
Algorithm Analysis and Data Structures
CSCI 7432 - Fall 2022

Tree-Based Data Structures
Dr. Yao XU

Assistant Professor

Department of Computer Science
Georgia Southern University

Email: yxu@georgiasouthern.edu

Table of Contents
1. Review: Heaps (6.1)

• Maintaining the Heap Property (6.2)
• Building a Heap (6.3)

2. Priority Queues (6.5)
3. Review: Binary Search Trees (12.1)

• Binary Tree Traversals (12.1)
• Querying a Binary Search Tree (12.2)
• Insertion (12.3)
• Deletion (12.3)

4. Balanced BST: Red-Black Trees (13)
• Propereties of Red-Black Trees (13.1)
• Rotations (13.2)
• Insertion (13.3)
• Deletion (13.4)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 2

Heaps

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 3

Heap Data Structure (1/2)

A (binary) heap is an array 𝐴[1. . 𝑛] that we can view as a binary tree with
keys stored at its nodes (one key per node) as follow:
• Root of the tree is 𝐴[1]
• Parent of 𝐴[𝑖] is 𝐴[𝑖/2]
• Left child of 𝐴[𝑖] is 𝐴[2𝑖]
• Right child of 𝐴[𝑖] is 𝐴[2𝑖 + 1]
Two types of heaps: Max-heap, Min-heap
Example (of a max-heap):

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 4

0 1 2 3 4 5 6 7 8 9 10

16 14 10 8 7 9 3 2 4 1

Three procedures:
• PARENT(i) returns 𝑖/2
• LEFT(i) returns 2𝑖
• RIGHT(i) returns 2𝑖 + 1

Heap Data Structure (2/2)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 5

The binary tree representation of a heap should satisfy:
1. The shape property: It is a nearly complete binary tree. – All non-leaf

nodes have two children except for possibly some rightmost nodes.
2. The heap property:
• For max-heap: The key at each node ≥ the key at its child
• For min-heap: The key at each node ≤ the key at its child

Height of a Heap

• The height of a node 𝒗 is the number of edges on the longest downward
path from 𝑣 to a leaf.
• The height of the heap (viewing as a tree) is the height of its root.
• Q: What is the height of a heap with 𝑛 elements?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 6

• #nodes in a complete binary tree
with height ℎ is
1 + 2 + 2! +⋯+ 2" = 2"#$ − 1
• ⇒ The height of a heap with 𝑛

elements is:
log! 𝑛 + 1 − 1 ≤ ℎ ≤ log! 𝑛

• Ans: ℎ = log! 𝑛 ∈ Θ(log 𝑛)

Heaps

Maintaining the Heap Property

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 7

Max-Heap Property

In the binary tree representation of a max-heap 𝐴[1. . 𝑛],
• For all nodes 𝑖, excluding the root, 𝐴[PARENT(𝑖)] ≥ 𝐴[𝑖].
➔ The largest element is at root 𝐴[1]
➔ The nodes in any subtree also form a max-heap
Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 8

0 1 2 3 4 5 6 7 8 9 10

16 14 10 8 7 9 3 2 4 1

Q: How to convert an arbitrary array to a
max-heap?

Maintaining the Heap Property

MAX-HEAPIFY converts an almost-max-heap into a max-heap.
• Almost-max-heap: only the root might violate the max-heap property.
• Before MAX-HEAPIFY, the left and right subtrees of 𝐴[𝑖] are max-heaps.
• After MAX-HEAPIFY, the subtree rooted at 𝐴[𝑖] is a max-heap.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 9

Example: 𝑖 = 2, 𝐴 𝑖 = 4

MAX-HEAPIFY Example
(1) MAX-HEAPIFY(A, 2, 10)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 10

(1) 𝐴 2 = 4,
𝐴[largest] = 14

(2) 𝐴 4 = 4,
𝐴[largest] = 8

(3) No further changes.

(2) MAX-HEAPIFY(A, 4, 10) (3) MAX-HEAPIFY(A, 9, 10)

LEFT(i) returns 2𝑖
RIGHT(i) returns 2𝑖 + 1

MAX-HEAPIFY Time Complexity

• Running time (in terms of heap size 𝑛):
• Best case: 𝑇 𝑛 ∈ Θ(1)
• Worst case: Let ℎ be the height of the heap

𝑇 ℎ = Θ 1 + 𝑇 ℎ − 1
⇒ 𝑇 ℎ ∈ Θ ℎ ⇒ 𝑇(𝑛) ∈ Θ(log 𝑛)

Together, 𝑇(𝑛) ∈ 𝑂(log 𝑛).

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 11

Example:

LEFT(i) returns 2𝑖
RIGHT(i) returns 2𝑖 + 1

Heaps

Building A Heap

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 12

Building a Max-Heap

Q: How to convert an arbitrary array to a max-heap?
Idea of a bottom-up heap construction algorithm:
• Look at its binary tree representation
• Consider the leaves (the bottom-level of nodes)
➔ Each leaf is a single key
• Consider the nodes on the second-to-last level
➔ The subtrees rooted at these nodes are almost-max-heap
• Consider the nodes on the third-to-last level
➔ Now the subtrees rooted at these nodes are also almost-max-heap
⋮

• The whole tree becomes an almost-max-heap

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 13

⇒MAX-HEAPIFY!

