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Dynamic Multithreading
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Parallel Algorithms

• All algorithms we’ve discussed are serial algorithms
• Run on a uniprocessor computer
• Execute one instruction at a time

• We will talk about parallel algorithms
• Run on a multiprocessor computer
• Permits multiple instructions to execute concurrently
• Explore an elegant model: dynamic multithreaded algorithms
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Static Threading v.s. Dynamic Multithreading

• Static threading
• Provides the programmer with an abstraction of virtual processors that 

are managed explicitly.
• The programmer must specify in advance how many processors to use 

at each point.
• Dynamic multithreading
• Programmers specify opportunities for parallelism;
• A concurrency platform manages the decisions of mapping these 

opportunities to actual static threads. – Scheduling problem (Will not 
be discussed)
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Dynamic Multithreading

• Functionality of dynamic-multithreading supports two features:
• Nested parallelism - allows a subroutine to be “spawned” to allow the 

caller to proceed while the spawned subroutine is computing its result.
• Parallel loops - like an ordinary loop, except that the iterations of the 

loop can execute concurrently.
• Three “concurrency” keywords in pseudocode:
• parallel: add to loop to indicate iterations can be executed in parallel.
• spawn: create a parallel process and keep executing the current one.
• sync: wait until all active parallel threads finish.

• Serialization of a multithreaded algorithm: deleting these keywords, we 
get the serial algorithm for the same problem.
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Example: Parallel Fibonacci (1/2)

• Recall: Fibonacci numbers
• 𝐹! = 0, 𝐹" = 1, 𝐹# = 𝐹#$" + 𝐹#$% for 𝑖 ≥ 2

• A recursive, serial algorithm to compute 𝐹&:
• Time complexity: 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + Θ(1)
• 𝑇 𝑛 ∈ Θ(𝐹&)*, 𝐹& grows exponentially in 𝑛
• 𝑇 𝑛 ∈ Θ(𝜙&), where 𝜙 = (1 + 5)/2.*

• Observation: The recursive calls operate independently of each other.
• The two recursive calls can run in parallel.

• Q: What improvement can we get?

*See p.775-776 of the textbook for proof of the time complexity.
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Example: Parallel Fibonacci (2/2)

• Augment pseudocode to indicate parallelism by adding the concurrency 
keywords spawn and sync.
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• Notice that without the 
concurrency keywords,  
P-FIB(n) is identical to 
the algorithm FIB(n).
• Nested parallelism:
• spawn precedes a procedure call, as in line 3.
• The child computes P-FIB(n - 1)
• The parent computes P-FIB(n - 2) in parallel with the child
• sync indicates parent must wait for all children to complete before 

continuing



Analyzing Multithreaded Algorithms

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 9



A Model for Multithreaded Execution

• 𝑣 ∈ 𝑉 represents a strand: a sequence of 
non-parallel instructions.
• 𝑒 ∈ 𝐸 represents dependencies between 

two strands: (𝑢, 𝑣) ∈ 𝐸 means 𝑢 must 
execute before 𝑣.
• If there is a directed path from 𝑢 to 𝑣, 

then they are (logically) in series; 
otherwise, they are (logically) in parallel.

Example: Computation DAG of P-FIB(4).
• Black nodes: lines 1-3; Grey nodes: line 4; 

White nodes: line 6
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A multithreaded computation can be modeled as a 
computation DAG 𝐺 = (𝑉, 𝐸).



