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Dynamic Programming
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Dynamic Programming

• Dynamic Programming (DP) is an algorithm design technique that typically 
applies to optimization problems.
• Find a solution with the optimal value.
• Minimization or maximization.

• The given problem can be defined by recurrences with overlapping
subproblems. 
• An optimization problem must have two key ingredients for DP to apply:
• Optimal substructure
• Overlapping subproblems

• Key idea of DP: Avoid re-computation of repeated subproblems by storing 
the solution to each subproblem in a table.
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General Steps of Dynamic Programming

Step 1: Find a recurrence relation
• Relating the original problem’s solution to solutions to its subproblems.
Step 2: Count #subproblems = #distinct recursive calls
• Subproblems overlap, but all recursive calls live in a small domain.
Step 3: Set up a DP table and store solutions to these subproblems in the table
• Solve each subproblem only once. Table size = #subproblems
• Define what each cell holds (solution value of the corresponding subproblem).
• Must make sure that when filling a cell, all values it requires have already been 

filled (based on recurrence relation)!

Step 4: Trace the DP table to find solution to the original problem
• Can usually be done by recursion
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Dynamic Programming

The Integral Knapsack Problem
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The Integral Knapsack Problem

Input:
• 𝑛 items
• Item 𝑖 is worth $𝑣!, weighs 𝑤! pounds. 𝑣! and 𝑤! are positive integers.
• A knapsack with capacity 𝑊, also a positive integer.
Output:
• A most valuable subset of items with total weight ≤ 𝑊.
• Integral (0-1): Have to either take an item or not take it - can’t take part of it.
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Example:
• 𝑣! = 6, 𝑣" = 10, 𝑣# = 12; 
• 𝑤! = 1, 𝑤" = 2, 𝑤# = 3; 𝑊 = 5.

Optimal solution subset of items = {2, 3}
• total weight = 𝑤" +𝑤# = 5 ≤ 𝑊
• total value = 𝑣" + 𝑣# = 22 (maximized)



Solving Integral Knapsack (1/2)

1. Recursion
• Denote 𝑆! as the set of the first 𝑖 items, with 0 ≤ 𝑖 ≤ 𝑛.
• (Optimal substructure) Determine what to do with the last item
• Either take it (if 𝑊 ≥ 𝑤"), gain 𝑣" and recurse on the remaining items in 
𝑆"#$ with capacity 𝑊 −𝑤";
• Or leave it, and recurse on the remaining item set 𝑆"#$ with capacity 𝑊.

• Let 𝑉 𝑆",𝑊 be the total value of a most valuable subset of items selected 
from 𝑆" with total weight ≤ 𝑊.
• Base cases: 𝑉 𝑆",𝑊 = 0, if 𝑊 = 0 or 𝑛 = 0.
• If 𝑊 ≥ 𝑤", 𝑉 𝑆",𝑊 =max 𝑣 𝑛 + 𝑉 𝑆"#$,𝑊 − 𝑤[𝑛] , 𝑉 𝑆"#$,𝑊
• If 𝑊 < 𝑤", 𝑉 𝑆",𝑊 = 𝑉 𝑆"#$,𝑊
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Solving Integral Knapsack (2/2)

1. Recursion (cont’d)
• Base cases: 𝑉 𝑆$,𝑊 = 0, if 𝑊 = 0 or 𝑛 = 0.
• If 𝑊 ≥ 𝑤$, 𝑉 𝑆$,𝑊 =max 𝑣 𝑛 + 𝑉 𝑆$%!,𝑊 − 𝑤[𝑛] , 𝑉 𝑆$%!,𝑊
• If 𝑊 < 𝑤$, 𝑉 𝑆$,𝑊 = 𝑉 𝑆$%!,𝑊
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REC-KNAPSACK(W, w, v, n)
1  if W == 0 or n == 0
2      return 0
3  if W ≥ w[n]
4      V1 = v[n] + REC-KNAPSACK(W – w[n], w, v, n – 1)
5      V2 = REC-KNAPSACK(W, w, v, n – 1)
6      return MAX(V1, V2)
7  else
8      return REC-KNAPSACK(W, w, v, n – 1)

• Q: How many recursive calls?
• A: 𝑂(2$&!)
• Not too many distinct ones 

(Overlapping subproblems) ⎯⎯
𝑛 + 1 𝑊 + 1 choices overall



Integral Knapsack – A DP Solution (1/5)

2. Dynamic Programming
Step 1: Find a recurrence relation
• Base cases: 𝑉 𝑆$,𝑊 = 0, if 𝑊 = 0 or 𝑛 = 0.
• If 𝑊 ≥ 𝑤$, 𝑉 𝑆$,𝑊 =max 𝑣 𝑛 + 𝑉 𝑆$%!,𝑊 − 𝑤[𝑛] , 𝑉 𝑆$%!,𝑊
• If 𝑊 < 𝑤$, 𝑉 𝑆$,𝑊 = 𝑉 𝑆$%!,𝑊

