
Algorithm Analysis and Data Structures
CSCI 7432 - Fall 2022

Advanced Graph Algorithms: Flow Networks
Dr. Yao XU

Assistant Professor

Department of Computer Science
Georgia Southern University

Email: yxu@georgiasouthern.edu

Table of Contents

1. Flow Networks (26.1)
• The Maximum-Flow Problem
• The Minimum Cut Problem

2. The Ford-Fulkerson Method (26.2)
• Residual Network
• Augmenting Paths
• Max-Flow Min-Cut Theorem
• The Basic Ford-Fulkerson Algorithm
• The Edmonds-Karp algorithm

3. Maximum Bipartite Matching (26.3)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 2

Flow Networks

The Maximum-Flow Problem

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 3

Flow Networks

• A flow network is a directed graph 𝐺 = (𝑉, 𝐸) in which
• each edge (𝑢, 𝑣) ∈ 𝐸 has a nonnegative capacity 𝑐(𝑢, 𝑣) ≥ 0;
• if (𝑢, 𝑣) ∉ 𝐸, then for convenience 𝑐 𝑢, 𝑣 = 0;
• there are two distinguished vertices: a source 𝑠 ∈ 𝑉 and a sink 𝑡 ∈ 𝑉.

• Intuition: Material originates at source 𝑠 and is sent to sink 𝑡.
• Example: A flow network for the Lucky Puck Company’s trucking problem.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 4

Flow

• A flow in a flow network 𝐺 = (𝑉, 𝐸) is a function 𝑓: 𝑉×𝑉 → ℝ satisfying:
• Capacity constraint: For all 𝑢, 𝑣 ∈ 𝑉, 0 ≤ 𝑓(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣);
• Flow conservation: For all 𝑢 ∈ 𝑉 − {𝑠, 𝑡},

∑!∈# 𝑓(𝑣, 𝑢) = ∑!∈# 𝑓(𝑢, 𝑣).
flow into 𝑢 flow out of 𝑢

• Value of a flow 𝑓 is: 𝑓 = ∑!∈# 𝑓(𝑠, 𝑣) − ∑!∈# 𝑓(𝑣, 𝑠).
• Example: Q: 𝑓 = ?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 5

A: 𝑓 = 19

The Maximum-Flow Problem
Input: A flow network 𝐺 = (𝑉, 𝐸) with source 𝑠 ∈ 𝑉, sink 𝑡 ∈ 𝑉, and capacity
𝑐(𝑢, 𝑣) ≥ 0 for each edge (𝑢, 𝑣) ∈ 𝐸.
Output: A flow of maximum value.
• Goal: Find flow 𝑓(𝑢, 𝑣) for each edge (𝑢, 𝑣) ∈ 𝐸 s.t.

• For all (𝑢, 𝑣) ∈ 𝐸, 0 ≤ 𝑓(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣) ⎯ Capacity constraint
• For all 𝑢 ∈ 𝑉 − {𝑠, 𝑡}, ∑!∈# 𝑓(𝑣, 𝑢) = ∑!∈# 𝑓(𝑢, 𝑣) ⎯ Flow conservation
• 𝑓 = ∑!∈# 𝑓(𝑠, 𝑣) − ∑!∈# 𝑓(𝑣, 𝑠) is maximized

• Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 6

Max
flow:

Flow Network Assumptions

Assumption 1: Self-loops are disallowed.
Assumption 2: If (𝑢, 𝑣) ∈ 𝐸, then the reverse edge (𝑣, 𝑢) ∉ 𝐸.
• When both (𝑢, 𝑣) ∈ 𝐸 and (𝑣, 𝑢) ∈ 𝐸, which are called antiparallel edges,

we transform 𝐺 into an equivalent one with no antiparallel edges by
choosing one of them, say (𝑢, 𝑣),
• Adding a new vertex 𝑣′, and
• Replacing (𝑢, 𝑣) by (𝑢, 𝑣′) and (𝑣′, 𝑣), with 𝑐 𝑢, 𝑣$ = 𝑐 𝑣$, 𝑣 = 𝑐(𝑢, 𝑣)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 7

