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Flow Networks

The Maximum-Flow Problem

— I :
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_ N Flow Networks .

*' A flow network is a directed graph G = (V, E) in which

* each edge (u, v) € E has a nonnegative capacity c(u,v) = 0;

o if (u,v) € E, then for convenience c(u,v) = 0;

* there are two distinguished vertices: a sources € V andasinkt € V.
* Intuition: Material originates at source s and is sent to sink t.

A flow network for the Lucky Puck Company’s trucking problem.

Edmonton Saskatoon

Vancouver
/3

Al L._. <
Calgary Regina

Winnipeg
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. o Flow

* A flowin a flow network G = (V, E) is a function f: VXV — R satisfying:
* Capacity constraint: Forallu,v € V,0 < f(u,v) < c(u, v);
* Flow conservation: For allu € V — {s, t},
|ZvEV f(, u)' N |ZvEV fQu, U)'.
flow into u flow out of u
* Value of a flow fis: |f| = Yper (5, V) — Dperv f (U, S).
Q:|f| ="

A:|lf| =19
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| The Maximum-Flow Problem

. |

|
Input: A flow network G = (V, E) with source s € V/, sink t € V, and capacity.
c(u,v) = 0 for each edge (u,v) € E.

‘Output: A flow of maximum value.

* Goal: Find flow f (u, v) for each edge (u,v) € E s.t.
* Forall (u,v) € E,0 < f(u,v) < c(u,v) — Capacity constraint
* Forallu €V —{s,t}, Yper f(v,u) = Ypey f (U, v) — Flow conservation
* |f1 = 2Lvev f(s,V) = Zyev f(v,5) is maximized

Edmonton Saskatoon

Vancouver
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| Flow Network Assumptions
,\
Assumption 1: Self-loops are disallowed.
Assumption 2: If (u,v) € E, then the reverse edge (v,u) & E.

* When both (u,v) € E and (v,u) € E, which are called antiparallel edges,
we transform G into an equivalent one with no antiparallel edges by
choosing one of them, say (u, v),

« Adding a new vertex v’, and
* Replacing (u, v) by (u, v") and (v, v), with c(u, v") = c(v',v) = c(u, v)
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Flow Networks

The Minimum Cut Problem

— I :
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The Minimum s-t Cut Problem

.\
Input: An undirected graph G = (V, E), two veritices s, t € V/, and weight

w(u,v) = 0 for each edge (u,v) € E.

e As-tcut (S, T) of G is a partition of V into two sets S and T = V — S such
thats e Sandt €.

Output: Find a s-t cut (S, T) of G with minimum weight:
w(S,T) = Xues Lwver w(u, v).

* Aminimum S-t cut:

4 S={ab,ih g}
- T ={cde,f}
s w(S,T)=8+2+2=12
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| Cuts of Flow Networks

,\
* Acut (S,T) of aflow network G = (V, E) is also a partition of V into two
setsSandT =V —Ssuchthats e Sandt €T.

* For a flow f, the net flow across cut (S, T) is

f(5,T) = Xues Zver (W, V) — Xyes Zver [ (v, ).
f(5,T)=">

A: f(S,T) =19
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Net Flow Across A Cut

l
For a flow f, the net flow across cut (S, T) is

f(ST) = 2ues 2ver f (W V) — Xyes Zver f (0, 1),
Claim:
* fX,X) =0
IfXNY = @, then
fXuY,Z)=fX,2)+f(Y,Z)
fZ,XuY)=f(ZX)+f(ZY)
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Net Flow Across A Cut ¢

.‘
For a flow f, the net flow across cut (S, T) is

, fST) = Yues 2wer f (W V) — Lyes Zver f(V, ).
Lemma: For any flow f and any cut (S, T), we have f(S,T) = |f].”
Proof. Recall: |f| = Xyey f(s, V) — Lvev f(v,8) = f({s}, V)
fGS,T)=£ESV)—=f(S,S)
=f(S,V)—0
=f{s} V) +f(S = {s},V)
Due to flow conservation, Y ey f(V,u) = Dpey f(u,v) foru € V —{s, t}.

So, f(S—{s},V) =0=f(S5,T) = f({s}, V) = |f]

*See Lemma 26.4 on p.721-722 of the textbook for a complete proof.
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. Capacity of A Cut
* The capacity of cut (S, T) is
c(S,T) = Zues Zver c(U, V).
c(§,T) =7

A:c(S,T) =26

Corollary: The value of any flow < capacity of any cut.