Step 2: Count #distinct subproblems – (𝑛 + 1)×(𝑊 + 1)
Step 3: Define a (𝑛 + 1)×(𝑊 + 1) array 𝑉 0. . 𝑛 [0. .𝑊]. 
• 𝑉 𝑖, 𝑗 = 𝑉 𝑆', 𝑗 will hold the value (total value) of an optimal solution (a most 

valuable subset of items) to the subproblem defined on item set 𝑆' (the first 𝑖
items) with capacity 𝑗.
• Fill in the array according to the recurrence relation. (See next slide)
• 𝑉 𝑛,𝑊 will be the value of an optimal solution to the original problem.
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Integral Knapsack – A DP Solution (2/5)

Step 3 (cont’d): Fill in array 𝑉 according to the recurrence relation:

𝑉 𝑖, 𝑗 = A
0, if 𝑖 = 0 or 𝑗 = 0
𝑉 𝑖 − 1, 𝑗 , if 𝑗 − 𝑤' < 0
max 𝑉 𝑖 − 1, 𝑗 , 𝑣' + 𝑉 𝑖 − 1, 𝑗 − 𝑤' , if 𝑗 − 𝑤' ≥ 0

• Cells 𝑉 𝑖 − 1, 𝑗 and 𝑉 𝑖 − 1, 𝑗 − 𝑤! must be filled before filling 𝑉 𝑖, 𝑗 .
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Example:
• 𝑣! = 6, 𝑣" = 10, 𝑣# = 12; 
• 𝑤! = 1, 𝑤" = 2, 𝑤# = 3; 𝑊 = 5.
• Array: 𝑉 0. . 3 [0. . 5]
• 𝑉 3 [5] will be the value of an 

optimal solution.

𝑉[𝑖, 𝑗] 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0
2 0
3 0



Integral Knapsack – A DP Solution (3/5)
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Step 3 (cont’d): Write pseudocode for generating array 𝑉.
DP-0-1-KNAPSACK(W, w, v, n)
1  let V[0..n, 0..W] be a new array
2  for j = 0 to W
3        V[0, j] = 0
4  for i = 1 to n
5        V[i, 0] = 0
6        for j = 1 to W
7              if w[i] ≤ j and v[i] + V[i - 1, j - w[i]] > V[i - 1, j]
8                    V[i, j] = v[i] + V[i - 1, j - w[i]] 
9              else V[i, j] = V[i - 1, j]
10 return V

• Running time: Θ(𝑛𝑊)
• Value of an optimal solution 

will be 𝑉[𝑛,𝑊].

Step 4: How to find the set of 
items in the optimal packing?

𝑉 𝑖, 𝑗 = '
0, if 𝑖 = 0 or 𝑗 = 0
𝑉 𝑖 − 1, 𝑗 , if 𝑗 − 𝑤! < 0
max 𝑉 𝑖 − 1, 𝑗 , 𝑣! + 𝑉 𝑖 − 1, 𝑗 − 𝑤! , if 𝑗 − 𝑤! ≥ 0



Integral Knapsack – A DP Solution (4/5)

Step 4: Extract an optimal solution from array 𝑉.
• Consider the last item 𝑛.

• If 𝑉[𝑛,𝑊] = 𝑉[𝑛 − 1,𝑊], then item 𝑛 is not in the optimal solution;
• Otherwise, item 𝑛 is in the optimal solution and 𝑉 𝑛,𝑊 is obtained from 
𝑉[𝑛 − 1,𝑊 − 𝑤$] by adding item 𝑛.
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Example:
• 𝑣! = 6, 𝑣" = 10, 𝑣# = 12; 
• 𝑤! = 1, 𝑤" = 2, 𝑤# = 3; 𝑊 = 5.

𝑉[𝑖, 𝑗] 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 6 6 6 6 6
2 0 6 10 16 16 16
3 0 6 10 16 18 22



Integral Knapsack – A DP Solution (5/5)

Step 4 (cont’d): Write pseudocode for extracting an optimal solution from 𝑉.
• Consider the last item 𝑛.

