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The Single-Source Shortest 
Path problem (SSSP)
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Shortest Path

• Recall: In BFS, 𝑣. 𝑑 = smallest # of edges from 𝑠 to 𝑣
• Example:

• If the edges have weights, then a shortest path is a shortest weighted path 
= sum of weights of all edges on the path.
• Define 𝛿(𝑠, 𝑣) as the weight of a shortest path from 𝑠 to 𝑣.
• If there is no path from 𝑠 to 𝑣, then we set 𝛿 𝑠, 𝑣 = ∞.
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Shortest Path Problems
Input: A digraph 𝐺 = 𝑉, 𝐸 , with weight 𝑤(𝑢, 𝑣) on each edge 𝑢, 𝑣 ∈ 𝐸.
Variants of shortest path problems:
• Single-source shortest-paths problem:
• Additional input: A source vertex 𝑠 ∈ 𝑉.
• Output: A shortest path from 𝑠 to each vertex 𝑣 ∈ 𝑉.

• Single-destination shortest-paths problem:
• Additional input: A destination vertex 𝑡 ∈ 𝑉.
• Output: A shortest path to 𝑡 from each vertex 𝑣 ∈ 𝑉.

• Single-pair shortest-path problem:
• Additional input: A starting vertex 𝑢 and an ending vertex 𝑣.
• Output: A shortest path from 𝑢 to 𝑣.

• All-pairs shortest-paths problem:
• Output: A shortest path from 𝑢 to 𝑣 for every pair of vertices 𝑢 and 𝑣.
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Single-Source Shortest Paths (SSSP)
• Edge weights can be negative.
• 𝛿 𝑠, 𝑣 = the shortest path weight from 𝑠 to 𝑣
• 𝛿 𝑠, 𝑣 = ∞ if 𝑣 is not reachable from 𝑠 (no 𝑠 ↝ 𝑣 path).
• 𝛿 𝑠, 𝑣 = −∞ if there is a negative weight cycle on some 𝑠 ↝ 𝑣 path;
• Example: (𝛿 values appear inside the vertices)
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Shortest Path Properties
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• Optimal substructure (Lemma 24.1 in textbook):
Let 𝑝 = 𝑣!, 𝑣", ⋯ , 𝑣#$", 𝑣# be a shortest path from 𝑣! to 𝑣#. Then, the subpath
𝑣%, 𝑣%&", ⋯ , 𝑣' of 𝑝 with 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 must be a shortest path from 𝑣% to 𝑣'.

• Triangle inequality (Lemma 24.10 in textbook):
For all (𝑢, 𝑣) ∈ 𝐸, we have 𝛿 𝑠, 𝑣 ≤ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 .

• Example:



The Single-Source Shortest 
Path problem (SSSP)

Outline of SSSP Algorithms
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Outline of SSSP Algorithms

Each vertex 𝑣 ∈ 𝑉 will have two attributes:
• 𝑣. 𝑑: Initially = ∞, always ≥ 𝛿 𝑠, 𝑣 , and finally = 𝛿 𝑠, 𝑣
• 𝑣. 𝜋 = predecessor of 𝑣 on a shortest path from 𝑠
All SSSP algorithms
1. Start with INITIALIZE-SINGLE-SOURCE:

2. Then relax edges to update 𝑣. 𝑑 values.
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Relaxing An Edge

• In a SSSP algorithm, the 𝑣. 𝑑 value is only updated by RELAX:

• Examples:
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Shorted-Paths Tree of SSSP
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• Predecessor-subgraph property (Lemma 24.17 in textbook):
The shortest paths from 𝑠 to all 𝑣 ∈ 𝑉 that are reachable from 𝑠 form a 
shorted-paths tree rooted at 𝑠.
• Example:



Algorithms for SSSP

• Dijkstra’s algorithm
• Only works for graphs with NO negative-weight edges.
• Uses greedy approach

• Bellman-Ford algorithm
• Allows negative-weight edges.
• Output:
• If the graph contains a negative-weight cycle, return FALSE;
• Otherwise, return TRUE and compute all the 𝛿 𝑠, 𝑣 values and the 

shorted-paths tree.
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Dijkstra’s Algorithm for SSSP

Dijkstra’s Algorithm
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Outline of Dijkstra’s Algorithm

• For graphs with NO negative-weight edges.
• Dijkstra’s algorithm is a greedy algorithm.
• Greedy choice: Find the vertex that is the closest to 𝑠.

