
Algorithm Analysis and Data Structures
CSCI 7432 - Fall 2022

Randomized Algorithms
Dr. Yao XU

Assistant Professor

Department of Computer Science
Georgia Southern University

Email: yxu@georgiasouthern.edu

Table of Contents

1. Randomized Algorithms
• Probabilistic Analysis (5.2 – 5.3)
• Randomized Linear Search

2. Review: Quicksort Algorithm (7.1 – 7.2)
3. Randomized Quicksort (7.3 – 7.4)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 2

Randomized Algorithms

Probabilistic Analysis

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 3

Probability Basics

• A (discrete) random variable 𝑋 is a function that takes values (real
numbers) in some range according to a probability distribution.
• Example 1: Pr 𝑋 = 1 = 0.5, Pr 𝑋 = 2 = 0.2, Pr 𝑋 = 3 = 0.3.
• Probability must be non-negative and sums to 1.

• The expectation of a random variable is a weighted average of the
outcome according to the probability distribution:

𝐸 𝑋 =,
!

𝑥 . Pr{𝑋 = 𝑥}

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 4

Indicator Random Variables

• The indicator random variable takes values in 0, 1 indicating whether
some event happened or didn't happen.

𝑋" = 21, if 𝐴 occurs,
0, if 𝐴 does not occur.

• 𝐸 𝑋" = Pr 𝐴 = Pr{𝑋" = 1}
• Example: Define 𝑋# as the number of heads when tossing a fair coin once.
• Pr 𝑋# = 1 = Pr 𝑋# = 0 = $

%
• The expected number of heads in one toss is

𝐸 𝑋# = Pr 𝑋# = 1 =
1
2

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 5

Linearity of Expectation

• Expectation has a beautiful property – Expectation is linear.

• For any two random variables 𝑋 and 𝑌, we have:
𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸[𝑌].

Example: Given a fair coin, what is the expected number of heads when the
coin is tossed 1,000,000 times?

Solution: Let 𝑋& be the number of heads in 𝑗-th toss. Then the total number
of heads in 1,000,000 tosses is 𝑋 = ∑&'$

$,))),)))𝑋&.

𝐸 𝑋 = 𝐸 ,
&'$

$,))),)))

𝑋& = ,
&'$

$,))),)))

𝐸 𝑋& = ,
&'$

$,))),)))

Pr{𝑋& = 1} = 500,000

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 6

Motivation for Studying Expectation

In the previous coin tossing example,
• Tossing the coin many times means we expect to see about 𝐸 𝑋 “heads”.
• It is very unlikely, for a fair coin, to see < 495,000 “heads”.

For a randomized algorithm, whose behavior is determined not only by its
input but also by values produced by a random-number generator.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 7

A random-number generator:
RANDOM(a, b) returns an
integer between 𝑎 and 𝑏,
inclusive, with each such
integer being equally likely.

• We analyze the expected running time.
• We can have multiple independent

instances running in parallel and use
whichever halts first.

Randomly Permuting Arrays

• When an array is part of the input, a randomized algorithm may randomize
the input by permuting the given input array.
• An 𝑂 𝑛 -time method of permuting a given array:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 8

RANDOMIZE-IN-PLACE(A)
n = A.length
for i = 1 to n

swap A[i] with A[RANDOM(i, n)]

RANDOM(a, b) returns an
integer between 𝑎 and 𝑏,
inclusive, with each such
integer being equally likely.

• RANDOMIZE-IN-PLACE(A) computes a uniform random permutation.*

• That is, all possible permutations of the array 𝐴 are equally likely.
• Can be proved using LI. *

* See Lemma 5.5 on p.127-128 of the textbook.

