
Algorithm Analysis and Data Structures
CSCI 7432 - Fall 2022
Algorithm Foundations

Dr. Yao XU

Assistant Professor

Department of Computer Science
Georgia Southern University

Email: yxu@georgiasouthern.edu

Table of Contents

1. Algorithms
2. Asymptotic Notations
3. Solving Recurrences
• The Substitution Method
• The Recursion-Tree Method
• The Master Theorem Method

4. Algorithm Analysis
• Non-recursive Algorithm Analysis
• Recursive Algorithm Analysis

5. Prove Algorithm Correctness

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 2

Algorithms

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 3

What is an Algorithm?

• Computational Problem: Given an input 𝑋 satisfying..., output 𝑌 satisfying...
• Algorithm: A well-defined step-by-step procedure that transforms the input

of a problem into the output.
• Instance: A specific input for a problem is called an instance of the problem.
• An algorithm is said to be correct if, for every input instance, it halts with the

correct output.
• We say that a correct algorithm solves the given computational problem.
Problem Examples:
1. Input: A non-negative integer 𝑋 Output: 𝑌 = 𝑋!
2. Input: A sequence of 𝑛 numbers 𝑋 = 𝑎!, 𝑎", ⋯ , 𝑎#

Output: A permutation 𝑌 = 𝑎′!, 𝑎′", ⋯ , 𝑎′# of 𝑋 s.t. 𝑎′! ≤ 𝑎′" ≤ ⋯ ≤ 𝑎′#

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 4

Argue About An Algorithm

What do we need to argue about an algorithm?
1. Provide an accurate description - pseudocode

2. Correctness
3. Amount of resources (time and space) - analysis
• For any instance?
• For a good instance?
• For an average instance?

4. Can we do better?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 5

Describe an Algorithm in Pseudocode

• Pseudocode is designed for
expressing algorithms to humans.
• Name and a clear indication of

the input is a must.
• Short description, input/output

or pre/post-conditions are
optional but strongly encouraged
to include.
• Pseudocode conventions:

textbook pages 20-22
• Be consistent and clear!

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 6

INSERTION-SORT(A)
// <Short description>
// Precondition: An array A[1..n] containing a
// sequence of n pair-wise comparable elements.
// Postcondition: The array A contains a sorted
// sequence of n elements.
for j = 2 to A.length // n = A.length

key = A[j]
// Insert A[j] into the sorted sequence A[1..j - 1].
i = j - 1
while i > 0 and A[i] > key

A[i + 1] = A[i]
i = i – 1

A[i + 1] = key

Example:

Asymptotic Notations

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 7

Asymptotic Notations (1/2)

• 𝑶(𝑔(𝑛)) is the set of all functions 𝑓(𝑛) that
• roughly, grow no faster than 𝑔(𝑛)
• formally, ∃𝑐 > 0 and 𝑛! > 0 such that 𝑓(𝑛) ≤ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛!

• 𝛀(𝑔(𝑛)) is the set of all functions 𝑓(𝑛) that
• roughly, grow no slower than 𝑔(𝑛)
• formally, ∃𝑐 > 0 and 𝑛! > 0 such that 𝑓(𝑛) ≥ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛!

• 𝚯(𝑔(𝑛)) is the set of all functions 𝑓(𝑛) that
• roughly, grow at the same rate as 𝑔(𝑛)
• formally, ∃𝑐" > 0, 𝑐# > 0 and 𝑛! > 0, such that 𝑐"𝑔(𝑛) ≤ 𝑓(𝑛) ≤
𝑐#𝑔(𝑛) for all 𝑛 ≥ 𝑛!
• Θ 𝑔 𝑛 = 𝑂(𝑔(𝑛)) ∩ Ω(𝑔(𝑛))

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 8

Asymptotic Notations (2/2)

lim
#→%

𝑓(𝑛)
𝑔(𝑛)

= 2
0 ⇒ 𝑓 𝑛 grows slower than 𝑔 𝑛 ⇒ 𝑓(𝑛) ∈ 𝒐(𝑔(𝑛))
𝑐 > 0 ⇒ 𝑓 𝑛 grows at the same rate as 𝑔 𝑛 ⇒ 𝑓(𝑛) ∈ 𝚯(𝑔(𝑛))
∞ ⇒ 𝑓 𝑛 grows faster than 𝑔 𝑛 ⇒ 𝑓(𝑛) ∈ 𝝎(𝑔(𝑛))

• We write: 𝑓 𝑛 ∈ 𝑂(𝑔(𝑛)), instead of “𝑓 𝑛 = 𝑂(𝑔(𝑛))” in the textbook.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 9

∈ ∈ ∈

Exercises: Comparing Functions

• Exercise 1: Compare the orders of growth of the following two functions:

𝑓 𝑛 = "
#
𝑛(𝑛 − 1) and 𝑔 𝑛 = 𝑛#.