• Outline of Dijkstra’s algorithm:

• Q: How to implement lines 4 and 6 in the for loop?
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DIJKSTRA(𝐺,𝑤, 𝑠)
1   INITIALIZE-SINGLE-SOURCE(𝐺, 𝑠)
2   𝑆 = ∅
3   for i = 1 to n // n = |𝑉|
4         find vertex 𝑢 in 𝑉 − 𝑆 that is the closest to s (i’th closest to s in 𝑉)
5         𝑆 = 𝑆 ∪ {𝑢}
6         update 𝑑 values using RELAX



Finding the i’th Closest Vertex 

Claim: Let 𝑣 ∈ 𝑉 be the 𝑖’th closest vertex to 𝑠 and 𝑃 be a shortest path from 
𝑠 to 𝑣. If 𝑆 contains the 𝑖 − 1 closest vertices to 𝑠, then all intermediate 
vertices in 𝑃 are in 𝑆.
Proof. (by contradiction)
• Suppose there is an intermediate vertex 𝑢 in 𝑃 and 𝑢 ∉ 𝑆.
• 𝑢 is closer to 𝑠 than 𝑣.  (Due to no negative-weight edges)
• ⇒ 𝑣 is not the 𝑖’th closest vertex to 𝑠 (since 𝑆 already contains the 𝑖 − 1

closest vertices to 𝑠) ⎯ A contradiction
☐

Claim ⇒ If 𝑣 is the 𝑖’th closest vertex to 𝑠, then we must have 
𝛿 𝑠, 𝑣 = 𝛿 𝑠, 𝑢 + 𝑤(𝑢, 𝑣) for some 𝑢 ∈ 𝑆.
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Dijkstra’s Algorithm
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At each iteration 𝑖 of the while loop,
• 𝑆 contains the 𝑖 − 1 closest vertices to 𝑠.
• 𝑥. 𝑑 = 𝛿 𝑠, 𝑥 for every 𝑥 ∈ 𝑆.
• 𝑄 = 𝑉 − 𝑆 and vertex 𝑢 with min 𝑑 value in 𝑄 will 

be the 𝑖’th closest vertex to 𝑠
• Every edge (𝑢, 𝑣) is then relaxed to update 𝑣. 𝑑 for 

each 𝑣 ∈ 𝐴𝑑𝑗[𝑢].
Example:



Dijkstra’s Algorithm Example (1/3)
Example:
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𝑆 = ∅, 𝑄 = {𝑠, 𝑡, 𝑥, 𝑦, 𝑧}

𝑆 = 𝑠 , 𝑄 = {𝑡, 𝑥, 𝑦, 𝑧}

𝑣 s t x y z

𝑣. 𝜋 NIL NIL NIL NIL NIL

𝑣. 𝑑 0 ∞ ∞ ∞ ∞

𝑣 s t x y z

𝑣. 𝜋 NIL s NIL s NIL

𝑣. 𝑑 0 10 ∞ 5 ∞



Dijkstra’s Algorithm Example (2/3)
Example (cont’d):
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𝑆 = {𝑠, 𝑦}, 𝑄 = {𝑡, 𝑥, 𝑧}