Randomized Algorithms

Randomized Linear Search

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 9

Linear Search

• Average-case running time?
• Assume some probability distribution over the inputs.
• Example: Assume all possible permutations of the array are equally

likely. - Uniform random permutation

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 10

LINEAR-SEARCH(A, x)
1 for i = 1 to A.length
2 if A[i] == x
3 return i
4 return NIL

1 2 3 4 ... n

28 53 17 36 ... 9

• Worst-case running time:

• Best-case running time:
Θ 𝑛
Θ(1)

Example:

Average Case Analysis

• Let 𝑡* be the number of Key Comparisons (KC) when 𝐴 𝑖 = 𝑥.
• Then, the average number of KC made by LINEAR-SEARCH is

𝐸 𝑇(𝑛) = ∑*'$+ 𝑡* . Pr{𝑇(𝑛) = 𝑡*}

= 1 . $
+
+ 2 . $

+
+ 3 . $

+
+⋯+ 𝑛 . $

+
= +,$

%
.

• Average-case running time: Θ(𝑛)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 11

LINEAR-SEARCH(A, x)
1 for i = 1 to A.length
2 if A[i] == x
3 return i
4 return NIL

• Assume uniform random permutation.

• Assume there is exactly one index 𝑖 such
that 𝐴 𝑖 = 𝑥. Then,

Pr 𝐴 𝑖 = 𝑥 = $
+

, where 𝑛 = 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ

Randomized Linear Search (1/2)

• We discuss the expected running time when the algorithm itself makes
random choices.
• We will compute the expected number of KC made by RANDOMIZED-

LINEAR-SEARCH.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 12

LINEAR-SEARCH(A, x)
1 for i = 1 to A.length
2 if A[i] == x
3 return i
4 return NIL

RANDOMIZED-LINEAR-SEARCH(A, x)
1 RANDOMIZE-IN-PLACE(A)
2 for i = 1 to A.length
3 if A[i] == x
4 return i
5 return NIL

RANDOMIZED-LINEAR-SEARCH(A, x)
1 RANDOMIZE-IN-PLACE(A)
2 for i = 1 to A.length
3 if A[i] == x
4 return i
5 return NIL

Randomized Linear Search (2/2)

• The expected number of KC made by RANDOMIZED-LINEAR-SEARCH is

𝐸 𝑇(𝑛) = ∑*'$+ 𝑡* . Pr{𝑇(𝑛) = 𝑡*} =
+,$
%

.

• The expected running time of RANDOMIZED-LINEAR-SEARCH is the same
as the average-case running time of LINEAR-SEARCH.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 13

• Assume there is exactly one index 𝑖 such
that 𝐴 𝑖 = 𝑥.

• Then, Pr 𝐴 𝑖 = 𝑥 = $
+

.

• Let 𝑡* be the number of KC made when
𝐴 𝑖 = 𝑥.

Review: Quicksort Algorithm

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 14

The Quicksort Algorithm

• Divide-and-conquer
• Ideas:
• Pick one key (pivot), compare it to all others.
• Rearrange 𝐴 to be:

• Recursively sort subarrays before and after the
pivot.

• The PARTITION procedure returns 𝑞 such that
• 𝐴 𝑞 = 𝑝𝑖𝑣𝑜𝑡
• All elements ≤ 𝑝𝑖𝑣𝑜𝑡 are in 𝐴 𝑝. . (𝑞 − 1)
• All elements > 𝑝𝑖𝑣𝑜𝑡 are in 𝐴 𝑞 + 1 . . 𝑟

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 15

QUICKSORT(A, p, r)
if p < r

q = PARTITION(A, p, r)
QUICKSORT(A, p, q - 1)
QUICKSORT(A, q + 1, r)

PARTITION(A, p, r)
x = A[r] // pivot is the last element
i = p – 1
for j = p to r - 1
if A[j] ≤ x

i = i + 1
swap A[i] and A[j]

swap A[i + 1] and A[r]
return i + 1

≤ 𝑝𝑖𝑣𝑜𝑡 𝑝𝑖𝑣𝑜𝑡 > 𝑝𝑖𝑣𝑜𝑡

Quicksort Running Time

• Running time of PARTITION:
Θ(𝑛), where 𝑛 = 𝑟 − 𝑝 + 1.