• If 𝑉[𝑛,𝑊] = 𝑉[𝑛 − 1,𝑊], then item 𝑛 is not in the optimal solution;
• Otherwise, item 𝑛 is in the optimal solution and 𝑉 𝑛,𝑊 is obtained from 
𝑉[𝑛 − 1,𝑊 − 𝑤$] by adding item 𝑛.
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PRINT-OPT-KNAPSACK(V, n, W, w)
1  if n > 0 or W > 0
2  if V[n, W] = V[n - 1, W]
3              PRINT-OPT-KNAPSACK(V, n - 1, W, w)
4  else
5              PRINT-OPT-KNAPSACK(V, n - 1, W – w[n], w)
6              Print(n)

• Running time:
𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑐
⇒ 𝑇(𝑛) ∈ 𝑂(𝑛)

Overall running time: Θ(𝑛𝑊)
• DP-0-1-KNAPSACK: Θ(𝑛𝑊)
• PRINT-OPT-KNAPSACK: 𝑂(𝑛)



A Note on Running Time

• Θ(𝑛𝑊) is not polynomial
• Input size for 𝑊: #binary bits 𝑘 ∈ Θ(log𝑊)
• Therefore, the running time in terms of 𝑛 and 𝑘 is:

𝑇 𝑛, 𝑘 ∈ Θ 𝑛𝑊 = Θ(2!𝑛),
which is exponential in 𝑘.
• This is called pseudo-polynomial.
• Running time is polynomial in the numeric value of the input but 

exponential in the input size.
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Greedy Approach
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The Greedy Approach

• The Greedy Approach is an algorithm design technique that is applicable to 
optimization problems only.
• A solution is constructed through a sequence of greedy choices that are 
• Feasible - it has to satisfy the problem’s constraints
• Locally optimal - it has to be the best local choice among all feasible 

choices available on that step
• Irrevocable - once made, it cannot be changed on subsequent steps

• A greedy algorithm doesn’t always yield a (globally) optimal solution.
• A greedy algorithm works only when the problem has two properties:
• Greedy-choice property
• Optimal substructure
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Correctness of A Greedy Algorithm (1/2)

To tell whether a greedy algorithm will solve an optimization problem, we 
usually prove the following two properties:
• Optimal substructure
• Whenever we make a choice, one subproblem remains and it just looks 

like the original problem, with same input type and same notion of 
optimal solution.
• Show that

OPT to original problem = Greedy choice + OPT to subproblem
• Greedy-choice property
• The greedy choice is always part of some optimal solution.
• Show that there exists an optimal solution that contains the greedy 

choice.
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Correctness of A Greedy Algorithm (2/2)
With these two properties, the greedy algorithm works:
1. We commit to a greedy choice 𝑐!.
2. Greedy-choice property: ∃ an optimal solution 𝐴! to the problem s.t. 𝑐! ∈ 𝐴!.
3. Optimal substructure: 𝐴! − {𝑐!} is an optimal solution to the remaining subproblem.
4. Now we commit to a greedy choice 𝑐" for this subproblem.
5. Greedy-choice property: ∃ an optimal solution 𝑆" to the subproblem s.t. 𝑐" ∈ 𝑆". 

Then, 𝐴" = 𝑆" ∪ {𝑐!} is an optimal solution to the original problem. (𝑐!, 𝑐" ∈ 𝐴")
6. Optimal substructure: 𝑆" − {𝑐"} is an optimal solution to the remaining subproblem.
7. Now we commit to a greedy choice 𝑐# for this subproblem.
8. Greedy-choice property: ∃ an optimal solution 𝑆# to the subproblem s.t. 𝑐# ∈ 𝑆#. 

Then, 𝐴# = 𝑆# ∪ {𝑐!, 𝑐"} is an optimal solution to the original problem. (𝑐!, 𝑐", 𝑐# ∈ 𝐴#)
⋮
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Greedy Approach

The Fractional Knapsack Problem
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Fractional Knapsack Problem
Input:
• 𝑛 items
• Item 𝑖 is worth $𝑣", weighs 𝑤" pounds, where 𝑣" and 𝑤" are integers
• A knapsack with capacity 𝑊, also an integer 
Output:
• A most valuable subset of items with total weight ≤ 𝑊.
• Fractional: Can take fraction of an item.
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Example:
• 𝑣! = 6, 𝑣" = 10, 𝑣# = 12; 
• 𝑤! = 1, 𝑤" = 2, 𝑤# = 3; 𝑊 = 5.

Optimal solution:
• Take 𝑙$ pounds of item 𝑖: 𝑙! = 1, 𝑙" = 2, 𝑙# = 2
• Total weight = 𝑙! + 𝑙" + 𝑙# = 5 ≤ 𝑊

• Total value = 𝑣! + 𝑣" +
"
#
𝑣# = 24 (maximized)



Fractional Knapsack - A Greedy Approach
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• Look for a “safe” greedy choice. 
• Q: What is the current best choice?
• Take which item? Take how much of it?

• Greedy choice: Take the item with largest value per pound, 𝑣"/𝑤".
• Sort the items so that 𝑣"/𝑤" ≥ 𝑣"#$/𝑤"#$ for all 1 ≤ 𝑖 < 𝑛.
• Example:
𝑊 = 5.

