
Algorithm Analysis and Data Structures
CSCI 7432 - Fall 2022

NP-Related Concepts
Dr. Yao XU

Assistant Professor

Department of Computer Science
Georgia Southern University

Email: yxu@georgiasouthern.edu

Table of Contents

1. Complexity Classes: P and NP (34.1-34.2)
2. Complexity Class: NPC
• NP-Completeness and Reducibility (34.3)
• NP-Completeness Proofs (34.4)

3. NP-Complete Problems (34.5)
• The Clique Problem
• The Vertex Cover Problem
• Other NP-Complete Problems

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 2

Complexity Classes: P and NP

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 3

Complexity Classes

• Computational complexity: the amount of computational resources
required to solve a given task.
• A problem with input size 𝑛 can be solved by a polynomial-time algorithm

if its worst-case running time is 𝑂(𝑛!) for some constant 𝑘.
• Problems that are solvable by polynomial-time algorithms are called

tractable, or easy;
• Problems that require superpolynomial time (𝜔(𝑛!) for some constant 𝑘) are

called intractable, or hard.
• Three classes of problems:
• P – Problems that are solvable in polynomial time
• NP – Problems that are “verifiable” in polynomial time
• NPC (NP-Complete) – The “hardest” problems in NP

Problems in NPC are intractable (if P ≠ NP)
CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 4

Decision Problems

• The class P – Decision problems that are solvable in polynomial time.
• Decision problems: Problems that can be answered by “yes” or “no”.
• An optimization problem can be casted as a related decision problem.

Example: SHORTEST-PATH
• Optimization problem: Given an undirected graph 𝐺 and two vertices 𝑢 and 𝑣,

find a path from 𝑢 to 𝑣 that uses the fewest number of edges.
• Decision problem: Given an undirected graph 𝐺, two vertices 𝑢 and 𝑣, and an

integer 𝑘, does a path exist from 𝑢 to 𝑣 consisting of at most 𝑘 edges?
• A decision problem is in a sense “easier,” or at least “no harder”, than its

related optimization problem.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 5

The Class NP

• The class NP – Decision problems whose solutions are verifiable in
polynomial time.
• That is, given an instance 𝐼 and a solution 𝑆, we can verify that 𝑆 is a solution

to 𝐼 in polynomial time (polynomial in |𝐼|).
• NP stands for “nondeterministic polynomial time”.
• The class NP – Decision problems that are solvable in polynomial time by a

nondeterministic Turing machine.
• Relationship between P and NP
• P ⊆ NP: A decision problem that is solvable in polynomial time must

also be verifiable in polynomial time.
• P = NP? - Unknown! (An open problem since 1970s)

It is widely believed that P ≠ NP.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 6

Examples (1/2)
Example 1: (SP, decision version of the Shortest Path problem) Given an
undirected graph 𝐺, two vertices 𝑢 and 𝑣, and an integer 𝑘, does a path exist
from 𝑢 to 𝑣 consisting of at most 𝑘 edges?
1. SP ∈ NP ?

Given 𝐼 = 𝐺, 𝑢, 𝑣, 𝑘 and 𝑃, can we verify 𝑃 is a solution to 𝐼 in
polynomial time?
• Check if 𝑃 is a path from 𝑢 to 𝑣
• Check if the number of edges on path 𝑃 is ≤ 𝑘
A: SP ∈ NP

2. SP ∈ P ?
• Find shortest path from 𝑢 to every other vertex – Run BFS
• Check if 𝑣. 𝑑 ≤ 𝑘
A: ST ∈ P

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 7

Examples (2/2)

Example 2: (IntK, decision version of the Integral Knapsack problem) Given 𝑛
items, with integer weight 𝑤" and integer value 𝑣" for each item, a knapsack
with capacity 𝑊, and an integer 𝑉, is there a subset of items with total
weight at most 𝑊 and total value at least 𝑉?
1. IntK ∈ NP ?