Performance Measures (1/2)

• Denote 𝑇' = running time of an algorithm on 𝑃 processors.
• Two metrics to measure time complexity of a multithreaded algorithm:

• Work: 𝑇! = total time to execute the entire computation on one processor.
• Work law: 𝑇" ≥ 𝑇!/𝑃

• Span: 𝑇# = longest time to execute the strands along any path in the DAG.
• Span law: 𝑇" ≥ 𝑇#

• Example: P-FIB(4)
• Assuming 1 unit of work per strand.
• Work: 𝑇! = 17
• Span: 𝑇# = 8
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Performance Measures (2/2)

• Speedup of a computation on 𝑃 processors: 𝑇"/𝑇' (≤ 𝑃)
• Linear speedup: 𝑇"/𝑇' ∈ Θ(𝑃)
• Perfect linear speedup: 𝑇"/𝑇' = 𝑃

• The parallelism of a multithreaded computation: 𝑇"/𝑇(
• Ratio: average amount of work that can be performed for each strand 

along the longest path in the computation DAG.
• Upper Bound: maximum possible speedup that can be achieved on any 

number of processors.
• Limit: limit on the possibility of attaining perfect linear speedup.

• Example: P-FIB(4)
• The parallelism is )!

)"
= "*

+
(achieving ≫ 2 speedup is impossible)
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Analysis of P-FIB(n)
• Analyzing work: same as FIB(n)

𝑇" 𝑛 = 𝑇" 𝑛 − 1 + 𝑇" 𝑛 − 2 + Θ(1),
⇒ 𝑇" 𝑛 ∈ Θ 𝜙& .

• Analyzing span:
𝑇( 𝑛 = max 𝑇( 𝑛 − 1 , 𝑇( 𝑛 − 2 + Θ(1),

⇒ 𝑇( 𝑛 ∈ Θ(𝑛).
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• The parallelism of P-FIB(n):  𝑇"/𝑇( ∈ Θ 𝜙&/𝑛 .
• It grows dramatically as 𝑛 gets large.
• There is potential for near perfect linear speedup.



Parallel Loops Example (1/4)

Multiply an 𝑛×𝑛 matrix 𝐴 = (𝑎#,) by an 𝑛-vector 𝑥 = (𝑥,).
• Result is an 𝑛-vector 𝑦 = (𝑦#), where 𝑦# = ∑,-"& 𝑎#,𝑥,, for 𝑖 = 1, 2,⋯ , 𝑛.

Example: 𝐴 =
1 2 1 3
0
2
1

3
1
0

2
1
2

1
0
1

and 𝑥 =
2
1
0
2

⇒ 𝑦 = 𝐴𝑥 =
10
5
5
4
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• A parallel algorithm 
MAT-VEC(A, x):



Parallel Loops Example (2/4)

• A compiler can implement a parallel for loop via divide-and-conquer.
• Lines 5-7 can be implemented with MAT-VEC-MAIN-LOOP(A, x, y, n, 1, n).
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• It is not realistic to think that all 𝑛 iterations in a loop can be spawned 
simultaneously with no extra work.



Parallel Loops Example (3/4)

• Example: A DAG representing the 
computation of MAT-VEC-MAIN-
LOOP(A, x, y, 8, 1, 8).
• Black nodes: lines 1-5
• Grey nodes: line 6
• White nodes: line 7
• Each leaf node corresponds to 

one iteration of the loop.
• To parallelize a for loop with 𝑛

iterations, the extra work of 
recursive spawning is:

𝑇./01& 𝑛 ∈ Θ(log 𝑛).

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 16



Parallel Loops Example (4/4)

• Analyzing work: 𝑇" 𝑛 ∈ Θ(𝑛%)
• Analyzing span: 𝑇( 𝑛 = 𝑇(" 𝑛 + 𝑇(% 𝑛 + Θ(1),
• parallel for loop in lines 3-4:

𝑇(" 𝑛 = 𝑇./01& 𝑛 + Θ(1) ∈ Θ(log 𝑛),
• parallel for loop in lines 5-7:

𝑇(% 𝑛 = 𝑇./01& 𝑛 + Θ(𝑛) ∈ Θ(𝑛),
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where 𝑇./01& 𝑛 ∈ Θ(log 𝑛).
⇒ 𝑇( 𝑛 ∈ Θ(𝑛). 
• The parallelism is: 𝑇"/𝑇( ∈ Θ 𝑛
Q: Can we improve by making the inner for loop (lines 6-7) parallel as well?
A: NO.