𝑆 = {𝑠, 𝑦, 𝑧}, 𝑄 = {𝑡, 𝑥}

𝑣 s t x y z

𝑣. 𝜋 NIL y y s y

𝑣. 𝑑 0 8 14 5 7

𝑣 s t x y z

𝑣. 𝜋 NIL y z s y

𝑣. 𝑑 0 8 13 5 7



Dijkstra’s Algorithm Example (3/3)
Example (cont’d):
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𝑆 = 𝑠, 𝑦, 𝑧, 𝑡 , 𝑄 = {𝑥}

𝑆 = {𝑠, 𝑦, 𝑧, 𝑡, 𝑥}, 𝑄 = ∅

𝑣 s t x y z

𝑣. 𝜋 NIL y z s y

𝑣. 𝑑 0 8 9 5 7

𝑣 s t x y z

𝑣. 𝜋 NIL y z s y

𝑣. 𝑑 0 8 9 5 7



Running Time of Dijkstra’s Algorithm

• Assume 𝐺 is represented by adjacency lists.
• 𝑄 can be implemented as a min-heap,
• Line 3: BUILD-MIN-HEAP takes 𝑂(𝑛) time
• Line 5: EXTRACT-MIN takes 𝑂(log 𝑛) time
• Add line 4 DECREASE-KEY to RELAX: takes 
𝑂(log 𝑛) time.

• Running time of DIJKSTRA:
𝑇 𝑛 = 𝑂 𝑛 + 𝑂 ∑, log 𝑛 + deg(𝑣) K log 𝑛

= 𝑂 (𝑛 +𝑚) log 𝑛
= 𝑂(𝑚 log 𝑛)
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4            DECREASE-KEY(Q, v, v.d)



Dijkstra’s Algorithm for SSSP

Correctness of Dijkstra’s Algorithm
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Correctness of Dijkstra’s Algorithm (1/3)

Theorem: For a digraph G with no negative-weight 
edges and a source vertex 𝑠, Algorithm DIJKSTRA
terminates with 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for every 𝑣 ∈ 𝑉.
Proof. Use loop invariant.
LI: At the beginning of each iteration of the while
loop, 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for every 𝑣 ∈ 𝑆.
• Initialization: 𝑆 = ∅, LI is trivially true.
• Maintenance: If LI is true for some iteration and 𝑢

is the vertex selected in line 5, then LI is still true at 
the end of this iteration. (See next slide)
• Termination: At the end of the while loop, 𝑄 = ∅, 

so 𝑆 = 𝑉. LI implies that 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for every 
𝑣 ∈ 𝑉.
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Correctness of Dijkstra’s Algorithm (2/3)
Proof. (cont’d)
LI: At the beginning of each iteration of the while loop, 
𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for every 𝑣 ∈ 𝑆.
Maintenance: 
• Suppose that 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for every 𝑣 ∈ 𝑆 at the 

beginning of some iteration.
• Let 𝑢 be the vertex selected in line 5 in this iteration.
• Need to show that 𝑢. 𝑑 = 𝛿 𝑠, 𝑢 at the end of this 

iteration. (Only 𝑢’s 𝑑 value might be changed by the 
RELAX procedure.)
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Consider a shortest path from 
𝑠 to 𝑢, through edge 𝑥, 𝑦 , 
where 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑄.



Correctness of Dijkstra’s Algorithm (3/3)
Proof. (cont’d)
Need to show: 𝑢. 𝑑 = 𝛿 𝑠, 𝑢
Consider a shortest path from 
𝑠 to 𝑢, through 𝑥, 𝑦 .
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(1) 𝑥 ∈ 𝑆 ⇒ 𝑥. 𝑑 = 𝛿 𝑠, 𝑥
(2) 𝑦. 𝑑 ≥ 𝛿 𝑠, 𝑦 and 𝑢. 𝑑 ≥ 𝛿 𝑠, 𝑢
(3) (𝑥, 𝑦) was relaxed when 𝑥 was added to 𝑆: 