• Exercise 2: Compare the orders of growth of the following two functions:
𝑓 𝑛 = log# 𝑛 and 𝑔 𝑛 = 𝑛.

Hint: Use L’Hôpital’s rule: lim
$→&

'($)
*($)

= lim
$→&

'+($)
*+($)

.

• Exercise 3: Compare the orders of growth of the following two functions:
𝑓 𝑛 = 𝑛! and 𝑔 𝑛 = 2$.

Hint: Take advantage of Stirling’s formula: 𝑛! ≈ 2𝜋𝑛 $
,

$
.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 10

Basic Efficiency Classes

• Notation: log 𝑛 = lg 𝑛 = log" 𝑛

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 11

Class Name Comments / Algorithm Examples
1 Constant Usually short of best-case efficiencies.

log 𝑛 Logarithmic Problem’s size cut by a constant factor on each
iteration.

𝑛 Linear Scan an array of size n.
𝑛 log 𝑛 Linearithmic Many divide-and-conquer algorithms.
𝑛" Quadratic Algorithms with two embedded loops.
𝑛& Cubic Algorithms with three embedded loops.
2# Exponential Generate all subsets of an n-element set.
𝑛! Factorial Generate all permutations of an n-element set.

Solving Recurrences

The Substitution Method

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 12

The Substitution Method Examples (1/4)

Example 1:

𝑇 𝑛 = @1, for 𝑛 = 1
𝑇 𝑛 − 1 + 𝑛, for 𝑛 > 1

Step 1: Guess by either backward substitution or forward substitution.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 13

The Substitution Method Examples (2/4)

Example 1:

𝑇 𝑛 = @1, for 𝑛 = 1
𝑇 𝑛 − 1 + 𝑛, for 𝑛 > 1

Guess: 𝑇 𝑛 = #(#(!)
"

Step 2: Show that the solution is correct.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 14

The Substitution Method Examples (3/4)

Example 2:

𝑇 𝑛 = @0, for 𝑛 = 1
2𝑇 𝑛 − 1 + 1, for 𝑛 > 1

Step 1: Guess by either backward substitution or forward substitution.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 15

The Substitution Method Examples (4/4)

Example 2:

𝑇 𝑛 = @0, for 𝑛 = 1
2𝑇 𝑛 − 1 + 1, for 𝑛 > 1

Guess: 𝑇 𝑛 = 2# − 1
Step 2: Show that the solution is correct.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 16

Solving Recurrences

The Recursion-Tree Method

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 17

The Recursion-Tree Method Examples (1/2)

• Example 1:

𝑇 𝑛 = @1, for 𝑛 = 1
2𝑇 𝑛/2 + 𝑛, for 𝑛 > 1

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 18

The Recursion-Tree Method Examples (2/2)

• Example 2:

𝑇 𝑛 = C
1, for 𝑛 = 1

𝑇
𝑛
3 + 𝑇

2𝑛
3 + 𝑛, for 𝑛 > 2

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 19

Solving Recurrences

The Master Theorem Method

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 20

The Master Theorem Method

• Used for many divide-and-conquer recurrences of the form:

𝑇 𝑛 = 𝑎𝑇 $
-
+ 𝑓 𝑛 ,

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓 𝑛 > 0.
• Master Theorem: Let 𝑎 ≥ 1 and 𝑏 > 1 be constants, let 𝑓(𝑛) be a function,

and let 𝑇(𝑛) be defined on the nonnegative integers by the recurrence
𝑇 𝑛 = 𝑎𝑇 $

-
+ 𝑓 𝑛 . Then 𝑇 𝑛 has the following asymptotic bounds:

1. If 𝑓 𝑛 ∈ 𝑂(𝑛*+,! -./) for some constant 𝜖 > 0, then 𝑇 𝑛 ∈ Θ(𝑛*+,! -).
2. If 𝑓 𝑛 ∈ Θ(𝑛*+,! - log0𝑛) for some 𝑘 ≥ 0, then 𝑇 𝑛 ∈ Θ(𝑛*+,! - log0(! 𝑛).
3. If 𝑓 𝑛 ∈ Ω(𝑛*+,! -(/) for some constant 𝜖 > 0, and if 𝑎𝑓(𝑛/𝑏) ≤ 𝑐𝑓(𝑛) for

some constant 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 ∈ Θ 𝑓 𝑛 .