⟹

Flow Networks

The Minimum Cut Problem

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 8

The Minimum s-t Cut Problem

Input: An undirected graph 𝐺 = (𝑉, 𝐸), two veritices 𝑠, 𝑡 ∈ 𝑉, and weight
𝑤(𝑢, 𝑣) ≥ 0 for each edge (𝑢, 𝑣) ∈ 𝐸.
• A 𝑠-𝑡 cut (𝑆, 𝑇) of 𝐺 is a partition of 𝑉 into two sets 𝑆 and 𝑇 = 𝑉 − S such

that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇.
Output: Find a 𝑠-𝑡 cut (𝑆, 𝑇) of 𝐺 with minimum weight:

𝑤 𝑆, 𝑇 = ∑$∈%∑!∈&𝑤(𝑢, 𝑣).
• Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 9

• A minimum 𝑠-𝑡 cut:
𝑆 = {𝑎, 𝑏, 𝑖, ℎ, 𝑔}
𝑇 = {𝑐, 𝑑, 𝑒, 𝑓}

• 𝑤 𝑆, 𝑇 = 8 + 2 + 2 = 12
𝑠 = = 𝑡

Cuts of Flow Networks

• A cut (𝑆, 𝑇) of a flow network 𝐺 = (𝑉, 𝐸) is also a partition of 𝑉 into two
sets 𝑆 and 𝑇 = 𝑉 − S such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇.
• For a flow 𝑓, the net flow across cut (𝑆, 𝑇) is

𝑓 𝑆, 𝑇 = ∑$∈%∑!∈& 𝑓(𝑢, 𝑣) − ∑$∈%∑!∈& 𝑓(𝑣, 𝑢).
• Example: 𝑓 𝑆, 𝑇 = ?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 10

A: 𝑓(𝑆, 𝑇) = 19

Net Flow Across A Cut (1/2)

For a flow 𝑓, the net flow across cut (𝑆, 𝑇) is
𝑓 𝑆, 𝑇 = ∑$∈%∑!∈& 𝑓(𝑢, 𝑣) − ∑$∈%∑!∈& 𝑓(𝑣, 𝑢).

Claim:
• 𝑓 𝑋, 𝑋 = 0
• If 𝑋 ∩ 𝑌 = ∅, then

𝑓 𝑋 ∪ 𝑌, 𝑍 = 𝑓 𝑋, 𝑍 + 𝑓(𝑌, 𝑍)
𝑓 𝑍, 𝑋 ∪ 𝑌 = 𝑓 𝑍, 𝑋 + 𝑓(𝑍, 𝑌)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 11

Net Flow Across A Cut (2/2)

For a flow 𝑓, the net flow across cut (𝑆, 𝑇) is
𝑓 𝑆, 𝑇 = ∑$∈%∑!∈& 𝑓(𝑢, 𝑣) − ∑$∈%∑!∈& 𝑓(𝑣, 𝑢).

Lemma: For any flow 𝑓 and any cut (𝑆, 𝑇), we have 𝑓 𝑆, 𝑇 = |𝑓|.*

Proof. Recall: 𝑓 = ∑!∈# 𝑓(𝑠, 𝑣) − ∑!∈# 𝑓 𝑣, 𝑠 = 𝑓 {𝑠}, 𝑉
𝑓 𝑆, 𝑇 = 𝑓 𝑆, 𝑉 − 𝑓 𝑆, 𝑆

= 𝑓 𝑆, 𝑉 − 0
= 𝑓 {𝑠}, 𝑉 + 𝑓 𝑆 − {𝑠 , 𝑉)

Due to flow conservation, ∑!∈# 𝑓(𝑣, 𝑢) = ∑!∈# 𝑓(𝑢, 𝑣) for 𝑢 ∈ 𝑉 − {𝑠, 𝑡}.
So, 𝑓 𝑆 − {𝑠 , 𝑉) = 0 ⟹ 𝑓 𝑆, 𝑇 = 𝑓 {𝑠}, 𝑉 = |𝑓| ☐

*See Lemma 26.4 on p.721-722 of the textbook for a complete proof.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 12

Capacity of A Cut

• The capacity of cut (𝑆, 𝑇) is
𝑐 𝑆, 𝑇 = ∑$∈%∑!∈& 𝑐(𝑢, 𝑣).