• Running time of QUICKSORT:

𝑇 𝑛 = 2Θ 1 , 𝑛 ≤ 1
𝑇 𝑛$ + 𝑇 𝑛 − 1 − 𝑛$ + Θ 𝑛 , 𝑛 ≥ 2

where 0 ≤ 𝑛$ ≤ 𝑛 − 1.
• This raises the question:

How can we estimate 𝑛$?
There is no single answer.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 16

QUICKSORT(A, p, r)
if p < r

q = PARTITION(A, p, r)
QUICKSORT(A, p, q - 1)
QUICKSORT(A, q + 1, r)

PARTITION(A, p, r)
x = A[r]
i = p – 1
for j = p to r - 1
if A[j] ≤ x

i = i + 1
swap A[i] and A[j]

swap A[i + 1] and A[r]
return i + 1

Quicksort Worst-Case Running Time

• Running time recurrence:

𝑇 𝑛 = 2Θ 1 , 𝑛 ≤ 1
𝑇 𝑛$ + 𝑇 𝑛 − 1 − 𝑛$ + Θ 𝑛 , 𝑛 ≥ 2

where 0 ≤ 𝑛$ ≤ 𝑛 − 1.
• WC running time:

𝑇 𝑛 = 𝑇 0 + 𝑇 𝑛 − 1 + Θ 𝑛
• Solving the recurrence (by substitution method):

𝑇 𝑛 ∈ Θ(𝑛%).

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 17

Quicksort Best-Case Running Time

• Running time recurrence:

𝑇 𝑛 = 2Θ 1 , 𝑛 ≤ 1
𝑇 𝑛$ + 𝑇 𝑛 − 1 − 𝑛$ + Θ 𝑛 , 𝑛 ≥ 2

where 0 ≤ 𝑛$ ≤ 𝑛 − 1.
• BC running time: each partition is a bipartition

𝑇 𝑛 = 𝑇 𝑛/2 + 𝑇 𝑛/2 − 1 + Θ 𝑛
≈ 2𝑇 𝑛/2 + Θ 𝑛

• Solving the recurrence (by case 2 of Master Theorem):
𝑇 𝑛 ∈ Θ(𝑛 log 𝑛)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 18

Quicksort Almost-BC Running Time

• Assume that at each round we get an approximated bipartition.

• If each split is -
.
𝑛 and $

.
𝑛, the recurrence will be

𝑇 𝑛 ≈ 𝑇 -+
.

+ 𝑇 +
.
+ Θ 𝑛 ,

• A more extreme case with split /
$)
𝑛 and $

$)
𝑛 resulting in recurrence

𝑇 𝑛 ≈ 𝑇 /+
$)

+ 𝑇 +
$)

+ Θ 𝑛 .

• In both cases, 𝑇 𝑛 ∈ Θ(𝑛 log 𝑛).
• In fact, for any split of constant proportionality, the running time remains

to be Θ(𝑛 log 𝑛).*

* See p.175-176 of the textbook for detailed explanations.
CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 19

Quicksort Average-Case Running Time

• Running time recurrence:

𝑇 𝑛 = 2Θ 1 , 𝑛 ≤ 1
𝑇 𝑛$ + 𝑇 𝑛 − 1 − 𝑛$ + Θ 𝑛 , 𝑛 ≥ 2

where 0 ≤ 𝑛$ ≤ 𝑛 − 1.
• Q: “What is the probability for the left subarray to have size 𝑛$?”
• Average Case (AC): always ask “average over what input distribution?”
• Ans: We make a huge assumption about the input data.
• Example: Assume each possible input is equiprobable (uniform distribution).