𝑖 1 2 3
𝑣! 6 10 12
𝑤! 1 2 3
𝑣!/𝑤! 6 5 4

• Q: Is this a “safe” greedy choice?

Greedy solution:
• 𝑙! = 1, 𝑙" = 2, 𝑙# = 2

• Total value = 𝑣! + 𝑣" +
"
#𝑣# = 24

⎯ Optimal



Is This Greedy Approach Correct?

• Greedy approach: Start picking items by largest value per pound, 𝑣"/𝑤", 
continue as long as the knapsack isn’t full.
• Let 𝐿 = 𝑙$, 𝑙%, ⋯ , 𝑙& be the solution found by this greedy approach. (We 

take 𝑙" pounds of item 𝑖.)
• If 𝑂𝑃𝑇 = 𝑙$∗, 𝑙%∗ , ⋯ , 𝑙&∗ is an optimal solution (take 𝑙"∗ pounds of item 𝑖), 

then we need to show that

J
"($

&

𝑙" K
𝑣"
𝑤"
=J

"($

&

𝑙"∗ K
𝑣"
𝑤"
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Correctness of The Greedy Approach (1/3)

1. Optimal substructure
OPT to original problem - Greedy/Any choice = OPT to subproblem

Claim: Let 𝑂𝑃𝑇 = 𝑙$, 𝑙%, ⋯ 𝑙& be an optimal solution to the original 
problem, where 𝑙" is the amount of item 𝑖 to be picked. Let 𝑗 be any item. 
Then, 𝑂𝑃𝑇)* = 𝑙$, ⋯ , 𝑙*)$, 𝑙*#$, ⋯ , 𝑙& must be an optimal solution to the 
subproblem defined on all items excluding 𝑗 with knapsack capacity 𝑊 − 𝑙*.
Proof. (by contradiction) 
• Assume 𝑂𝑃𝑇%( is not optimal to the subproblem.
• Then, there must be an 𝑂𝑃𝑇′%( with total value greater than that of 𝑂𝑃𝑇%(.
• Thus, for the original problem, 𝑂𝑃𝑇′%( together with 𝑙( is also feasible and the 

total value is greater than that of 𝑂𝑃𝑇. 
⇒𝑂𝑃𝑇 is not optimal ⎯ A contradiction.                                                                ☐
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Correctness of The Greedy Approach (2/3)

2. Greedy-choice property
Assume the items are sorted s.t. 𝑣$/𝑤$ ≥ 𝑣%/𝑤% ≥ ⋯ ≥ 𝑣&/𝑤&.
Claim: There exists an optimal solution where item 1 is saturated – we 
cannot pick anymore of item 1, i.e., 𝑙$ = min{𝑊,𝑤$}.
Proof. Let 𝑂𝑃𝑇 = 𝑙!, 𝑙", ⋯ 𝑙$ be an optimal solution to the original problem. 
We will show that if 𝑙! < min{𝑊,𝑤!}, we can alter 𝑂𝑃𝑇 to obtain another 
optimal solution 𝑂𝑃𝑇′ = 𝑙!) , 𝑙") , ⋯ , 𝑙$) with 𝑙!) = min{𝑊,𝑤!}.
• Observation: We must have ∑' 𝑙' = 𝑊. - Why?
• Let Δ = min 𝑊,𝑤! − 𝑙!.
• We alter the solution 𝑂𝑃𝑇 by
• taking Δ more of item 1: 𝑙!) = 𝑙! + Δ
• taking Δ less of other item(s): ∑"*'*$ 𝑙') = ∑"*'*$ 𝑙' − Δ

- Need to show ∑"*'*$ 𝑙' ≥ Δ for this change to be valid.
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Correctness of The Greedy Approach (3/3)

2. Greedy-choice property (cont’d)
Assume the items are sorted s.t. 𝑣$/𝑤$ ≥ 𝑣%/𝑤% ≥ ⋯ ≥ 𝑣&/𝑤&.
Claim: There exists an optimal solution where item 1 is saturated – we 
cannot pick anymore of item 1, i.e., 𝑙$ = min{𝑊,𝑤$}.
Proof. (cont’d)
• We alter the solution 𝑂𝑃𝑇 by
• taking Δ more of item 1: 𝑙!) = 𝑙! + Δ
• taking Δ less of other item(s): ∑"*'*$ 𝑙') = ∑"*'*$ 𝑙' − Δ

• This will not decrease the total value: 

T
'

𝑙') U
𝑣'
𝑤'

≥T
'

𝑙' U
𝑣'
𝑤'

as 𝑣!/𝑤! is the largest.                                                                                               ☐
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Fractional Knapsack - A Greedy Algorithm