• Example: 𝑐 𝑆, 𝑇 = ?

Corollary: The value of any flow ≤ capacity of any cut.
Proof. 𝑓 = 𝑓 𝑆, 𝑇 = ∑$∈%∑!∈& 𝑓(𝑢, 𝑣) − ∑$∈%∑!∈& 𝑓 𝑣, 𝑢

≤ ∑$∈%∑!∈& 𝑐 𝑢, 𝑣 = 𝑐(𝑆, 𝑇). ☐

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 13

A: 𝑐(𝑆, 𝑇) = 26

Minimum Cut of A Flow Network

Input: A flow network 𝐺 = (𝑉, 𝐸) with source 𝑠 ∈ 𝑉, sink 𝑡 ∈ 𝑉, and capacity
𝑐(𝑢, 𝑣) ≥ 0 for each edge (𝑢, 𝑣) ∈ 𝐸.
Output: A 𝑠-𝑡 cut (𝑆, 𝑇) of 𝐺 with minimum capacity:

𝑐 𝑆, 𝑇 = ∑$∈%∑!∈& 𝑐(𝑢, 𝑣).
• Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 14

• A minimum 𝑠-𝑡 cut:
𝑆 = {𝑠, 𝑣), 𝑣*, 𝑣+}
𝑇 = {𝑣,, 𝑡}

• 𝑐 𝑆, 𝑇 = ?

The Ford-Fulkerson Method

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 15

The Ford-Fulkerson Method
Ford-Fulkerson-Method(𝐺, 𝑠, 𝑡)
1 initialize flow 𝑓 to 0
2 while there exists an augmenting path 𝑝 in the residual network 𝐺-
3 augment flow 𝑓 along 𝑝
4 return 𝑓

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 16

• The residual network consists of edges with capacities that represent how
we can change the flow on edges of 𝐺.
• An augmenting path 𝑝 is a simple path from 𝑠 to 𝑡 in the residual network.
• Example:

8
8

85

5 0
0

05

5

⟹ ⟹ ?

The Ford-Fulkerson Method

Residual Network

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 17

Residual Network

• Given a flow 𝑓 in network 𝐺 = (𝑉, 𝐸), the residual network consists of
edges with capacities that represent how we can change the flow in 𝐺.
• That’s the residual capacity:

𝑐' 𝑢, 𝑣 = I
𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 , if 𝑢, 𝑣 ∈ 𝐸,
𝑓 𝑣, 𝑢 , if 𝑣, 𝑢 ∈ 𝐸,
0, otherwise.

• Then, the residual network is 𝐺' = (𝑉, 𝐸'), where
𝐸' = {(𝑢, 𝑣) ∈ 𝑉×𝑉: 𝑐' 𝑢, 𝑣 > 0}

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 18

Residual Network Examples (1/2)

• The residual network is 𝐺' = (𝑉, 𝐸'), where
𝐸' = {(𝑢, 𝑣) ∈ 𝑉×𝑉: 𝑐' 𝑢, 𝑣 > 0}.

• The residual capacity:

𝑐' 𝑢, 𝑣 = I
𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 , if 𝑢, 𝑣 ∈ 𝐸,
𝑓 𝑣, 𝑢 , if 𝑣, 𝑢 ∈ 𝐸,
0, otherwise.

• Example 1: Given a flow 𝑓 in network 𝐺 as follows, what is 𝐺'?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 19

8/8

8/8

8/80/5

0/5

Residual Network Examples (2/2)

• The residual capacity:

𝑐' 𝑢, 𝑣 = I
𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 , if 𝑢, 𝑣 ∈ 𝐸,
𝑓 𝑣, 𝑢 , if 𝑣, 𝑢 ∈ 𝐸,
0, otherwise.