𝑦. 𝑑 ≤ 𝑥. 𝑑 + 𝑤 𝑥, 𝑦 = 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 = 𝛿 𝑠, 𝑦
(4) 𝛿 𝑠, 𝑦 ≤ 𝛿 𝑠, 𝑢 as 𝑦 is on the shortest path from 𝑠 to 𝑢
(5) (2)-(4) ⇒ 𝑦. 𝑑 = 𝛿 𝑠, 𝑦 ≤ 𝛿 𝑠, 𝑢 ≤ 𝑢. 𝑑
(6) 𝑢. 𝑑 ≤ 𝑦. 𝑑 as 𝑢 = EXTRACT-MIN(Q)
(7) (5)&(6) ⇒ 𝑢. 𝑑 = 𝑦. 𝑑 = 𝛿 𝑠, 𝑦 = 𝛿 𝑠, 𝑢 ☐



When There are Negative-Weight Edges

• The following example shows that Dijkstra’s 
algorithm may fail when the input graph has 
negative-weight edges.
• Example: Source vertex is 𝑠.
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s x

y z

3

15
-4 𝑣 𝑠 𝑥 𝑦 𝑧

𝑣. 𝜋
𝑣. 𝑑 0 ∞ ∞ ∞

Before the while loop:
𝑆 = ∅, 𝑄 = {𝑠, 𝑥, 𝑦, 𝑧}



Bellman-Ford Algorithm for SSSP
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Bellman-Ford Algorithm

• Allows negative-weight edges.
• Returns FALSE if the graph contains a negative-weight cycle;
• Otherwise, returns TRUE and computes all the 𝛿 𝑠, 𝑣 values and the 

shorted-paths tree.
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• The nested for loops (in lines 2-4) relax 
all edges 𝑛 − 1 times.
• Running time of BELLMAN-FORD:

𝑇 𝑛 = 𝑂 𝑛 + 𝑂 𝑛𝑚 + 𝑂(𝑚)
⇒ 𝑇(𝑛) ∈ 𝑂(𝑛𝑚)



Bellman-Ford Algorithm Example 1 (1/2)

Example 1: 𝐺 has no negative cycle. Source is 𝑠.
Edge order: 𝑥, 𝑧 , 𝑦, 𝑥 , 𝑠, 𝑥 , 𝑠, 𝑦
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𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL NIL NIL NIL
𝑣. 𝑑 0 ∞ ∞ ∞

0 ∞

∞ ∞

3

15 -4

𝑠 𝑥

𝑦 𝑧

𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL 𝑠 𝑠 NIL
𝑣. 𝑑 0 3 5 ∞

0 3

5 ∞

3

15 -4

𝑠 𝑥

𝑦 𝑧

1st iteration:



Bellman-Ford Algorithm Example 1 (2/2)

Example 1: Edge order: 𝑥, 𝑧 , 𝑦, 𝑥 , 𝑠, 𝑥 , 𝑠, 𝑦
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𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL 𝑦 𝑠 𝑥
𝑣. 𝑑 0 1 5 4

0 1

5 4

3

15 -4

𝑠 𝑥

𝑦 𝑧

𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL 𝑦 𝑠 𝑥
𝑣. 𝑑 0 1 5 2

0 1

5 2

3

15 -4

𝑠 𝑥

𝑦 𝑧

3rd iteration:

2nd iteration:



Correctness of Bellman-Ford Algorithm (1/2)

Lemma 1: Suppose that 𝐺 has no negative-weight cycle reachable from 
source 𝑠. Then after 𝑛 − 1 iterations, 𝑣. 𝑑 = 𝛿(𝑠, 𝑣) for all 𝑣 ∈ 𝑉.
Proof. Consider any vertex 𝑣 ∈ 𝑉 and let path 𝑝 = 𝑣!, 𝑣", ⋯ , 𝑣#$", 𝑣# be the 
shortest path from 𝑠 to 𝑣, where 𝑣! = 𝑠 and 𝑣# = 𝑣.
We prove by induction on 𝑖 that after iteration 𝑖 ≥ 0, 𝑣%. 𝑑 = 𝛿(𝑠, 𝑣%). 
• Base case: 𝑖 = 0 is trivial.
• Inductive step: IH: 𝑣%. 𝑑 = 𝛿(𝑠, 𝑣%) after iteration 𝑖, for 0 ≤ 𝑖 ≤ 𝑘 − 1.