• Greedy approach: Start picking items by largest value per pound, 𝑣"/𝑤", 
continue as long as the knapsack isn’t full.
• First, sort the items so that 𝑣"/𝑤" ≥ 𝑣"#$/𝑤"#$ for all 1 ≤ 𝑖 < 𝑛.
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FRACTIONAL-KNAPSACK(W, w, v, n)
1   let L[1..n] be a new array
2   load = 0
3   i = 1
4   while load < W and i ≤ n
5  if w[i] ≤ W – load
6  L[i] = w[i]
7       else L[i] = W – load
8         load = load + w[i]  
9  i = i + 1
10  return L

• Solution: 𝐿 = 1, 2, 2
• Overall running time: 𝑂(𝑛 log 𝑛)

• Sorting takes 𝑂(𝑛 log 𝑛) time
• FRACTIONAL-KNAPSACK takes 𝑂(𝑛) time

• Example:
𝑊 = 5

𝑖 1 2 3
𝑣! 6 10 12
𝑤! 1 2 3
𝑣!/𝑤! 6 5 4



Greedy Approach

Not Work for Integral Knapsack
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Greedy Approach Not Work for Integral Knapsack

• Consider the greedy approach: start picking the items by largest value per 
pound, 𝑣"/𝑤", continue as long as the knapsack isn’t full.
• Example:
𝑊 = 5.
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𝑖 1 2 3
𝑣! 6 10 12
𝑤! 1 2 3
𝑣!/𝑤! 6 5 4

• Greedy solution: Take items 1 and 2
Total value = 𝑣! + 𝑣" = 16
• Optimal solution: Take items 2 and 3

Total value = 𝑣" + 𝑣# = 22

To show that a greedy algorithm does not always yield an optimal solution, 
we usually find a counterexample (an instance) for which 
• The algorithm fails to produce an optimal solution (like above).
• Or, we find an optimal solution and show that it can never be altered to 

include our greedy choice without changing the optimal value.



Dynamic Programming 
vs Greedy Approach
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Dynamic Programming vs Greedy Approach
Dynamic Programming
• Two key ingredients for applying DP to solve an optimization problem: optimal 

substructure and overlapping subproblems
• Solves all dependent subproblems first and then makes a choice that will lead to 

an optimal solution;
• Always yields an optimal solution;
• Is usually less efficient as compared to a greedy algorithm.
Greedy Approach
• Makes a locally optimal choice at every step and never look back;
• NOT always lead to an overall optimal solution;
• Yields an optimal solution iff the following two properties are satisfied 

(correctness proof): greedy-choice property and optimal substructure;
• Is usually an efficient algorithm.
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An Activity Selection Problem
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An Activity Selection Problem
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Input:
• 𝑛 jobs: job 𝑖 has start time 𝑠', finish time 𝑓', and 0 ≤ 𝑠' ≤ 𝑓'.
• We have one machine that can execute only one job at a time.
• Two jobs 𝑖, 𝑗 are compatible if their intervals [𝑠', 𝑓') and [𝑠(, 𝑓() do not overlap.

Output:
• A maximum-size subset of mutually compatible jobs.
Example 1:

Optimal solutions: 1, 2 , 1, 4 , {3, 4}

𝑖 1 2 3 4
𝑠! 1 3 1 4
𝑓! 3 5 4 5



Another Example
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Q: Is there a greedy algorithm that always produces an optimal solution?

Optimal solutions:
• {𝑎!, 𝑎#, 𝑎+, 𝑎,}
• {𝑎!, 𝑎#, 𝑎+, 𝑎-}
• {𝑎!, 𝑎#, 𝑎., 𝑎,}
• {𝑎!, 𝑎#, 𝑎., 𝑎-}
• {𝑎!, 𝑎/, 𝑎., 𝑎,}
• {𝑎!, 𝑎/, 𝑎., 𝑎-}
• {𝑎", 𝑎/, 𝑎., 𝑎,}
• {𝑎", 𝑎/, 𝑎., 𝑎-}

Example 2:
𝑖 1 2 3 4 5 6 7 8 9

𝑠! 1 2 4 1 5 8 9 11 13

𝑓! 3 5 7 8 9 10 11 14 16



An Activity Selection Problem

A Greedy Algorithm
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A Greedy Choice (1/4)
• Is there always a “safe” greedy choice?
• Possible greedy choices:

1) Earliest start time?
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Counterexample:

𝑎! 𝑎" 𝑎# 𝑎$ 𝑎%

𝑎&

• Greedy solution: {𝑎%} ⎯ NOT optimal
• Optimal solution: {𝑎!, 𝑎", 𝑎#, 𝑎&, 𝑎'}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

⟵ NOT a “safe” greedy choice!