• Example 2:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 20

𝐺 with 𝑓 𝐺-

The Ford-Fulkerson Method

Augmenting Path

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 21

Augmenting Path

• An augmenting path 𝑝 is a simple path from 𝑠 to 𝑡 in 𝐺'.
• The flow value can be increased along an augmenting path 𝑝 by

𝑐' 𝑝 = min
$,! ∈)

{𝑐' 𝑢, 𝑣 }.

• Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 22

𝐺 with 𝑓!:

𝐺 with 𝑓": 𝐺-! :

𝐺-" :

Augmented Flow Network

• When there is no augmenting path in 𝐺', 𝑓 is a maximum flow in 𝐺.
• Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 23

𝐺 with 𝑓": 𝐺-! :

• There is no augmenting path in 𝐺'#.
• Consider cut (𝑆, 𝑇) in 𝐺-! : 𝑆 = {𝑠, 𝑣), 𝑣*, 𝑣+} and 𝑇 = {𝑣,, 𝑡}
• No edges cross the cut in the direction from 𝑆 to 𝑇.

• Thus, the maximum flow in 𝐺 is 𝑓* and 𝑓* = 23.

The Ford-Fulkerson Method

Max-Flow Min-Cut Theorem

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 24

Max-Flow Min-Cut Theorem (1/3)

Proof. (1) ⇒ (2): (prove by contraposition)
• Assume there is an augmenting path in 𝐺'.
• Then the flow value could be increased.
(3) ⇒ (1):
• 𝑓 ≤ 𝑐(𝑆, 𝑇) for any cut (𝑆, 𝑇). - According to Corollary (on slide 12)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 25

Max-Flow Min-Cut Theorem* If 𝑓 is a flow in a flow network 𝐺 = (𝑉, 𝐸) with
source 𝑠 and sink 𝑡, the the following conditions are equivalent:
1) 𝑓 is a maximum flow in 𝐺.
2) The residual network 𝐺' contains no augmenting paths.
3) 𝑓 = 𝑐(𝑆, 𝑇) for some cut (𝑆, 𝑇) of 𝐺.

* This is Theorem 26.6 on p.723 of the textbook.

Max-Flow Min-Cut Theorem (2/3)
Max-Flow Min-Cut Theorem If 𝑓 is a flow in a flow network 𝐺 = (𝑉, 𝐸) with
source 𝑠 and sink 𝑡, the the following conditions are equivalent:
2) The residual network 𝐺' contains no augmenting paths.
3) 𝑓 = 𝑐(𝑆, 𝑇) for some cut (𝑆, 𝑇) of 𝐺.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 26

Proof. (cont’d) (2) ⇒ (3): When 𝐺- contains no
augmenting paths, define a cut (𝑆, 𝑇) s.t.
• 𝑆 = {𝑣 ∈ 𝑉: ∃ 𝑠 ↝ 𝑣 path in 𝐺-} (𝑠 ∈ 𝑆)

• 𝑇 = 𝑉 − S (𝑡 ∈ 𝑇)
For any 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇, we must have 𝑐- 𝑢, 𝑣 = 0.
By Lemma (on slide 11), we have 𝑓 = 𝑓 𝑆, 𝑇 .
Need to show: 𝑓 𝑆, 𝑇 = 𝑐 𝑆, 𝑇 .

𝐺 with 𝑓"
𝐺-! :

Max-Flow Min-Cut Theorem (3/3)
Max-Flow Min-Cut Theorem If 𝑓 is a flow in a flow network 𝐺 = (𝑉, 𝐸) with
source 𝑠 and sink 𝑡, the the following conditions are equivalent:
2) The residual network 𝐺' contains no augmenting paths.
3) 𝑓 = 𝑐(𝑆, 𝑇) for some cut (𝑆, 𝑇) of 𝐺.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 27