Need to show: 𝑣%&". 𝑑 = 𝛿(𝑠, 𝑣%&") after iteration 𝑖 + 1.
• When (𝑣%, 𝑣%&") is relaxed during iteration 𝑖 + 1, we have 
𝑣%&". 𝑑 ≤ 𝑣%. 𝑑 + 𝑤 𝑣%, 𝑣%&"

= 𝛿 𝑠, 𝑣% +𝑤 𝑣%, 𝑣%&" = 𝛿(𝑠, 𝑣%&")
• 𝑣%&". 𝑑 ≥ 𝛿(𝑠, 𝑣%&") ⇒ 𝑣%&". 𝑑 = 𝛿 𝑠, 𝑣%&" .              ☐
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Correctness of Bellman-Ford Algorithm (2/2)

Lemma 2: If 𝐺 has a negative-weight cycle reachable from source 𝑠, then the 
algorithm returns FALSE.
Proof. Suppose there is a negative-weight cycle 𝑐 = 𝑣!, 𝑣", ⋯ , 𝑣# , with 𝑣! = 𝑣#. 
The weight of 𝑐 is 𝑤 𝑐 = ∑%1"# 𝑤(𝑣%$", 𝑣%) < 0.
• Suppose (for contradiction) that the algorithm returns TRUE. Then,

𝑣%. 𝑑 ≤ 𝑣%$". 𝑑 + 𝑤 𝑣%$", 𝑣% for all 𝑖 = 1, 2,⋯ , 𝑘.
• Sum around cycle 𝑐:

∑%1"# 𝑣%. 𝑑 ≤ ∑%1"# 𝑣%$". 𝑑 + 𝑤 𝑣%$", 𝑣%
= ∑%1"# 𝑣%$". 𝑑 + ∑%1"# 𝑤 𝑣%$", 𝑣% ,

• but ∑%1"# 𝑣%. 𝑑 = ∑%1"# 𝑣%$". 𝑑 as 𝑣! = 𝑣#
• This implies: 𝑤(𝑐) ≥ 0 – contradicts 𝑤 𝑐 < 0.                                                           ☐
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Bellman-Ford Algorithm Example 2 (1/2)

Example 2: 𝐺 has negative cycle. Source is 𝑠.
Edge order: 𝑧, 𝑦 , 𝑥, 𝑧 , 𝑦, 𝑥 , 𝑠, 𝑥 , 𝑠, 𝑦
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0 ∞

∞ ∞

3

15 -4

2

𝑠 𝑥

𝑦 𝑧

𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL NIL NIL NIL
𝑣. 𝑑 0 ∞ ∞ ∞

0 3

5 ∞

3

15 -4

2

𝑠 𝑥

𝑦 𝑧

𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL 𝑠 𝑠 NIL
𝑣. 𝑑 0 3 5 ∞

1st iteration:



Bellman-Ford Algorithm Example 2 (2/2)

Example 2: Edge order: 𝑧, 𝑦 , 𝑥, 𝑧 , 𝑦, 𝑥 , 𝑠, 𝑥 , 𝑠, 𝑦
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0 1

5 4

3

15 -4

2

𝑠 𝑥

𝑦 𝑧

𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL 𝑦 𝑠 𝑥
𝑣. 𝑑 0 1 5 4

0 1

5 2

3

15 -4

2

𝑠 𝑥

𝑦 𝑧

𝑣 𝑠 𝑥 𝑦 𝑧
𝑣. 𝜋 NIL 𝑦 𝑠 𝑥
𝑣. 𝑑 0 1 5 2

3rd iteration:

2nd iteration:



Thank you!
Questions?
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