Proof. [f| = f(5,T) = Xyes Xver f(W, V) — Xyes Zver f (v, 1)
< Dues 2verc(u,v) = c(S,T).
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. > - Minimum Cut of A Flow Network

.\
Input: A flow network G = (V, E) with source s € V, sink t € V, and capacity

c(u,v) = 0 for each edge (u,v) € E.
Output: A s-t cut (S, T) of G with minimum capacity:

c(S,T) = Xyes Lver ¢ (W, v).

Edmonton Saskatoon

* A minimum s-t cut:
S = {S’ %) UZ,U4}
T = {v;,t}

e ¢(S,T) =7

Vancouver Winnipeg

Calgary Regina
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The Ford-Fulkerson Method
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\ > | The Ford-Fulkerson Method

|

Ford-Fulkerson-Method(G, s, t)

1 initialize flow f to 0

2 while there exists an augmenting path p in the residual network Gg

3 augment flow f along p
4 return f

* The residual network consists of edges with capacities that represent how
we can change the flow on edges of G.

* An augmenting path p is a simple path from s to t in the residual network.
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The Ford-Fulkerson Method

Residual Network

N\
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Residual Network
|

* Given a flow f in network G = (V, E), the residual network consists of
edges with capacities that represent how we can change the flow in G.

'» That’s the residual capacity:

(C(u, v)—f(uv), if(uv)€E,
cr(u,v) =1 f(v,w), if (v,u) € E,
\O, otherwise.

* Then, the residual networkis G = (V, Ef), where
Er = {(u,v) EVXV:ce(u,v) > 0}
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Residual Network Examples ..

|

* The residual network is Gy = (V, Ef), where

| Er ={(u,v) € VXV:cr(u,v) > 0}.
* The residual capacity:

(c(u, v) — f(u,v), if(u,v)€E,
cr(u,v) =4 f(v,u), if (v,u) € E,
\0’ otherwise.

Given a flow f in network G as follows, what is G¢?
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Y\ ’ Residual Network Examples .
' |

' The residual capacity:

(c(u, v) — f(u,v), if(u,v)€E,
cr(u,v) =1 f(v,u), if (v,u) € E,
0

k )

otherwise.
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The Ford-Fulkerson Method

Augmenting Path

N\
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| Augmenting Path

' An augmenting path p is a simple path from s to t in Gr.

* The flow value can be increased along an augmenting path p by
Cf(P) — (lIL’rlljl)l’elp{Cf(u, U)}




Augmented Flow Network

l
* When there is no augmenting path in G¢, f is a maximum flow in G.

* There is no augmenting path in Gy, .
* Consider cut (5,T) inG,: S = {s,v1,V3, U4} and T = {v3, t}
* No edges cross the cut in the direction from Sto T.

* Thus, the maximum flow in G is £, and |f,| = 23.
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The Ford-Fulkerson Method

Max-Flow Min-Cut Theorem

N\
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Max-Flow Min-Cut Theorem .3

Max-Flow Min-Cut Theorem™ If f is a flow in a flow network G = (V, E") with
source s and sink t, the the following conditions are equivalent:

‘1) fisa maximum flow in G.
2) The residual network G¢ contains no augmenting paths.

3) |f]|=c(S,T)forsomecut (S,T) of G.

Proof. (1) = (2): (prove by contraposition)

* Assume there is an augmenting path in G¢.

* Then the flow value could be increased.

(3) = (1):

* |f] < c(S,T) forany cut (S,T). - According to Corollary (on slide 12)

* This is Theorem 26.6 on p.723 of the textbook.
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Max-Flow Min-Cut Theorem 3

|
Max-Flow Min-Cut Theorem If f is a flow in a flow network G = (V, E) with
source s and sink t, the the following conditions are equivalent:

'2) Theresidual network G¢ contains no augmenting paths.
3) |f| =c(S,T)forsome cut (S,T) of G.

Proof. (cont’d) (2) = (3): When Gy contains no
augmenting paths, define a cut (S, T) s.t.

*S={veV:Is~»vpathinGs} (s €S)
e T=V—-S(teT)
Foranyu € S and v € T, we must have ¢s(u, v) = 0.

By Lemma (on slide 11), we have |f| = f(S,T).
Need to show: [ (S5, T) = c(S,T).
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Max-Flow Min-Cut Theorem g3

|
Max-Flow Min-Cut Theorem If f is a flow in a flow network G = (V, E) with
source s and sink t, the the following conditions are equivalent:

'2) Theresidual network G¢ contains no augmenting paths.
3) |f| =c(S,T)forsome cut (S,T) of G.
Proof. (cont’d) (2) = (3): Show that (S, T) = c(S,T).
Forany u € S and v € T, we must have ¢ (u, v) = 0.
Based on definitions of residual capacity,
* If (u,v) € E, thenc(u,v) = f(u,v)
* If (v,u) € E, then f(v,u) =0
f(S,T) = Xyes Zwer f(U, V) — Lyes Zver f (v, 1)

= Yues 2wer c(w, v) = ¢(S,T) [
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The Ford-Fulkerson Method

The Basic Ford-Fulkerson Algorithm

N\
DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY CSCl 7432, Fall 2022 28




.~ The Basic Ford-Fulkerson Algorithm

|
FORD-FULKERSON(G, s, t)

1 for each edge (u,v) € G.E

2 (u,v).f=0

3 build the residual network G

4 while there exists a path p from s to ¢ in G

5 augment f by c¢(p)
6 update G

* foisamaxflowinG.