Given 𝐼 = 𝑛,𝑤, 𝑣,𝑊, 𝑉 and 𝑆, can we verify 𝑆 is a solution to 𝐼 in
polynomial time?
• Check if total weight ≤ 𝑊 and total value ≥ 𝑉
A: IntK ∈ NP

2. IntK ∈ P ?
• DP for Integral Knapsack takes Θ(𝑛𝑊) time - pseudo-polynomial
A: Not known.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 8

Complexity Class: NPC

NP-Completeness and Reducibility

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 9

NP-Completeness

• If P ≠ NP, problems in NPC are intractable.
• That is, if P ≠ NP, then all NP-complete problems are not in P.
• Contrapositive: If an NP-complete problem can be solved in polynomial

time, then all problems in NP can be solved in polynomial time.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 10

• A decision problem 𝐴 is NP-complete if
1. 𝐴 is in NP, and
2. Every problem in NP is polynomial-time

reducible to 𝐴.
• Relationships among P, NP, and NPC (if P ≠ NP):

Reducibility

• A decision problem 𝐴 is said to be polynomial-time reducible to a decision
problem 𝐵, written 𝐴 ≤# 𝐵, if there is a procedure 𝑡 that can transform
any instance 𝛼 of problem 𝐴 to an instance 𝛽 of problem 𝐵 such that
• 𝑡 runs in polynomial-time (𝑡 is called a polynomial-time reduction algorithm);
• The answer for 𝛼 is “yes” iff the answer for 𝛽 is also “yes”.

• If we can solve problem 𝐵 in polynomial time, then we can use that
algorithm to solve problem 𝐴 in polynomial time.
• Contrapositive: If problem 𝐴 is not in P, then problem 𝐵 is not in P.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 11

Complexity Class: NPC

NP-Completeness Proofs

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 12

A First NP-Complete Problem

• The circuit-satisfiability problem
• Problem definition can be found on p.1070-1072 of the textbook
• NP-completeness proof: Theorem 34.7 on p.1077 of the textbook

• The (formula) satisfiability (SAT) problem
• Problem definition on next slide
• NP-completeness proof:
• Theorem 34.9 on p.1080 of the textbook (prove by reduction from circuit-

satisfiability)
• Cook-Levin Theorem (Cook’s Theorem), which shows that every problem

in NP is polynomial-time reducible to SAT (the CNF-SAT problem, to be
specific).

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 13

The Satisfiability (SAT) Problem

• Notions for a Boolean formula 𝜙:
• Boolean variables: 𝑥", 𝑥#, ⋯ , 𝑥$
• Boolean operations: AND (∧), OR (∨), NOT (¬), implication (→), iff (↔)
• Truth assignment: a set of values for all variables of 𝜙
• Satisfying (truth) assignment: a truth assignment that causes the Boolean

formula 𝜙 to evaluate to true

• The SAT problem: Given a Boolean formula 𝜙, is 𝜙 satisfiable?

• Example: 𝜙 = 𝑥$ → 𝑥% ∨ ¬ ¬𝑥$ ↔ 𝑥& ∨ 𝑥' ∧ ¬𝑥%
• Q: Is 𝜙 satisfiable?
• A: Yes. 𝜙 has the satisfying truth assignment:

𝑥" = F, 𝑥# = F, 𝑥% = T, 𝑥& = T.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 14

The CNF-SAT Problem

• Additional notions:
• Literal: 𝑥 or ¬𝑥
• Clause: disjunction of literals, e.g., 𝑥" ∨ 𝑥# ∨ ¬𝑥%
• Conjunctive normal form (CNF): conjunction of clauses, e.g.,

𝑥" ∨ ¬𝑥# ∨ ¬𝑥% ∧ ¬𝑥" ∨ 𝑥# ∧ ¬𝑥" ∨ ¬𝑥# ∨ ¬𝑥% .
• The CNF-SAT problem: Given a Boolean CNF formula 𝜙, is 𝜙 satisfiable?
• Example: 𝜙 = 𝑥" ∨ ¬𝑥# ∨ ¬𝑥% ∧ ¬𝑥" ∨ 𝑥# ∧ ¬𝑥" ∨ ¬𝑥# ∨ ¬𝑥%
• Q: Is 𝜙 satisfiable?
• A: Yes. 𝜙 has the satisfying truth assignment:

𝑥" = T, 𝑥# = T, 𝑥% = F.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 15

NP-Completeness Proof

• Recall: A decision problem 𝐴 is NP-complete if
1. 𝐴 is in NP, and
2. Every problem in NP is polynomial-time

reducible to 𝐴.
• Note: If a problem satisfies condition 2, but not

necessarily condition 1, then we say it is NP-hard.
• To show that a problem 𝐵 is NP-complete, we show

1. 𝐵 is in NP
2. 𝐵 is NP-hard

1) Select a known NP-complete problem 𝐴;
2) Show that 𝐴 is polynomial-time reducible to 𝐵,

i.e., 𝐴 ≤' 𝐵.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 16

NP-Completeness Proof of 3-CNF-SAT (1/3)

• Recall the CNF-SAT problem: Given a Boolean CNF formula 𝜙, is 𝜙
satisfiable?
• 3-CNF-SAT problem: A CNF-SAT problem with every clause containing

exactly three distinct literals. E.g.,
𝜙 = 𝑥$ ∨ ¬𝑥% ∨ ¬𝑥& ∧ ¬𝑥$ ∨ 𝑥% ∨ 𝑥' ∧ ¬𝑥% ∨ 𝑥& ∨ ¬𝑥' .

NP-Completeness Proof:
1. Show: 3-CNF-SAT is in NP
• Given a Boolean 3-CNF formula 𝜙 with 𝑛 variables, 𝑚 clauses, and a truth

assignment for 𝑥", 𝑥#, ⋯ , 𝑥$
• For each clause, it takes 𝑂(1) time to check if at least one literal is T.
Can be verified in 𝑂(𝑚) time.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 17

NP-Completeness Proof of 3-CNF-SAT (2/3)

NP-Completeness Proof (cont’d):
2. Show: CNF-SAT ≤𝑷 3-CNF-SAT

1) For any CNF-SAT formula 𝜙, construct a 3-CNF-SAT formula 𝜙′ in 𝑂(𝑛) time.
• For 1-literal clause 𝑥(, construct a 3-CNF formula:
𝑥(∨ 𝑦" ∨ 𝑦# ∧ 𝑥(∨ 𝑦" ∨ ¬𝑦# ∧ 𝑥(∨ ¬𝑦" ∨ 𝑦# ∧ 𝑥(∨ ¬𝑦" ∨ ¬𝑦# .

• For 2-literal clause 𝑥(∨ 𝑥) , construct a 3-CNF formula:
𝑥(∨ 𝑥) ∨ 𝑦" ∧ 𝑥(∨ 𝑥) ∨ ¬𝑦" .

• For 3-literal clause 𝑥(∨ 𝑥) ∨ 𝑥! , unchanged.
• For more-than-3-literal clause 𝑥(! ∨ 𝑥(" ∨ ⋯∨ 𝑥(# , construct a 3-CNF formula:
𝑥(! ∨ 𝑥(" ∨ 𝑦" ∧ ¬𝑦" ∨ 𝑥($ ∨ 𝑦# ∧ ⋯∧ ¬𝑦!*% ∨ 𝑥(#%! ∨ 𝑥(# .

• All 𝑦 literals are distinct for different clauses.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 18

NP-Completeness Proof of 3-CNF-SAT (3/3)

NP-Completeness Proof (cont’d):
2. Show: CNF-SAT ≤𝑷 3-CNF-SAT

2) Formula 𝜙 is satisfiable iff formula 𝜙′ is satisfiable.
• For 1-literal clause in 𝜙,
𝑥(= T iff in 𝜙′, 𝑥(∨ 𝑦" ∨ 𝑦# ∧ 𝑥(∨ 𝑦" ∨ ¬𝑦# ∧ 𝑥(∨ ¬𝑦" ∨ 𝑦#

∧ 𝑥(∨ ¬𝑦" ∨ ¬𝑦# = T.
• For 2-literal clause in 𝜙,
𝑥(∨ 𝑥) = T iff in 𝜙′, 𝑥(∨ 𝑥) ∨ 𝑦" ∧ 𝑥(∨ 𝑥) ∨ ¬𝑦" = T.