A Greedy Choice (2/4)
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Counterexample:

𝑎! 𝑎"

𝑎#

• Greedy solution: {𝑎#} ⎯ NOT optimal
• Optimal solution: {𝑎!, 𝑎"}

• Is there always a “safe” greedy choice?
• Possible greedy choices:

2) Smallest processing time (𝑓 − 𝑠)?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

⟵ NOT a “safe” greedy choice!



A Greedy Choice (3/4)
• Is there always a “safe” greedy choice?
• Possible greedy choices:

3) Overlaps the fewest other remaining jobs?
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Counterexample:

𝑎! 𝑎" 𝑎# 𝑎$

𝑎% 𝑎& 𝑎'

𝑎( 𝑎)

𝑎!* 𝑎!!

• Greedy solution: {𝑎%, 𝑎!, 𝑎&} ⎯ NOT optimal
• Optimal solution: {𝑎!, 𝑎", 𝑎#, 𝑎&}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

⟵ NOT a “safe” greedy choice!



A Greedy Choice (4/4)
• Is there always a “safe” greedy choice?
• Possible greedy choices:

4) Earliest finish time?
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Example:

𝑎! 𝑎" 𝑎#

𝑎$ 𝑎% 𝑎&

𝑎' 𝑎( 𝑎) 𝑎!*

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

• Greedy solution: {𝑎(, 𝑎), 𝑎", 𝑎#, 𝑎!*} ⎯ Optimal
No counterexamples can be found ⎯ Need to prove correctness!

⟵ This is a “safe” greedy choice!



Is This Greedy Algorithm Correct?

• A greedy algorithm:
1. Select a job with earliest finish time.
2. Remove all jobs that overlap with the selected job.
3. Repeat steps 1 and 2 until there is no job left.

• Let 𝐴 be the set of jobs selected by this greedy algorithm. 
• If 𝑂𝑃𝑇 is an optimal solution (maximum-size set of mutually compatible 

jobs), then 𝐴 = 𝑂𝑃𝑇?
• Not likely!
• Instead, we will show that |𝐴| = |𝑂𝑃𝑇|.
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Proving Optimality (1/3)

First, show that our greedy choice is always part of some optimal solution.
Theorem. There exists an optimal solution that contains the job with the 
earliest finish time. *

• Re-arrange the jobs so that 𝑓$ ≤ 𝑓% ≤ ⋯ ≤ 𝑓&.
Proof. Consider an arbitrary optimal solution 𝑂𝑃𝑇. 
• If 𝑎$ ∈ 𝑂𝑃𝑇, we are done.
• If 𝑎$ ∉ 𝑂𝑃𝑇, there is a job 𝑎* ∈ 𝑂𝑃𝑇 such that replacing 𝑎* by 𝑎$ also 

results in an optimal solution. (Prove in the next slide)
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* See the complete proof of Theorem 16.1 on p.481 of the textbook.



Proving Optimality (2/3)

Theorem. There exists an optimal solution that contains the job with the 
earliest finish time.
Proof. (cont’d)
If 𝑎$ ∉ 𝑂𝑃𝑇, let 𝑎* ∈ 𝑂𝑃𝑇 be the job with earliest finish time in 𝑂𝑃𝑇.
Claim: 𝑎* must be the only job in 𝑂𝑃𝑇 that overlaps with 𝑎$. (Prove in the 
next slide)
• Let 𝑂𝑃𝑇+ = 𝑂𝑃𝑇 − 𝑎* ∪ {𝑎$}. 
• The claim implies that
• 𝑂𝑃𝑇+ is feasible (no overlapping jobs)
• 𝑂𝑃𝑇+ = |𝑂𝑃𝑇|.

☐
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Proving Optimality (3/3)

If 𝑎$ ∉ 𝑂𝑃𝑇, let 𝑎* ∈ 𝑂𝑃𝑇 be the job with earliest finish time in 𝑂𝑃𝑇.
Claim: 𝑎* must be the only job in 𝑂𝑃𝑇 that overlaps with 𝑎$.
Proof.
• Every job 𝑎! ∈ 𝑂𝑃𝑇 − {𝑎*} is compatible with 𝑎$.
• 𝑓3 > 𝑓! ⇒ 𝑓! ≤ 𝑓( < 𝑠3 < 𝑓3

• 𝑎$ and 𝑎* must overlap.
• Otherwise, 𝑂𝑃𝑇 is not optimal.

☐
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𝑎+ 𝑎,

𝑎!



Activity Selection – Greedy Algorithm Correctness

• Greedy-choice property
Theorem. There exists an optimal solution that contains the job with the earliest 
finish time. (Proved on slides 12-14.)