Proof. (cont’d) (2) ⇒ (3): Show that 𝑓 𝑆, 𝑇 = 𝑐 𝑆, 𝑇 .
For any 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇, we must have 𝑐- 𝑢, 𝑣 = 0.
Based on definitions of residual capacity,
• If (𝑢, 𝑣) ∈ 𝐸, then 𝑐 𝑢, 𝑣 = 𝑓 𝑢, 𝑣
• If (𝑣, 𝑢) ∈ 𝐸, then 𝑓 𝑣, 𝑢 = 0
𝑓 𝑆, 𝑇 = ∑.∈/∑!∈0 𝑓(𝑢, 𝑣) − ∑.∈/∑!∈0 𝑓 𝑣, 𝑢

= ∑.∈/∑!∈0 𝑐 𝑢, 𝑣 = 𝑐 𝑆, 𝑇 ☐

𝐺 with 𝑓"
𝐺-! :

The Ford-Fulkerson Method

The Basic Ford-Fulkerson Algorithm

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 28

The Basic Ford-Fulkerson Algorithm

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 29

FORD-FULKERSON(𝐺, 𝑠, 𝑡)
1 for each edge 𝑢, 𝑣 ∈ 𝐺. 𝐸
2 𝑢, 𝑣 . 𝑓 = 0
3 build the residual network 𝐺!
4 while there exists a path 𝑝 from 𝑠 to 𝑡 in 𝐺!
5 augment 𝑓 by 𝑐!(𝑝)
6 update 𝐺!

8/8

8/8

8/85

5

Example 1:

8/8

3/8

8/85/5

5/5

𝐺 with 𝑓!

𝐺 with 𝑓"𝑐$" 𝑝" = 5 No augmenting path

8
8

85

5𝐺:

𝑐$# 𝑝! = 8

8

8

85

5
𝐺$":

8

5
85

5
𝐺$$: • 𝑓" is a max flow in 𝐺.

• 𝑓" = 13
• A min-cut of 𝐺:
𝑆 = {𝑠}
𝑇 = {𝑎, 𝑏, 𝑡}

The Trucking Problem Example (1/2)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 30

𝐺:

𝑐!! 𝑝% = 4

𝐺:

𝐺 with 𝑓%
𝐺!":

𝑐!" 𝑝& = 4 𝐺 with 𝑓&

𝐺!#:

𝑐!# 𝑝' = 4

𝐺 with 𝑓'

𝐺!$:

𝑐!$ 𝑝(= 7 𝐺 with 𝑓(

The Trucking Problem Example (2/2)

• 𝑓? is a maximum flow in 𝐺.
• 𝑓? = 23
• A min-cut of 𝐺:
𝑆 = 𝑠, 𝑣), 𝑣*, 𝑣+
𝑇 = {𝑣,, 𝑡}

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 31

No more augmenting path.

𝐺 with 𝑓(𝑐!% 𝑝) = 4

𝐺!%:

𝐺 with 𝑓)
𝐺!&:

𝑆 contains all the vertices that
can be reached from 𝑠 in 𝐺-# .

Time Complexity of Ford-Fulkerson Algorithm

• The time complexity depends on how we
find the augmenting path in line 4.
• It can be very slow.
• Example:

It takes 2×10+ iterations.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 32

𝐺 𝐺$" 𝐺$$

FORD-FULKERSON(𝐺, 𝑠, 𝑡)
1 for each edge 𝑢, 𝑣 ∈ 𝐺. 𝐸
2 𝑢, 𝑣 . 𝑓 = 0
3 build the residual network 𝐺!
4 while there exists a path 𝑝 from 𝑠 to 𝑡 in 𝐺!
5 augment 𝑓 by 𝑐!(𝑝)
6 update 𝐺!

Analysis of Ford-Fulkerson Algorithm

• Assumption: Capacities are all integers.
• Then, each augmenting path increases |𝑓| by at least 1. – Why?
• If max flow is 𝑓∗, then there will be at most |𝑓∗| iterations.
• Total running time: 𝑂(𝑚|𝑓∗|) – NOT polynomial in input size!