Race Conditions

• An algorithm is deterministic if it always does the same thing on the same 
input; it is nondeterministic if the result might vary from run to run.
• A multithreaded algorithm that is intended to be deterministic fails to be 

when it contains a “determinacy race.”
• A determinacy race occurs when two logically parallel instructions access 

the same memory location and at least one of them performs a write.
• Example: RACE-EXAMPLE should always print 2, but it could print 1 instead.
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To cope with races, ensure that 
• strands that operate in parallel are independent,
• including all iterations in a parallel loop.



Multithreaded Merge Sort
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Parallelizing Merge Sort

• Work: 𝑇" 𝑛 = 2𝑇" 𝑛/2 + 𝑐𝑛
⇒ 𝑇" 𝑛 ∈ Θ(𝑛 log 𝑛).

• Span: 𝑇( 𝑛 = 𝑇( 𝑛/2 + 𝑐𝑛
⇒ 𝑇( 𝑛 ∈ Θ(𝑛).

• Parallelism: 𝑇"/𝑇( ∈ Θ log 𝑛
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Serial Merge Sort: A parallel Merge Sort:

• The serial MERGE procedure seems 
to be inherently serial.

• How to make it parallel? 



The Merge Procedure

• Input: Array 𝐴 with indices 𝑝, 𝑞, 𝑟, s.t.
• 𝑝 ≤ 𝑞 < 𝑟
• 𝐴[𝑝. . 𝑞] and 𝐴[𝑞 + 1. . 𝑟] are sorted

• Output: 𝐴[𝑝. . 𝑟] is sorted.
Example: 
• 𝐴[𝑝. . 𝑟] = 1, 4, 5, 7, 9, 0, 2, 3, 6, 8
• 𝑝 = 1, 𝑞 = 5, 𝑟 = 10. 𝑛! = 5, 𝑛$ = 5.
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1 2 3 4 5 6

L 1 4 5 7 9 ∞

1 2 3 4 5 6

R 0 2 3 6 8 ∞

1 2 3 4 5 6 7 8 9 10

A



A Divide-and-Conquer Merge (1/2)

• There is a divide-and-conquer
strategy to make it parallel.
• Idea: Break the two sorted

lists into four, two merged to 
form the head and two 
merged to form the tail.
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1. Choose the longer list to be the first one 𝑇[𝑝!. . 𝑟!].
2. Find the median 𝑥 = 𝑇[𝑞!], where 𝑞! = (𝑝! + 𝑟!)/2 .
3. Break the other list into two with binary search taking 𝑥 as the key.
4. Recursively merge 𝑇[𝑝!. . 𝑞! − 1] and 𝑇[𝑝$. . 𝑞$ − 1] to form the head of 𝐴, and 

merge 𝑇[𝑞! + 1. . 𝑟!] and 𝑇[𝑞$. . 𝑟$] to form the tail of 𝐴.
5. Place 𝑥 between them.



A Divide-and-Conquer Merge (2/2)
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1. Choose the longer list to be the first one 𝑇[𝑝!. . 𝑟!].
2. Find the median 𝑥 = 𝑇[𝑞!], where 𝑞! = (𝑝! + 𝑟!)/2 .
3. Break the other list into two with binary search taking 𝑥 as the key.
4. Recursively merge 𝑇[𝑝!. . 𝑞! − 1] and 𝑇[𝑝$. . 𝑞$ − 1] to form the head of 𝐴, and 

merge 𝑇[𝑞! + 1. . 𝑟!] and 𝑇[𝑞$. . 𝑟$] to form the tail of 𝐴.
5. Place 𝑥 between them.
Example: 𝑇[𝑝!. . 𝑟!] = 1, 4, 5, 7, 9 , 𝑇[𝑝$. . 𝑟$] = 0, 2, 3, 6, 8