• Optimal substructure
Claim: Let 𝑂𝑃𝑇 be an optimal solution to the original problem and let 𝑎( be any 
job in 𝑂𝑃𝑇. Then 𝑂𝑃𝑇 − 𝑎( is an optimal solution to the subproblem defined 
on all jobs that are compatible with 𝑎(.
Proof. (by contradiction) Assume 𝑂𝑃𝑇 − 𝑎( is not optimal to the subproblem. 
• 𝑆 is an optimal solution to the subproblem.
• 𝑆 > 𝑂𝑃𝑇 − 1 and all jobs in 𝑆 are compatible with 𝑎(.
• Thus, 𝑂𝑃𝑇) = 𝑆 ∪ {𝑎(} is feasible and 𝑂𝑃𝑇′ > |𝑂𝑃𝑇|.

⇒𝑂𝑃𝑇 is not optimal ⎯ A contradiction.                                                                ☐
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A Recursive Greedy Algorithm
• First, re-arrange the jobs so that 𝑓! ≤ 𝑓" ≤ ⋯ ≤ 𝑓$.
• The following recursive greedy algorithm solves a subproblem defined on the job 

set 𝐴3 = {𝑎3&!, 𝑎3&", ⋯ , 𝑎$}.
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REC-ACTIVITY-SELECTOR(s, f, k, n)

1  i = k + 1
2  while i ≤ n and s[i] < f [k]

3        i = i + 1
4  if i ≤ n
5        return {ai}∪ REC-ACTIVITY-SELECTOR(s, f, i, n)

6  else 
7  return ∅

Example:
𝑖 1 2 3 4 5 6 7 8 9

𝑠! 1 2 4 1 5 8 9 11 13

𝑓! 3 5 7 8 9 10 11 14 16

Returned optimal solution: {𝑎!, 𝑎", 𝑎#, 𝑎$}
Initial call: 
REC-ACTIVITY-SELECTOR(s, f, 0, n)



Running Time of Recursive Greedy

• Sorting takes 𝑂(𝑛 log 𝑛) time.
• REC-ACTIVITY-SELECTOR takes 𝑂(𝑛) time.
• Total running time: 𝑇(𝑛) ∈ 𝑂(𝑛 log 𝑛)
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REC-ACTIVITY-SELECTOR(s, f, k, n)

1  i = k + 1
2  while i ≤ n and s[i] < f [k]

3        i = i + 1
4  if i ≤ n
5        return {ai}∪ REC-ACTIVITY-SELECTOR(s, f, i, n)

6  else 
7  return ∅

• REC-ACTIVITY-SELECTOR(s, f, k, n)
solves a subproblem defined on job set 
𝐴3 = {𝑎3&!, 𝑎3&", ⋯ , 𝑎$}.

• Running time:
• while loop: 𝑙 iterations

The first 𝑙 jobs in 𝐴3 have 𝑠 < 𝑓3
and the next job has 𝑠 ≥ 𝑓3.

• 𝑇789 𝑛 = 𝑂 𝑙 + 𝑇789 𝑛 − 𝑙
⇒ 𝑇789(𝑛) ∈ 𝑂(𝑛)Initial call: REC-ACTIVITY-SELECTOR(s, f, 0, n)



An Iterative Greedy Algorithm
A non-recursive (iterative) version of this greedy algorithm:
• Still, re-arrange the jobs first so that 𝑓! ≤ 𝑓" ≤ ⋯ ≤ 𝑓$. ⎯ takes 𝑂(𝑛 log 𝑛) time
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ITR-ACTIVITY-SELECTOR(s, f )

1  n = s.length
2  A = {a1}

3  k = 1
4  for i = 2 to n
5        if s[i] ≥ f [k]

6              A = A ∪ {ai}
7              k = i

8  return A

Example:
𝑖 1 2 3 4 5 6 7 8 9

𝑠! 1 2 4 1 5 8 9 11 13

𝑓! 3 5 7 8 9 10 11 14 16

Returned optimal solution: {𝑎!, 𝑎", 𝑎#, 𝑎$}
• Running time: 𝑇;<=(𝑛) ∈ 𝑂(𝑛)
• Total running time: 𝑇(𝑛) ∈ 𝑂(𝑛 log 𝑛)



An Activity Selection Problem

Using Dynamic Programming
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Activity Selection – A DP Solution (1/6)

Step 1: Find a recurrence relation.
• Select job 𝑘.
• Remove all jobs incompatible with 𝑘.
• Recurse on the remaining jobs.
Jobs are re-arranged so that 𝑓$ ≤ 𝑓% ≤ ⋯ ≤ 𝑓& - takes 𝑂(𝑛 log 𝑛) time.
Example:
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𝑖 1 2 3 4
𝑠! 1 3 1 4
𝑓! 3 5 4 5