• For more-than-3-literal clause in 𝜙,
𝑥(! ∨ 𝑥(" ∨ ⋯∨ 𝑥(# is satisfiable iff in 𝜙′,
𝑥(! ∨ 𝑥(" ∨ 𝑦" ∧ ¬𝑦" ∨ 𝑥($ ∨ 𝑦# ∧ ⋯∧ ¬𝑦!*% ∨ 𝑥(#%! ∨ 𝑥(# is satisfiable.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 19

NP-Complete Problems

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 20

NP-Complete Problems

• Each problem in the figure can be proved to be NP-complete by a
polynomial-time reduction from the problem that points to it.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 21

INT-KNAPSACKIND-SET

NP-Complete Problems

The Clique Problem

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 22

The Clique Problem

• A clique in an undirected graph 𝐺 = (𝑉, 𝐸) is a subset 𝑉′ ⊆ 𝑉 of vertices,
each pair of which is connected by an edge in 𝐸.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 23

• A clique is a complete subgraph of G.
• The size of a clique is the number of vertices

it contains.
• The clique problem is the optimization problem

of finding a clique of maximum size in a graph.
• The decision problem (CLIQUE): Given an

undirected graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘, is
there a clique of size at lease 𝑘 in 𝐺?

Example:

NP-Completeness Proof of CLIQUE (1/4)

1. Show that CLIQUE is in NP
Given 𝐼 = 𝐺, 𝑘 and 𝑉′, verify if 𝑉′ is a solution to 𝐼 in polynomial time.
• Check whether for each pair 𝑢, 𝑣 ∈ 𝑉′, the edge (𝑢, 𝑣) is in 𝐸.

2. Show that 3-CNF-SAT ≤𝑷 CLIQUE
1) Let 𝜙 = 𝐶" ∧ 𝐶# ∧ ⋯∧ 𝐶! be a 3-CNF-SAT formula with 𝑘 clauses. We will

construct a graph 𝐺 corresponding to 𝜙 in polynomial time.
• For each clause 𝐶(= 𝑙("⋁ 𝑙(#⋁ 𝑙(% , we create a triple of three vertices
𝑣(", 𝑣(#, 𝑣(%.
• Two vertices 𝑣(+ and 𝑣), are adjacent iff

• 𝑙(+ and 𝑙), are from different clauses, that is, 𝑖 ≠ 𝑗, and
• 𝑙(+ and 𝑙), are consistent, that is, 𝑙(+ is not the negation of 𝑙),.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 24

NP-Completeness Proof of CLIQUE (2/4)

2. Show that 3-CNF-SAT ≤𝑷 CLIQUE (cont’d)
1) Construct a graph 𝐺 corresponding to 𝜙 in polynomial time. (cont’d)

Example: 𝜙 = 𝐶$ ∧ 𝐶% ∧ 𝐶&, where
𝐶$ = 𝑥$ ∨ ¬𝑥% ∨ ¬𝑥& , 𝐶% = ¬𝑥$ ∨ 𝑥% ∨ 𝑥& , 𝐶& = 𝑥$ ∨ 𝑥% ∨ 𝑥& .

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 25

• The constructed graph 𝐺 = (𝑉, 𝐸)
is shown on the right.
• Recall: Two vertices 𝑣") and 𝑣*+

are adjacent iff
• 𝑖 ≠ 𝑗 and
• 𝑙") and 𝑙*+ are consistent.