That is, 𝑛$ can be 0, 1, 2,⋯ , 𝑛 − 2, 𝑛 − 1, with the same probability $
+

.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 20

Quicksort Space Complexity

• Extra space required at each recursive call is only
constant.
• Space complexity is Θ(1).
• A sorting algorithm is said to be in place if
• it rearranges all the elements within the array,
• with at most a constant number of extra memory

units required.
• QUICKSORT is an in-place sorting algorithm.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 21

QUICKSORT(A, p, r)
if p < r

q = PARTITION(A, p, r)
QUICKSORT(A, p, q - 1)
QUICKSORT(A, q + 1, r)

PARTITION(A, p, r)
x = A[r]
i = p – 1
for j = p to r - 1
if A[j] ≤ x

i = i + 1
swap A[i] and A[j]

swap A[i + 1] and A[r]
return i + 1

Randomized Quicksort

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 22

Randomized Algorithm v.s. AC Analysis

• AC analysis means we make an assumption on the input
• No guarantee that the assumption holds.
• Input is chosen once: on avg we might have a good running time, but

once input is given our running time is determined.
• A randomized algorithm works for any input (WC)
• Randomness in the coins we toss (not in the input) - so we control the

distribution of the coin toss.
• We can always start the algorithm anew if it takes too long; or run it

multiple times in parallel and use whichever halts first.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 23

Randomized Quicksort

• How to analyze the expected running time of RANDOMIZED-QUICKSORT?
• Technique #1: Find the recurrence relation for the expectation.
• Technique #2 (Optional): Find sum of expected indicator random variables,
𝑋!,#, indicating whether elements 𝑎! and 𝑎# are compared.
(See p.182-184 of the textbook for details.)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 24

• To improve the QUICKSORT algorithm, we use a random pivot.
• We invoke RANDOMIZED-PARTITION rather than PARTITION.

RANDOMIZED-QUICKSORT(A, p, r)
if p < r

q = RANDOMIZED-PARTITION(A, p, r)
RANDOMIZED-QUICKSORT(A, p, q - 1)
RANDOMIZED-QUICKSORT(A, q + 1, r)

RANDOMIZED-PARTITION(A, p, r)
// Randomly choose an integer between p and r
i = RANDOM(p, r)
swap A[r] with A[i]
return PARTITION(A, p, r)

Randomized Partition

• Running time of PARTITION: Θ(𝑛)
• Expected running time of RANDOMIZED-

PARTITION:
• Each element 𝐴[𝑖] gets swapped with 𝐴[𝑟]

with the same probability, $
+

.

• ∑*'$+ Θ(𝑛)· $
+
= Θ(𝑛)

• Same as the running time of PARTITION.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 25

RANDOMIZED-PARTITION(A, p, r)
1 i = RANDOM(p, r)
2 swap A[r] with A[i]
3 return PARTITION(A, p, r)

PARTITION(A, p, r)
1 x = A[r]
2 i = p – 1
3 for j = p to r - 1
4 if A[j] ≤ x
5 i = i + 1
6 swap A[i] and A[j]
7 swap A[i + 1] and A[r]
8 return i + 1

Expected Running Time of Randomized Quicksort (1/3)

Technique #1: Find the recurrence relation for the expectation.
• Recall: If PARTITION put 𝑛$ elements in one side of the pivot and 𝑛 − 𝑛$ − 1

on the other side, then
𝑇 𝑛 = 𝑇 𝑛$ + 𝑇 𝑛 − 1 − 𝑛$ + Θ(𝑛).

• Since the pivot is chosen uniformly at random, for 𝑘 = 0, 1, 2,⋯ , 𝑛 − 1,

Pr 𝑛$ = 𝑘 = Pr 𝑝𝑖𝑣𝑜𝑡 = 𝑘 + 1 −st smallest element = $
+

.

• Thus, 𝐸 𝑇 𝑛 = ∑0')+1$ 𝐸 𝑇 𝑘 + 𝐸 𝑇 𝑛 − 1 − 𝑘 + Θ(𝑛) . $
+

= Θ(𝑛) + %
+
∑0')+1$𝐸 𝑇 𝑘 .