* |fzl =13
e A min-cut of G:

§ = {s}
No augmenting path T ={a,b,t}
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- The Trucking Problem Example ()

No more augmenting path.

* fcisa maximum flow in G.

* |fs| =23
* A min-cut of G:

S contains all the vertices that

S ={s,v,V,,V,}-

can be reached from s in Gfs'

T ={vs,t}
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.~ Time Complexity of Ford-Fulkerson Algorithm .

|
FORD-FULKERSON(G, s, t)

1 for each edge (u,v) € G.E
2 (u,v).f=0

3 build the residual network Gy * It can be very slow.
4 while there exists a path p from s to ¢ in G

5 augment f by c¢(p)
6  update Gy It takes 2x10° iterations.

* The time complexity depends on how we
find the augmenting path in line 4.
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.~ | Analysis of Ford-Fulkerson Algorithm

FORD-FULKERSON(G, s, t) e Lines 1-2: O(m)
1 for each edge (u,v) € G.E
2 wv).f=0 * Line3:0(n+m)
3 build the residual network G e Lines 4-6: in each iteration,
4 while there exists a path p from s to ¢ in G e Line 4: O(Tl + m) Y by DFES or BES
5 augment f by c¢(p) e Line5: 0 (Tl)
6 update G )
* Line6: O(n)

e Assumption: Capacities are all integers.
* Then, each augmenting path increases |f| by at least 1. — Why?
* If max flow is f*, then there will be at most |f *| iterations.

* Total running time: O(m|f™*|) — NOT polynomial in input size!
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The Ford-Fulkerson Method
The Edmonds-Karp algorithm

N\
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"\ | Edmonds-Karp Algorithm
,
* |t follows the basic Ford-Fulkerson algorithm.

» Computes augmenting paths by using BFS in G¢ to find the shortest path
from s to t with all edge weights being 1. Call it the BFS path.
e Time complexity of Edmonds-Karp algorithm: O (nm?)
- NO assumption on values of capacities

* That is, the number of iterations of the while loop is in O(nm).”
* In each iteration, Gy is updated with = 1 edge deleted.

* We will prove: Each edge in Gf can be deleted and reinserted back later
for at most n/2 times.

* Then, with O(m) edges, there are O(nm) iterations in total.

* This is Theorem 26.8 on p.729 of the textbook.
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L Analysis of Edmonds-Karp Algorithm s

,\
Lemma: Each edge (u, v) in Gf can be deleted and reinserted back later for

at most n/2 times.

« Recall: BFS takes a graph Gy with starting vertex s. It can compute v. d for
every v € V, where v. d = distance (smallest # of edges) from s to v.

* For any edge (u, v) on a BFS path, v.d = u.d + 1.

@——»M oa—
Gy
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Analysis of Edmonds-Karp Algorithm s

.\
Q: How does v.d change as Gy changes?

Claim: For every v € V/, v.d never decreases.

Proof. When an edge in G¢ is deleted, v. d will not decrease. — \Why?
* Only need to discuss the cases when an edge is added to Gy.

* Q: How does G change in each iteration?

Gf Breadth-first tree of Gf
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Analysis of Edmonds-Karp Algorithm s

l
Let f be the flow before the current iteration and f' be the flow updated with
augmenting path (BFS path) p in the current iteration.

'» Recall: Residual capacity is defined as: () _ A ), M) @

For any edge (u, v), cr(u,v) =4 flv,u), if (v,u) € E,
, 0, otherwise.

* If (u,v) is added to G: s

* Case l: f(u,v) =c(u,v)and f'(u,v) < c(u,v) = (v,u) is on p.
e Case 2: f(v,u)=0and f'(v,u) > 0= (v,u)isonp.

* If (1, v) is deleted from G:
e Casel: f(u,v) < c(u,v)and f'(u,v) = c(u,v) = (u,v)ison p.
e Case2: f'(v,u) =0and f(v,u) > 0= (u,v)isonp.
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Analysis of Edmonds-Karp Algorithm s

|
Claim: For every v € V, v.d never decreases.