𝑖 1 2 3 4
𝑠! 1 1 3 4
𝑓! 3 4 5 5



Activity Selection – A DP Solution (2/6)
Step 1 (cont’d): Find a recurrence relation.
Denote 𝑆",* as the set of jobs that start after job 𝑖 finishes and that finish 
before job 𝑗 starts.
• Create two fictious jobs: job 0 with 𝑓- = 0 and job 𝑛 + 1 with 𝑠&#$ = ∞.
• The size of an optimal set of mutually compatible jobs in 𝑆",* will be

𝑂𝑝𝑡𝐶 𝑆",* = max
!∈/%,'

{𝑂𝑝𝑡𝐶 𝑆",! + 𝑂𝑝𝑡𝐶 𝑆!,* + 1}.

• Base cases: 𝑂𝑝𝑡𝐶 𝑆",* = 0 if 𝑆",* = ∅.
• 𝑆-,&#$ will be an optimal solution to the original problem.
Example:
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𝑖 0 1 2 3 4 5
𝑠! 1 1 3 4 ∞
𝑓! 0 3 4 5 5



Activity Selection – A DP Solution (3/6)

Step 2: Count distinct subproblems – (𝑛 + 2)×(𝑛 + 2)
Step 3: Define an (𝑛 + 2)×(𝑛 + 2) array 𝐶.
• 𝐶 𝑖, 𝑗 = 𝑂𝑝𝑡𝐶 𝑆",* , 0 ≤ 𝑖, 𝑗 ≤ 𝑛 + 1, will hold the size of an optimal set 

of mutually compatible jobs for the subproblem defined on the job set 𝑆",*.
• Fill in the array 𝐶 according to the following recurrence

𝐶 𝑖, 𝑗 = \
0, if 𝑆",* = ∅
max
!∈/%,'

{𝐶 𝑖, 𝑘 + 𝐶 𝑘, 𝑗 + 1} , if 𝑆",* ≠ ∅

• 𝐶 0, 𝑛 + 1 = 𝑂𝑝𝑡𝐶 𝑆-,&#$ will be the size of an optimal set of mutually 
compatible jobs for the original problem.
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Activity Selection – A DP Solution (4/6)
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𝐶 𝑖, 𝑗 = \
0, if 𝑆",* = ∅
max
!∈/%,'

{𝐶 𝑖, 𝑘 + 𝐶 𝑘, 𝑗 + 1} , if 𝑆",* ≠ ∅

Example: 𝐶 𝑖, 𝑗 0 1 2 3 4 5

0 0 0

1 - 0 0

2 - - 0 0

3 - - - 0 0

4 - - - - 0 0

5 - - - - - 0

𝑖 0 1 2 3 4 5
𝑠! 1 1 3 4 ∞
𝑓! 0 3 4 5 5



Activity Selection – A DP Solution (5/6)
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Step 3 (cont’d): Pseudocode 
for generating the DP table.
• Running time: 𝑂(𝑛0)

DP-ACTIVITY-SELECTION(s, f, n)
let C[0..n+1, 0..n+1] and J[0..n+1, 0..n+1] be new arrays
for i = 0 to n

C[i, i] = 0
C[i, i + 1] = 0

C[n + 1, n + 1] = 0
for c = 2 to n + 1

for i = 0 to n – c + 1
j = i + c
C[i, j] = 0
k = j - 1
while f [i] < f [k]

if f [i] ≤ s[k] and f [k] ≤ s[j] and C[i, k] + C[k, j] + 1 > C[i, j]
C[i, j] = C[i, k] + C[k, j] + 1
J[i, j] = k

k = k – 1
PRINT-ACTIVITIES(C, J, 0, n + 1)

𝐶 𝑖, 𝑗 0 1 2 3 4 5
0 0 0
1 - 0 0
2 - - 0 0
3 - - - 0 0
4 - - - - 0 0
5 - - - - - 0



Activity Selection – A DP Solution (6/6)
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Step 4: Trace arrays 𝐶 and 𝐽 to find an optimal set of mutually compatible jobs.
• Example: PRINT-ACTIVITIES(C, J, i, j)

if C[i, j] > 0 
k = J[i, j]
PRINT-ACTIVITIES(C, J, i, k)
Print(k)
PRINT-ACTIVITIES(C, J, k, j)

𝐶 𝑖, 𝑗 0 1 2 3 4 5
0 0 0 0 1 1 2
1 - 0 0 0 0 1
2 - - 0 0 0 1
3 - - - 0 0 0
4 - - - - 0 0
5 - - - - - 0

• Running time: 𝑂(𝑛)
• Overall running time

(including sorting): 𝑂(𝑛#)

𝑖 1 2 3 4
𝑠! 1 1 3 4
𝑓! 3 4 5 5



Thank you!
Questions?
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