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 33

• Lines 1-2: 𝑂(𝑚)
• Line 3: 𝑂(𝑛 +𝑚)
• Lines 4-6: in each iteration,
• Line 4: 𝑂(𝑛 +𝑚) – by DFS or BFS
• Line 5: 𝑂(𝑛)
• Line 6: 𝑂(𝑛)

FORD-FULKERSON(𝐺, 𝑠, 𝑡)
1 for each edge 𝑢, 𝑣 ∈ 𝐺. 𝐸
2 𝑢, 𝑣 . 𝑓 = 0
3 build the residual network 𝐺!
4 while there exists a path 𝑝 from 𝑠 to 𝑡 in 𝐺!
5 augment 𝑓 by 𝑐!(𝑝)
6 update 𝐺!

The Ford-Fulkerson Method

The Edmonds-Karp algorithm

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 34

Edmonds-Karp Algorithm

• It follows the basic Ford-Fulkerson algorithm.
• Computes augmenting paths by using BFS in 𝐺' to find the shortest path

from 𝑠 to 𝑡 with all edge weights being 1. Call it the BFS path.
• Time complexity of Edmonds-Karp algorithm: 𝑂(𝑛𝑚*)

- NO assumption on values of capacities
• That is, the number of iterations of the while loop is in 𝑂(𝑛𝑚).*
• In each iteration, 𝐺' is updated with ≥ 1 edge deleted.
• We will prove: Each edge in 𝐺' can be deleted and reinserted back later

for at most 𝑛/2 times.
• Then, with 𝑂(𝑚) edges, there are 𝑂(𝑛𝑚) iterations in total.

* This is Theorem 26.8 on p.729 of the textbook.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 35

Analysis of Edmonds-Karp Algorithm (1/5)

Lemma: Each edge (𝑢, 𝑣) in 𝐺' can be deleted and reinserted back later for
at most 𝑛/2 times.
• Recall: BFS takes a graph 𝐺' with starting vertex 𝑠. It can compute 𝑣. 𝑑 for

every 𝑣 ∈ 𝑉, where 𝑣. 𝑑 = distance (smallest # of edges) from 𝑠 to 𝑣.
• For any edge 𝑢, 𝑣 on a BFS path, 𝑣. 𝑑 = 𝑢. 𝑑 + 1.
Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 36

𝐺- Breadth-first tree of 𝐺-

Analysis of Edmonds-Karp Algorithm (2/5)

Q: How does 𝑣. 𝑑 change as 𝐺' changes?
Claim: For every 𝑣 ∈ 𝑉, 𝑣. 𝑑 never decreases.
Proof. When an edge in 𝐺' is deleted, 𝑣. 𝑑 will not decrease. – Why?
• Only need to discuss the cases when an edge is added to 𝐺'.
• Q: How does 𝐺' change in each iteration?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 37

𝐺- Breadth-first tree of 𝐺-

Analysis of Edmonds-Karp Algorithm (3/5)

Let 𝑓 be the flow before the current iteration and 𝑓′ be the flow updated with
augmenting path (BFS path) 𝑝 in the current iteration.
• Recall: Residual capacity is defined as:

For any edge (𝑢, 𝑣),
• If (𝑢, 𝑣) is added to 𝐺':
• Case 1: 𝑓(𝑢, 𝑣) = 𝑐(𝑢, 𝑣) and 𝑓-(𝑢, 𝑣) < 𝑐(𝑢, 𝑣) ⇒ (𝑣, 𝑢) is on 𝑝.
• Case 2: 𝑓(𝑣, 𝑢) = 0 and 𝑓-(𝑣, 𝑢) > 0 ⇒ (𝑣, 𝑢) is on 𝑝.

• If (𝑢, 𝑣) is deleted from 𝐺':
• Case 1: 𝑓 𝑢, 𝑣 < 𝑐(𝑢, 𝑣) and 𝑓-(𝑢, 𝑣) = 𝑐(𝑢, 𝑣) ⇒ (𝑢, 𝑣) is on 𝑝.
• Case 2: 𝑓-(𝑣, 𝑢) = 0 and 𝑓(𝑣, 𝑢) > 0 ⇒ (𝑢, 𝑣) is on 𝑝.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 38

𝑐! 𝑢, 𝑣 = &
𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 , if 𝑢, 𝑣 ∈ 𝐸,
𝑓 𝑣, 𝑢 , if 𝑣, 𝑢 ∈ 𝐸,
0, otherwise.