Proof. (cont’d) Discuss cases when an edge (u, v) is added to G¢.
‘We've shown: if an edge (u, v) is added to G¢, then (v, u) is on p.
* Suppose v.d = k before edge (u, v) is added to G¢.

* As pis a BFS path, for (v,u), u.d =v.d+1 =k + 1.

* So, adding (u, v) will not decrease v.d. — Why?

?@\

©)

o
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Analysis of Edmonds-Karp Algorithm s

Lemma: Each edge (u, v) in G can be deleted and reinserted back later for
at most n/2 times.

'PLof. Suppose at some point, u.d = k.

* When edge (u, v) is deleted from Gy, (u, v) is on the BFS path p.
So,v.d=u.d+1=>k+1.

* When edge (u, v) is later added back into G¢, (v, u) is on the BFS path p’.
So,u.d =v.d+1=>k+ 2.

That is, u. d will increase by at least 2.

As 0 < u.d < n,lemma is proved.
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. ' The Maximum-Bipartite-Matching Problem

.\
* Agraph G = (V,E) is bipartite if we can partitionV=LUR(LNR =0@)
such that all edges in E go between L and R.

* In an undirected graph G = (V, E), a matching is a subset of edges M € E
s.t. for all v € IV, at most one edge of M is incident on v.

* Vertex v is matched by M if an edge of M is
incident on it; otherwise v is unmatched.

* A maximum matching is a matching of

maximum cardinality, that is, a matching M
s.t. [M| = |M'| for any matching M'.

* The Maximum-Bipartite-Matching Problem:
* Given: A bipartite graph ¢ = (LUR,E)

* Goal: Find a maximum matching. . - i 5
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. Maximum-Bipartite-Matching as Maximum-Flow

.\
Given a bipartite graph G = (L U R, E), we define the corresponding flow

network G' = (V', E") as follows:

V' =V uU{s,t}

c EF'={(s,u):u€eL}u{(u,v):(u,v) € E}U{(v,t):vUR},
e c(u,v) = 1forall (u,v) € E'.

L R
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Integrality Theorem

.\
Integrality Theorem . If the capacities of all edges in a flow network are

integers, then

1. The value of the maximum flow f produced by the Ford-Fulkerson
method, |f], is also an integer.

2. For every edge (u, v), the value of f (u, v) is an integer.

Lemma : Let G = (L U R, E) be a bipartite graph and G’ = (V', E") be its
corresponding flow network. Then, a matching M in G corresponds to a flow
finG', with |[M| = |[f].

Proof. See next slide.

* This is Theorem 26.10 on p.734 of the textbook.
**See Lemma 26.9 on p.733-734 of the textbook for a complete proof.
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Correspondence Between Matchings and Flows .

|
Lemma: Let G = (L U R, E) be a bipartite graph and G’ = (V', E") be its
corresponding flow network. Then, a matching M in G corresponds to a flow
fin G', with |[M| = |f].
Proof.
e “=”:Show |M| = k = 3f s.t. |f| = k.
* For each edge gu, v) € M,withu € L, v €ER,
fu,v) =1, f(s,u) =1,and f(v,t) = 1.
* |fl = 2ver f(s,v) = k.
o “<":Show |f| =k = IM s.t. [M| = k.
e If f(u,v) >0, then f(u,v) =1
M ={(uw,v):u€elL,veR,f(uv) =1}
e M is a matching. — Why?
* M| =f(LU{sL,RU{t) =|f] =k []
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Correspondence Between Matchings and Flows .

Integrality Theorem. If the capacities of all edges in a flow network are
integers, then

1. The value of the maximum flow f produced by the Ford-Fulkerson
method, |f], is also an integer.

2. For every edge (u, v), the value of f (u, v) is an integer.

Lemma: Let G = (L U R, E) be a bipartite graphand ¢’ = (V', E") be its
corresponding flow network. Then, a matching M in G corresponds to a flow
finG', with |[M| = |[f].

The Integrality Theorem and the Lemma lead to the following conclusion.

Corollary (26.11): The cardinality of a maximum matching in a bipartite
graph = the value of a maximum flow in its corresponding flow network.
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Finding a Maximum Bipartite Matching

Given a bipartite graph G = (LUR,E), withn = |L U R| and m = |E]|,
1. Create flow network ¢' = (V', E")
e [V'|=n+2and |E'| =m+n € 0(m);
e c(u,v) = 1forall (u,v) € E'.
* Running time: O(m + n)
2. Apply the Ford-Fulkerson method on G’
e Let M be max matchingin G,
« |IM| < min{|L|, |R|} € O(n). L R
e Ifis f" is max flow in G', then |f'| = |[M| € O(n).
* Running time: 0 (mn)

DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY CSCl 7432, Fall 2022

47



Thank you!
Questions?
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