NP-Completeness Proof of CLIQUE (3/4)

2. Show that 3-CNF-SAT ≤𝑷 CLIQUE (cont’d)
2) Formula 𝜙 is satisfiable iff 𝐺 has a clique of size 𝑘.

Prove “⇒”: Suppose 𝜙 is satisfiable.
• Each clause 𝐶" has at least one literal being TRUE.
• Pick the vertices corresponding to these literals (one for each clause).
• Claim: These vertices form a clique of size 𝑘.
Example: 𝜙 = 𝐶$ ∧ 𝐶% ∧ 𝐶&
• 𝐶$ = 𝑥$ ∨ ¬𝑥% ∨ ¬𝑥&
• 𝐶% = ¬𝑥$ ∨ 𝑥% ∨ 𝑥&
• 𝐶& = 𝑥$ ∨ 𝑥% ∨ 𝑥&

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 26

NP-Completeness Proof of CLIQUE (4/4)

2. Show that 3-CNF-SAT ≤𝑷 CLIQUE (cont’d)
2) Formula 𝜙 is satisfiable iff 𝐺 has a clique of size 𝑘. (cont’d)

Prove “⇐”: Suppose 𝐺 has a clique 𝑉′ of size 𝑘.
• 𝑉′ contains exactly one vertex from each triple. (Why?)
• Claim: 𝜙 is a satisfied by assigning TRUE to the literals corresponding

to all the vertices in 𝑉′ and assigning arbitrary truth values to the
remaining variables.

Example: 𝜙 = 𝐶$ ∧ 𝐶% ∧ 𝐶&
• 𝐶$ = 𝑥$ ∨ ¬𝑥% ∨ ¬𝑥&
• 𝐶% = ¬𝑥$ ∨ 𝑥% ∨ 𝑥&
• 𝐶& = 𝑥$ ∨ 𝑥% ∨ 𝑥&

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 27

Independent Set

• An independent set of a graph 𝐺 = (𝑉, 𝐸) is a subset 𝑉′ ⊆ 𝑉 of vertices
such that there is no edge between any pair of vertices in 𝑉′.
• The independent-set problem is the optimization problem of finding an

independent set of maximum size in a graph.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 28

• The decision problem (IS): Given a graph
𝐺 = (𝑉, 𝐸) and an integer 𝑘, is there an
independent set of size at lease 𝑘 in 𝐺?
• Observation: If 𝑉′ is an independent set in
𝐺, then it is a clique of the complement of
𝐺, 𝐺̅ = (𝑉, N𝐸) (in which 𝑒 ∉ N𝐸 iff 𝑒 ∈ 𝐸),
and vice-versa.

Example:

NP-Completeness Proof of IS

1. Show that IS is in NP
Given 𝐼 = 𝐺, 𝑘 and 𝑉′, verify if 𝑉′ is a solution to 𝐼 in polynomial time.
• Check whether for each pair 𝑢, 𝑣 ∈ 𝑉′, (𝑢, 𝑣) ∉ 𝐸.

2. Show that CLIQUE ≤𝑷 IS
1) Given an instance 𝐼 = 𝐺, 𝑘 of CLIQUE, construct the complement of

𝐺, 𝐺̅ = (𝑉, N𝐸). − Can be easily done in polynomial time.
2) 𝑉′ ⊆ 𝑉 is an independent set of 𝐺 iff 𝑉′ is a clique of 𝐺̅.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 29

NP-Complete Problems

The Vertex Cover Problem

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 30

Vertex Cover

• A vertex cover of an undirected graph 𝐺 = (𝑉, 𝐸) is a subset 𝑉′ ⊆ 𝑉 of
vertices such that if (𝑢, 𝑣) ∈ 𝐸, then 𝑢 ∈ 𝑉′ or 𝑣 ∈ 𝑉′ (or both).
• The vertex-cover problem is the optimization problem of finding a vertex

cover of minimum size in a given graph.
• The decision problem (VC): Given a graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘, is

there a vertex cover of size at most 𝑘 in 𝐺?
• To prove that VC is NP-complete*,

1. Show that VC is in NP;
2. Show that CLIQUE ≤𝑷 VC or IS ≤𝑷 VC.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 31

* See Theorem 34.12 on p.1090-1091 of the textbook for the NP-completeness
proof with the second part showing that CLIQUE ≤𝑷 VC.

