key comparisons (KC) (line 4)
• #KC = 𝑛 − 1 ⇒ Replace Θ(𝑛) by 𝑛 − 1.
• Solve the recurrence

𝐸 𝑇 𝑛 = (𝑛 − 1) +
2
𝑛,
0')

+1$

𝐸 𝑇 𝑘

PARTITION(A, p, r)
1  x = A[r]
2  i = p – 1
3  for j = p to r - 1
4  if A[j] ≤ x
5  i = i + 1
6              swap A[i] and A[j]
7  swap A[i + 1] and A[r]
8  return i + 1



Expected Running Time of Randomized Quicksort (3/3)

• Solve the recurrence

𝐸 𝑇 𝑛 = (𝑛 − 1) +
2
𝑛,
0')

+1$

𝐸 𝑇 𝑘

• Solution: 𝐸 𝑇 𝑛 = 2 𝑛 + 1 𝑯 𝑛 + 1 − (4𝑛 + 2) ∈ Θ(𝑛 log 𝑛)

(The Harmonic number 𝑯 𝑛 = ∑*'$+ $
*
= ln 𝑛 + 𝛾, where 𝛾 ≈ 0.577⋯)

• The next two slides show how this bound is obtained. (Optional)
• The expected running time of RANDOMIZED-QUICKSORT is in Θ(𝑛 log 𝑛).
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Solving 𝐸 𝑇 𝑛 = 𝑛 − 1 + !
"
∑#$%"&'𝐸 𝑇 𝑖 (Optional) (1/2)

• Multiply both sides by 𝑛: 𝑛 . 𝐸 𝑇 𝑛 = 𝑛 𝑛 − 1 + 2∑*')+1$𝐸 𝑇 𝑖
• Then, we have: (𝑛 − 1)𝐸 𝑇 𝑛 − 1 = 𝑛 − 1 (𝑛 − 2) + 2∑*')+1%𝐸 𝑇 𝑖
• Subtract the above two terms:

𝑛 . 𝐸 𝑇 𝑛 − 𝑛 − 1 𝐸 𝑇 𝑛 − 1 = 2𝐸 𝑇 𝑛 − 1 + 2(𝑛 − 1)
⟹ 𝑛 . 𝐸 𝑇 𝑛 = 𝑛 + 1 𝐸 𝑇 𝑛 − 1 + 2(𝑛 − 1)

• With some arithmetics, we have:
2 3 +
+,$

= 2 3 +1$
+

+ %(+1$)
+(+,$)

= 2 3 +1$
+

+ %+
%(+,$)

− %
+(+,$)

= 2 3 +1$
+

+ %
+,$

− 2 $
+
− $

+,$
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Solving 𝐸 𝑇 𝑛 = 𝑛 − 1 + !
"
∑#$%"&'𝐸 𝑇 𝑖 (Optional) (2/2)

• which gives you (by substitution method)
2 3 +
+,$

= 2 3 +1$
+

+ %
+,$

− 2 $
+
− $

+,$
= ⋯

= ∑*'$+ %
*,$

+ %
+,$

− 2 = ∑*'$+ %
*,$

− %+
+,$

.

• Recall the Harmonic number 𝐻 𝑛 = ∑*'$+ $
*
= ln 𝑛 + 𝛾, where 𝛾 ≈ 0.577⋯

• We have
𝐸 𝑇 𝑛 = 2 𝑛 + 1 𝐻 𝑛 + 1 − 4𝑛 + 2

≈ 2 𝑛 + 1 ln(𝑛 + 1) + 𝛾 − 4𝑛 + 2
∈ Θ(𝑛 log 𝑛).
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Thank you!
Questions?
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