1 2 3 4 5 ⋯ 15 16 17 18 19

T 1 4 5 7 9 ⋯ 0 2 3 6 8

A 0 1 2 3 4 5 6 7 8 9

recursively 
merge

recursively 
merge



The Parallel Merge Procedure

BINARY-SEARCH(x, T, p, r)
returns the position of 𝑥 if 
it were to be inserted into 
the list 𝑇[𝑝. . 𝑟].
• It is a serial procedure.
• Running time: 𝑂(log 𝑛), 

where 𝑛 = 𝑟 − 𝑝 + 1.
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Parallel Merge:



The Parallel Merge Procedure

Example: 𝑥 = 5
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Parallel Merge:

1 2 3 4 5

0 2 3 6 8



Example of Parallel Merge
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1 2 3 4 5 ⋯ 15 16 17 18 19

T 1 4 5 7 9 ⋯ 0 2 3 6 8

1 2 3 4 5 6 7 8 9 10

A 5

𝑝! 𝑟! 𝑝" 𝑟" 𝑝#
1 5 15 19 1

𝑞! 𝑇(𝑞!) 𝑞" 𝑞#
3 5 18 6



Analyzing P-MERGE (1/2)

• min 𝑙#, 𝑙$ ≥ #
$
max 𝑛#, 𝑛$ ≥ #

$
%
$
= #

&
𝑛

• Analyzing work: 𝑃𝑀# 𝑛 ∈ Ω(𝑛) (Why?)
Upper bound: 𝑃𝑀# 𝑛
≤ 𝑃𝑀# 𝛼𝑛 + 𝑃𝑀# 1 − 𝛼 𝑛 + 𝑂( log 𝑛),
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* See p.802 of the textbook for how 𝑂(𝑛) is obtained.

Together, 𝑃𝑀# 𝑛 ∈ Θ(𝑛).

where #
&
≤ 𝛼 ≤ '

&
. ⇒ 𝑇# 𝑛 ∈ 𝑂(𝑛)*

Let 𝑙# and 𝑙$ be the input size of the two 
recursive P-MERGE calls, respectively.



Analyzing P-MERGE (1/2)

min 𝑙!, 𝑙$ ≥ !
.𝑛 and max 𝑙!, 𝑙$ ≤ /

.𝑛.

• Analyzing work: 𝑃𝑀! 𝑛 ∈ Θ(𝑛)
• Analyzing span:

Worst case: 𝑃𝑀( 𝑛 = 𝑃𝑀(
'%
&

+ 𝑐 log 𝑛

Best case: 𝑃𝑀( 𝑛 = 𝑃𝑀(
%
&
+ 𝑐 log 𝑛

Both cases solve to 𝑃𝑀# 𝑛 ∈ Θ log$𝑛 .*

• Parallelism: 𝑃𝑀!/𝑃𝑀# ∈ Θ 𝑛/log$𝑛
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* By Case 2 of the Master Theorem.



Analyzing P-MERGE-SORT
• Analyzing work: 

𝑃𝑀𝑆! 𝑛 = 2𝑃𝑀𝑆! 𝑛/2 + Θ(𝑛)
⇒ 𝑃𝑀𝑆! 𝑛 ∈ Θ(𝑛 log 𝑛)

• Analyzing span: 
𝑃𝑀𝑆# 𝑛 = 𝑃𝑀𝑆# 𝑛/2 + Θ log$𝑛

⇒ 𝑃𝑀𝑆# 𝑛 ∈ Θ(log/𝑛)*

• Parallelism: 𝑃𝑀𝑆!/𝑃𝑀𝑆# ∈ Θ 𝑛/log$𝑛 .
• Much better than Θ log 𝑛 , the parallelism 

of MERGE-SORT’ with serial Merge.
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Note: For small 𝑛, we may coarsen the 
parallelism by using an ordinary serial 
sort instead.

* By Case 2 of the Master Theorem.



Thank you!
Questions?
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