NP-Completeness Proof of VC (1/2)

1. Show that VC is in NP
Given 𝐼 = 𝐺, 𝑘 and 𝑉′, verify if 𝑉′ is a solution to 𝐼 in polynomial time.
• Check whether for (𝑢, 𝑣) ∈ 𝐸, we have 𝑢 ∈ 𝑉′ or 𝑣 ∈ 𝑉′, or both.

2. Show that IS ≤𝑷 VC
Claim: 𝑉′ ⊆ 𝑉 is a vertex cover iff 𝑉 − 𝑉′ is an independent set.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 32

Proof.
“⇒”: 𝑉′ is a vertex cover ⇒𝑉 − 𝑉′ is an independent set
• Suppose 𝑉 − 𝑉′ is not an independent set.
• Then there is a pair 𝑢, 𝑣 ∈ 𝑉 − 𝑉′ s.t. (𝑢, 𝑣) ∈ 𝐸.
• ⇒ (𝑢, 𝑣) is not covered by 𝑉′
• ⇒𝑉′ is not a vertex cover ⎯ A contradiction

NP-Completeness Proof of VC (2/2)

2. Show that IS ≤𝑷 VC (cont’d)
Claim: 𝑉′ ⊆ 𝑉 is a vertex cover iff 𝑉 − 𝑉′ is an independent set.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 33

Proof (cont’d).
“⇐”: 𝑉 − 𝑉′ is an independent set ⇒𝑉′ is a vertex cover
• Suppose 𝑉′ is not a vertex cover.
• Then there is at least one edge (𝑢, 𝑣) ∈ 𝐸 s.t. 𝑢 ∉ 𝑉′

and 𝑣 ∉ 𝑉′.
• ⇒ 𝑢, 𝑣 ∈ 𝑉 − 𝑉′
• ⇒𝑉 − 𝑉′ is not an independent set ⎯ A contradiction

☐

The Claim implies that: 𝐺 has a vertex cover of size at most 𝑘 iff 𝐺 has an
independent set of size at least 𝑛 − 𝑘.

NP-Complete Problems

Other NP-Complete Problems

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 34

The Hamiltonian-Cycle Problem

• A Hamiltonian cycle of an undirected graph 𝐺 = (𝑉, 𝐸) is a simple cycle
that contains each vertex in 𝑉.

HAM-CYCLE: Given an undirected graph 𝐺, is there a Hamiltonian cycle in 𝐺?
To prove that HAM-CYCLE is NP-complete*,
1. Show that HAM-CYCLE is in NP
2. Show that VC ≤𝑷 HAM-CYCLE
Proofs are omitted.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 35

* See Theorems 34.13 on p.1091 of the textbook for the NP-completeness proofs.

Example:

The Traveling-Salesman Problem

The traveling-salesman problem (optimization problem):
• Input: A complete graph 𝐺 = (𝑉, 𝐸), with 𝑛 vertices (representing 𝑛 cities),

a nonnegative integer cost 𝑐(𝑖, 𝑗) on each edge (𝑖, 𝑗) ∈ 𝐸 (for a salesman to
travel from city 𝑖 to city 𝑗)
• Output: A minimum-cost tour (Hamiltonian cycle).
The decision problem (TSP): Given a complete graph 𝐺, a nonnegative integer
cost on each edge, and a nonnegative integer 𝑘, is there a tour (Hamiltonian
cycle) with cost at most 𝑘?
To prove that TSP is NP-complete*,
1. Show that TSP is in NP
2. Show that HAM-CYCLE ≤𝑷 TSP

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 36

* See Theorems 34.14 on p.1096 of the textbook for the NP-completeness proofs.