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 21

The Master Theorem Method Examples (1/3)

Master Theorem: Let 𝑎 ≥ 1 and 𝑏 > 1 be constants, let 𝑓(𝑛) be a function,
and let 𝑇(𝑛) be defined on the nonnegative integers by the recurrence
𝑇 𝑛 = 𝑎𝑇 $

-
+ 𝑓 𝑛 . Then 𝑇 𝑛 has the following asymptotic bounds:

1. If 𝑓 𝑛 ∈ 𝑂(𝑛./0" 123) for some constant 𝜖 > 0, then 𝑇 𝑛 ∈ Θ(𝑛./0" 1).
Example:

𝑇 𝑛 = @
1, for 𝑛 = 1
5𝑇 𝑛/2 + 𝑛# log 𝑛 , for 𝑛 ≥ 2

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 22

The Master Theorem Method Examples (2/3)

Master Theorem: Let 𝑎 ≥ 1 and 𝑏 > 1 be constants, let 𝑓(𝑛) be a function,
and let 𝑇(𝑛) be defined on the nonnegative integers by the recurrence
𝑇 𝑛 = 𝑎𝑇 $

-
+ 𝑓 𝑛 . Then 𝑇 𝑛 has the following asymptotic bounds:

2. If 𝑓 𝑛 ∈ Θ(𝑛./0" 1 log4𝑛) for 𝑘 ≥ 0, then 𝑇 𝑛 ∈ Θ(𝑛./0" 1 log45" 𝑛).
Example:

𝑇 𝑛 = @
1, for 𝑛 = 1
9𝑇 𝑛/3 + 𝑛#log#𝑛, for 𝑛 ≥ 2

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 23

The Master Theorem Method Examples (3/3)

Master Theorem: Let 𝑎 ≥ 1 and 𝑏 > 1 be constants, let 𝑓(𝑛) be a function,
and let 𝑇(𝑛) be defined on the nonnegative integers by the recurrence
𝑇 𝑛 = 𝑎𝑇 $

-
+ 𝑓 𝑛 . Then 𝑇 𝑛 has the following asymptotic bounds:

3. If 𝑓 𝑛 ∈ Ω(𝑛./0" 153) for some constant 𝜖 > 0, and if 𝑎𝑓(𝑛/𝑏) ≤ 𝑐𝑓(𝑛)
for some constant 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 ∈ Θ 𝑓 𝑛 .

Example:

𝑇 𝑛 = @1, for 𝑛 = 1
3𝑇 𝑛/4 + 𝑛, for 𝑛 ≥ 2

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 24

Algorithm Analysis

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 25

Algorithm Analysis

• Analyze an algorithm: predict the resources that the algorithm
requires. We will measure
• Time efficiency/complexity – how fast an algorithm runs
• Space efficiency/complexity – the amount of memory units required in

addition to the space needed for its input and output
• When running time depends not only on an input size but also on the

specifics of a particular input (instance), we discuss
• Best case – gives a lower bound on the algorithm’s running time
• Worst case – gives an upper bound on the algorithm’s running time
• Average case – by forcing a distribution over the instances (we are

making a huge assumption)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 26

Algorithm Analysis

Non-Recursive Algorithm Analysis

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 27

INSERTION-SORT Time and Space Complexity

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 28

INSERTION-SORT(A)
for j = 2 to A.length // n = A.length

key = A[j]
// Insert A[j] into the sorted sequence A[1..j].
i = j - 1
while i > 0 and A[i] > key

A[i + 1] = A[i]
i = i – 1

A[i + 1] = key

• Worst-case running time:
• Best-case running time:
• Space complexity:

Θ(𝑛#)
Θ(𝑛)
Θ(1)

Algorithm Analysis

Recursive Algorithm Analysis

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 29

MERGE-SORT Time and Space Complexity

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 30

• Worst-case/Best-case running time:

𝑇 𝑛 = U𝑐, for 𝑛 = 1
2𝑇 𝑛/2 + 𝑐𝑛, for 𝑛 ≥ 2

⟹ 𝑇 𝑛 ∈ Θ(𝑛 log 𝑛)
• Space complexity: 𝑂(𝑛)

Prove Algorithm Correctness

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 31

Prove the Correctness of An Algorithm

• Claim: For any instance 𝐼 (satisfying...), Algorithm-Name(𝐼) returns...
• Example claim: For any array 𝐴 containing a sequence of pair-wise

comparable elements, INSERTION-SORT(𝐴) correctly sorts 𝐴.
• To prove the correctness of an algorithm,
• When recursion is involved, use mathematical induction
• When loop is involved, use loop invariant (and induction)

• Anything that can be computed using a recursion can be computed using
loops, and vice-versa.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 32

Convert Recursion to Loops (1/2)
Example 1:
Factorial(n)
if n = 0

return 1
else

return n × Factorial(n - 1)

Factorial-Loop(n)
res = 1
for i = 1 to n

res = i × res
return res

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 33

Convert Recursion to Loops (2/2)
Example 2:
Find(A, n, x)
if n == 0

return NIL
else if A[n] == x

return n
else

return Find(A, n-1, x)

Find-Loop(A, n, x)
for i = n downto 1

if A[i] == x
return i

return NIL

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 34

A[3] == x ?