Analysis of Edmonds-Karp Algorithm (4/5)
Claim: For every 𝑣 ∈ 𝑉, 𝑣. 𝑑 never decreases.
Proof. (cont’d) Discuss cases when an edge (𝑢, 𝑣) is added to 𝐺'.
We’ve shown: if an edge (𝑢, 𝑣) is added to 𝐺', then (𝑣, 𝑢) is on 𝑝.
• Suppose 𝑣. 𝑑 = 𝑘 before edge (𝑢, 𝑣) is added to 𝐺'.
• As 𝑝 is a BFS path, for (𝑣, 𝑢), 𝑢. 𝑑 = 𝑣. 𝑑 + 1 = 𝑘 + 1.
• So, adding (𝑢, 𝑣) will not decrease 𝑣. 𝑑. – Why? ☐

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 39

Analysis of Edmonds-Karp Algorithm (5/5)

Lemma: Each edge (𝑢, 𝑣) in 𝐺' can be deleted and reinserted back later for
at most 𝑛/2 times.
Proof. Suppose at some point, 𝑢. 𝑑 = 𝑘.
• When edge (𝑢, 𝑣) is deleted from 𝐺', (𝑢, 𝑣) is on the BFS path 𝑝.

So, 𝑣. 𝑑 = 𝑢. 𝑑 + 1 ≥ 𝑘 + 1.
• When edge (𝑢, 𝑣) is later added back into 𝐺'%, (𝑣, 𝑢) is on the BFS path 𝑝-.

So, 𝑢. 𝑑- = 𝑣. 𝑑 + 1 ≥ 𝑘 + 2.
That is, 𝑢. 𝑑 will increase by at least 2.
As 0 ≤ 𝑢. 𝑑 ≤ 𝑛, lemma is proved. ☐

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 40

Maximum Bipartite Matching

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 41

The Maximum-Bipartite-Matching Problem

• A graph 𝐺 = (𝑉, 𝐸) is bipartite if we can partition 𝑉 = 𝐿 ∪ 𝑅 (𝐿 ∩ 𝑅 = ∅)
such that all edges in 𝐸 go between 𝐿 and 𝑅.
• In an undirected graph 𝐺 = (𝑉, 𝐸), a matching is a subset of edges 𝑀 ⊆ 𝐸

s.t. for all 𝑣 ∈ 𝑉, at most one edge of 𝑀 is incident on 𝑣.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 42

• Vertex 𝑣 is matched by 𝑀 if an edge of 𝑀 is
incident on it; otherwise 𝑣 is unmatched.
• A maximum matching is a matching of

maximum cardinality, that is, a matching 𝑀
s.t. |𝑀| ≥ |𝑀-| for any matching 𝑀′.

• The Maximum-Bipartite-Matching Problem:
• Given: A bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸)
• Goal: Find a maximum matching.

Example:

Maximum-Bipartite-Matching as Maximum-Flow

Given a bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸), we define the corresponding flow
network 𝐺- = (𝑉-, 𝐸′) as follows:
• 𝑉- = 𝑉 ∪ 𝑠, 𝑡 ,
• 𝐸- = 𝑠, 𝑢 : 𝑢 ∈ 𝐿 ∪ 𝑢, 𝑣 : 𝑢, 𝑣 ∈ 𝐸 ∪ { 𝑣, 𝑡 : 𝑣 ∪ 𝑅},
• 𝑐 𝑢, 𝑣 = 1 for all 𝑢, 𝑣 ∈ 𝐸′.
Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 43

Integrality Theorem

Integrality Theorem*. If the capacities of all edges in a flow network are
integers, then
1. The value of the maximum flow 𝑓 produced by the Ford-Fulkerson

method, |𝑓|, is also an integer.
2. For every edge (𝑢, 𝑣), the value of 𝑓(𝑢, 𝑣) is an integer.
Lemma**: Let 𝐺 = (𝐿 ∪ 𝑅, 𝐸) be a bipartite graph and 𝐺- = (𝑉-, 𝐸′) be its
corresponding flow network. Then, a matching 𝑀 in 𝐺 corresponds to a flow
𝑓 in 𝐺-, with 𝑀 = |𝑓|.
Proof. See next slide.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 44

* This is Theorem 26.10 on p.734 of the textbook.
**See Lemma 26.9 on p.733-734 of the textbook for a complete proof.