Example:

HAM-CYCLE ≤𝑷 TSP

An instance 𝐼,- of HAM-CYCLE: An undirected graph 𝐺 = (𝑉, 𝐸).
Transform 𝐼,- to an instance 𝐼./# of TSP:
• 𝐺′ = (𝑉, 𝐸′), where 𝐸′ contains every edge (𝑖, 𝑗) for 𝑖, 𝑗 ∈ 𝑉

• 𝑐 𝑖, 𝑗 = T0, if 𝑖, 𝑗 ∈ 𝐸
1, if (𝑖, 𝑗) ∉ 𝐸 and 𝑘 = 0

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 37

Example:

Claim: G has a Hamiltonian cycle iff 𝐺′ has
a tour of cost at most 0.

The Subset-Sum Problem

SUBSET-SUM: Given a finite set 𝑆 of positive integers and an integer target
𝑡 > 0, is there a subset 𝑆′ ⊆ 𝑆 whose elements sum to 𝑡?
• Example 1: 𝑆 = {1, 2, 3, 4} and 𝑡 = 8.

Answer: Yes. 𝑆. = {1, 3, 4}
• Example 2: 𝑆 = {1, 2, 3, 4} and 𝑡 = 11.

Answer: No.
To prove that SUBSET-SUM is NP-complete*,
1. Show that SUBSET-SUM is in NP
2. Show that 3-CNF-SAT ≤𝑷 SUBSET-SUM
Proofs are omitted.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 38

* See Theorems 34.15 on p.1097 of the textbook for the NP-completeness proof.

The Integral Knapsack Problem

Integral Knapsack (Optimization problem):
• Input: 𝑛 items, with integer weight 𝑤" and integer value 𝑣" for each item, a

knapsack with capacity 𝑊, and an integer 𝑉.
• Output: A most valuable subset of items with total weight ≤ 𝑊.
The decision problem (INT-KNAPSACK): Is there a subset of items with total
weight at most 𝑊 and total value at least 𝑉?
To prove that INT-KNAPSACK is NP-complete,
1. Show that INT-KNAPSACK is in NP
2. Show that SUBSET-SUM ≤𝑷 INT-KNAPSACK

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 39

SUBSET-SUM ≤𝑷 INT-KNAPSACK

An instance 𝐼// of SUBSET-SUM:
• A set of positive integers 𝑆 = {𝑠$, 𝑠%, ⋯ , 𝑠0} and an integer 𝑡 > 0
Transform 𝐼// to an instance 𝐼12 of INT-KNAPSACK:
• 𝑛 items, with integer weight 𝑤" = 𝑠" and integer value 𝑣" = 𝑠" for each

item, a knapsack with capacity 𝑊 = 𝑡, and an integer 𝑉 = 𝑡.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 40

Example: 𝑆 = {1, 2, 3, 4}, 𝑡 = 8.Claim: There is a subset 𝑆′ ⊆ 𝑆 whose
elements sum to 𝑡 iff there is a subset of
items with total weight at most 𝑡 and total
value at least 𝑡.
• ∑"3$0 𝑤" ≤ 𝑊 ⟺ ∑"3$0 𝑠" ≤ 𝑡
• ∑"3$0 𝑣" ≥ 𝑉 ⟺ ∑"3$0 𝑠" ≥ 𝑡

∑"3$0 𝑠" = 𝑡

Ways to Deal with NP-completeness
• A problem is NP-complete means: (currently) unlikely to find a polynomial

time algorithm to solve it exactly for all instances.
• To tackle an NP-complete problem, we can

1. Solve it exactly, but in exponential time
• for small instances, may be perfectly satisfactory
• for important special cases, may be satisfactory

2. Recognize special structure for the important special cases
• design polynomial time algorithms if possible

3. Design polynomial time algorithms to solve it approximately
• no guaranteed performance - heuristics
• provably guaranteed performance - approximation algorithms

• We will talk about approximation algorithms for optimization problems
whose decision versions are NP-complete.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 41

Thank you!
Questions?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 42