• Need to solve this recurrence relation.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 26

Expected Running Time of Randomized Quicksort (2/3)

Solve the recurrence

𝐸 𝑇 𝑛 = Θ(𝑛) +
2
𝑛,
0')

+1$

𝐸 𝑇 𝑘

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 27

• Running time of PARTITION is dominated by the
total number of key comparisons (KC) (line 4)
• #KC = 𝑛 − 1 ⇒ Replace Θ(𝑛) by 𝑛 − 1.
• Solve the recurrence

𝐸 𝑇 𝑛 = (𝑛 − 1) +
2
𝑛,
0')

+1$

𝐸 𝑇 𝑘

PARTITION(A, p, r)
1 x = A[r]
2 i = p – 1
3 for j = p to r - 1
4 if A[j] ≤ x
5 i = i + 1
6 swap A[i] and A[j]
7 swap A[i + 1] and A[r]
8 return i + 1

Expected Running Time of Randomized Quicksort (3/3)

• Solve the recurrence

𝐸 𝑇 𝑛 = (𝑛 − 1) +
2
𝑛,
0')

+1$

𝐸 𝑇 𝑘

• Solution: 𝐸 𝑇 𝑛 = 2 𝑛 + 1 𝑯 𝑛 + 1 − (4𝑛 + 2) ∈ Θ(𝑛 log 𝑛)

(The Harmonic number 𝑯 𝑛 = ∑*'$+ $
*
= ln 𝑛 + 𝛾, where 𝛾 ≈ 0.577⋯)

• The next two slides show how this bound is obtained. (Optional)
• The expected running time of RANDOMIZED-QUICKSORT is in Θ(𝑛 log 𝑛).

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 28

Solving 𝐸 𝑇 𝑛 = 𝑛 − 1 + !
"
∑#$%"&'𝐸 𝑇 𝑖 (Optional) (1/2)

• Multiply both sides by 𝑛: 𝑛 . 𝐸 𝑇 𝑛 = 𝑛 𝑛 − 1 + 2∑*')+1$𝐸 𝑇 𝑖
• Then, we have: (𝑛 − 1)𝐸 𝑇 𝑛 − 1 = 𝑛 − 1 (𝑛 − 2) + 2∑*')+1%𝐸 𝑇 𝑖
• Subtract the above two terms:

𝑛 . 𝐸 𝑇 𝑛 − 𝑛 − 1 𝐸 𝑇 𝑛 − 1 = 2𝐸 𝑇 𝑛 − 1 + 2(𝑛 − 1)
⟹ 𝑛 . 𝐸 𝑇 𝑛 = 𝑛 + 1 𝐸 𝑇 𝑛 − 1 + 2(𝑛 − 1)

• With some arithmetics, we have:
2 3 +
+,$

= 2 3 +1$
+

+ %(+1$)
+(+,$)

= 2 3 +1$
+

+ %+
%(+,$)

− %
+(+,$)

= 2 3 +1$
+

+ %
+,$

− 2 $
+
− $

+,$

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 29

Solving 𝐸 𝑇 𝑛 = 𝑛 − 1 + !
"
∑#$%"&'𝐸 𝑇 𝑖 (Optional) (2/2)

• which gives you (by substitution method)
2 3 +
+,$

= 2 3 +1$
+

+ %
+,$

− 2 $
+
− $

+,$
= ⋯

= ∑*'$+ %
*,$

+ %
+,$

− 2 = ∑*'$+ %
*,$

− %+
+,$

.

• Recall the Harmonic number 𝐻 𝑛 = ∑*'$+ $
*
= ln 𝑛 + 𝛾, where 𝛾 ≈ 0.577⋯

• We have
𝐸 𝑇 𝑛 = 2 𝑛 + 1 𝐻 𝑛 + 1 − 4𝑛 + 2

≈ 2 𝑛 + 1 ln(𝑛 + 1) + 𝛾 − 4𝑛 + 2
∈ Θ(𝑛 log 𝑛).

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 30

Thank you!
Questions?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 31