A[2] == x ?

A[1] == x ?

Convert Loops to Recursion
Example:
Sum(A, n)
s = A[1]
for i = 2 to n

s = s + A[i]
return s

Sum-Recursion(A, n)
if n ≤ 1

return A[1]
else

return A[n] + Sum-Recursion(A, n - 1)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 35

Prove Correctness using Loop Invariants (1/4)

• A loop invariant (LI) is a statement/
assertion/predicate about the state
of the code that is always true at the
beginning of each loop-iteration.
• What type of assertion?

It should accurately describe the
cumulative effect of repeatedly
iterating through the loop.

• Q: What is the LI of the for loop?
• A: At the start of each iteration of

the for loop, the subarray A[1..j-1]
consists of the elements originally in
A[1..j-1], but in sorted order.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 36

INSERTION-SORT(A)
for j = 2 to A.length // n = A.length

key = A[j]
// Insert A[j] into the sorted sequence A[1..j-1].
i = j - 1
while i > 0 and A[i] > key

A[i + 1] = A[i]
i = i – 1

A[i + 1] = key

Example: A = ⟨5, 2, 4, 6, 1, 3⟩

Prove Correctness using Loop Invariants (2/4)

To prove correctness using LI, we
must show:
1. Initialization: LI is true prior to

the first iteration of the loop.
2. Maintenance: If LI is true before

an iteration of the loop, it remains
true before the next iteration.

3. Termination: When the loop
terminates, LI gives us a useful
property that helps show the
correctness of the overall
algorithm.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 37

INSERTION-SORT(A)
for j = 2 to A.length // n = A.length

key = A[j]
// Insert A[j] into the sorted sequence A[1..j-1].
i = j - 1
while i > 0 and A[i] > key

A[i + 1] = A[i]
i = i – 1

A[i + 1] = key

LI of the for loop:
At the start of each iteration, the
subarray A[1..j-1] consists of the
elements originally in A[1..j-1], but
in sorted order.

Prove Correctness using Loop Invariants (3/4)

Prove the correctness of the for loop
(correctness of INSERTION-SORT):
1. Initialization: j = 2 and A[1] is

trivially sorted.
2. Maintenance: Show that if LI is

true before an iteration of the
loop, it remains true before the
next iteration. (see next slide)
• Q: What is the while loop doing?

3. Termination: The for loop
terminates when j = n + 1. LI
indicates that A[1..n] is sorted.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 38

INSERTION-SORT(A)
for j = 2 to A.length // n = A.length

key = A[j]
// Insert A[j] into the sorted sequence A[1..j-1].
i = j - 1
while i > 0 and A[i] > key

A[i + 1] = A[i]
i = i – 1

A[i + 1] = key

LI of the for loop:
At the start of each iteration, the
subarray A[1..j-1] consists of the
elements originally in A[1..j-1], but
in sorted order.

Prove Correctness using Loop Invariants (4/4)

2. Maintenance: Show that if LI is
true before an iteration of the
loop, it remains true before the
next iteration.
• Q: What is the while loop doing?

• Assume LI is true for j = k. That is,
subarray A[1..k-1] is sorted.
• Need to prove LI is true for j = k + 1

before the next iteration. That is,
subarray A[1..k] is sorted.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 39

INSERTION-SORT(A)
for j = 2 to A.length // n = A.length

key = A[j]
// Insert A[j] into the sorted sequence A[1..j-1].
i = j - 1
while i > 0 and A[i] > key

A[i + 1] = A[i]
i = i – 1

A[i + 1] = key

LI of the for loop:
At the start of each iteration, the
subarray A[1..j-1] consists of the
elements originally in A[1..j-1], but
in sorted order.

Exercise: Prove Correctness of Merge-Sort

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 40

1. Prove the correctness of the major for
loop of the MERGE(A, p, q, r)
procedure.
• Use LI. (p.32-33 of the textbook)

2. Prove the correctness of algorithm
MERGE-SORT(A, p, r).
• Prove by induction.

Thank you!
Questions?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 41