Correspondence Between Matchings and Flows (1/2)

Lemma: Let 𝐺 = (𝐿 ∪ 𝑅, 𝐸) be a bipartite graph and 𝐺- = (𝑉-, 𝐸′) be its
corresponding flow network. Then, a matching 𝑀 in 𝐺 corresponds to a flow
𝑓 in 𝐺-, with 𝑀 = |𝑓|.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 45

Proof.
• “⇒”: Show 𝑀 = 𝑘 ⟹ ∃𝑓 s.t. 𝑓 = 𝑘.

• For each edge (𝑢, 𝑣) ∈ 𝑀, with 𝑢 ∈ 𝐿, 𝑣 ∈ 𝑅,
𝑓 𝑢, 𝑣 = 1, 𝑓 𝑠, 𝑢 = 1, and 𝑓 𝑣, 𝑡 = 1.

• 𝑓 = ∑!∈# 𝑓(𝑠, 𝑣) = 𝑘.
• “⇐”: Show 𝑓 = 𝑘 ⟹ ∃𝑀 s.t. 𝑀 = 𝑘.
• If 𝑓 𝑢, 𝑣 > 0, then 𝑓 𝑢, 𝑣 = 1
• 𝑀 = { 𝑢, 𝑣 : 𝑢 ∈ 𝐿, 𝑣 ∈ 𝑅, 𝑓 𝑢, 𝑣 = 1}
• 𝑀 is a matching. – Why?
• 𝑀 = 𝑓 𝐿 ∪ 𝑠 , 𝑅 ∪ 𝑡 = 𝑓 = 𝑘. ☐

Example:

Correspondence Between Matchings and Flows (2/2)

Integrality Theorem. If the capacities of all edges in a flow network are
integers, then
1. The value of the maximum flow 𝑓 produced by the Ford-Fulkerson

method, |𝑓|, is also an integer.
2. For every edge (𝑢, 𝑣), the value of 𝑓(𝑢, 𝑣) is an integer.
Lemma: Let 𝐺 = (𝐿 ∪ 𝑅, 𝐸) be a bipartite graph and 𝐺- = (𝑉-, 𝐸′) be its
corresponding flow network. Then, a matching 𝑀 in 𝐺 corresponds to a flow
𝑓 in 𝐺-, with 𝑀 = |𝑓|.
The Integrality Theorem and the Lemma lead to the following conclusion.
Corollary (26.11): The cardinality of a maximum matching in a bipartite
graph = the value of a maximum flow in its corresponding flow network.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 46

Finding a Maximum Bipartite Matching

Given a bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸), with 𝑛 = |𝐿 ∪ 𝑅| and 𝑚 = |𝐸|,
1. Create flow network 𝐺′ = (𝑉′, 𝐸′)
• 𝑉′ = 𝑛 + 2 and 𝐸- = 𝑚 + 𝑛 ∈ Θ(𝑚);
• 𝑐 𝑢, 𝑣 = 1 for all 𝑢, 𝑣 ∈ 𝐸′.
• Running time: Θ(𝑚 + 𝑛)

2. Apply the Ford-Fulkerson method on 𝐺′
• Let 𝑀 be max matching in 𝐺,
• 𝑀 ≤ min 𝐿 , 𝑅 ∈ 𝑂 𝑛 .
• If is 𝑓′ is max flow in 𝐺′, then 𝑓- = |𝑀| ∈ 𝑂 𝑛 .
• Running time: 𝑂(𝑚𝑛)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 47

Thank you!
Questions?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 48