⇒MAX-HEAPIFY!
⇒MAX-HEAPIFY the tree’s root!

⇒ already a max-heap

Example:

Bottom-Up Heap Construction (1/3)

• Example: BUILD-MAX-HEAP(A, 10)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 14

BUILD-MAX-HEAP(A, n)
1 for i = 𝑛/2 downto 1
2 MAX-HEAPIFY(A, i, n)

0 1 2 3 4 5 6 7 8 9 10

4 1 3 2 16 9 10 14 8 7

(1) MAX-HEAPIFY(A, 5, 10) (2) MAX-HEAPIFY(A, 4, 10)

Bottom-Up Heap Construction (2/3)

• Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 15

BUILD-MAX-HEAP(A, n)
1 for i = 𝑛/2 downto 1
2 MAX-HEAPIFY(A, i, n)

0 1 2 3 4 5 6 7 8 9 10

4 1 3 2 16 9 10 14 8 7

(3) MAX-HEAPIFY(A, 3, 10) (4) MAX-HEAPIFY(A, 2, 10)

Bottom-Up Heap Construction (3/3)

• Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 16

BUILD-MAX-HEAP(A, n)
1 for i = 𝑛/2 downto 1
2 MAX-HEAPIFY(A, i, n)

0 1 2 3 4 5 6 7 8 9 10

4 1 3 2 16 9 10 14 8 7

(5) MAX-HEAPIFY(A, 1, 10)

Time Complexity (1/3)

• Simple upper bound: 𝑂(𝑛 log 𝑛)
• 𝑂(𝑛) calls to MAX-HEAPIFY
• MAX-HEAPIFY takes 𝑂(log 𝑛) time

• Tighter upper bound:
• In the worst case, for a node 𝐴[𝑖] at height ℎ,

MAX-HEAPIFY(A, i, n) takes Θ ℎ time.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 17

BUILD-MAX-HEAP(A, n)
1 for i = 𝑛/2 downto 1
2 MAX-HEAPIFY(A, i, n)

Time Complexity (2/3)
• Tighter upper bound:
• There are ≤ 𝑛/2 leaves
• At height 1, we have ≤ 𝑛/4 nodes
• At height 2, we have ≤ 𝑛/8 nodes
⋮
• At height ℎ = log! 𝑛 , we have 1 node

• Thus, 𝑇 𝑛 ≤ ∑"#$
%&'! ((

!"#$ < 𝑂 ℎ

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 18

BUILD-MAX-HEAP(A, n)
1 for i = 𝑛/2 downto 1
2 MAX-HEAPIFY(A, i, n)

Time Complexity (2/3)

• Tighter upper bound:

𝑇 𝑛 ≤ ∑"#$
%&'! ((

!"#$
< 𝑂 ℎ

𝑇 𝑛 ∈ 𝑂 ∑"#$
%&'! (("

!"#$

Due to ∑"#$) ℎ $
!

"
= $/!

$+$/! ! = 2,*

𝑇 𝑛 ∈ 𝑂 𝑛∑"#$
%&'! ("

!"

= 𝑂(𝑛)
Therefore, 𝑇 𝑛 ∈ 𝑂(𝑛).

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 19

BUILD-MAX-HEAP(A, n)
1 for i = 𝑛/2 downto 1
2 MAX-HEAPIFY(A, i, n)

* According to equation A.8 on p.1148 of the textbook.

Priority Queues

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 20

Priority Queues

• A priority queue is a data structure for maintaining a dynamic set 𝑆 of
elements, each with an associated value called a key, representing the
priority of the element.
• Two types of priority queues:
• max-priority queue (using max-heap)
• min-priority queue (using min-heap)

• Example: A set of jobs to be scheduled on a shared computer
• The jobs arrive and should be placed in the queue, each with a priority.
• To perform a job, we “extract” the one in the queue with highest priority.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 21

Max-Priority Queue

• Max-priority queue supports the following operations:
1. HEAP-MAXIMUM(A): returns element of A with largest key.
2. HEAP-EXTRACT-MAX(A): removes and returns element of A with the

largest key.
3. HEAP-INCREASE-KEY(A, i, k): increases A[i] to k. Assume k ≥ A[i].
4. MAX-HEAP-INSERT(A, k): inserts element with value k into A.

• Max-priority queues are implemented with max-heaps.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 22

Find and Remove Maximum

• Running time of HEAP-MAXIMUM: Θ(1)
• Running time of HEAP-EXTRACT-MAX: 𝑂(log 𝑛)
• Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 23

HEAP-MAXIMUM(A)
1 return A[1]

HEAP-EXTRACT-MAX(A)
1 if A.heapsize < 1
2 error “heap underflow”
3 max = A[1]
4 A[1] = A[A.heapsize]
5 A.heapsize = A.heapsize – 1
6 MAX-HEAPIFY(A, 1, A.heapsize)
7 return max

4

3

2

5

61

(1) Swap 𝐴[1] with 𝐴[6] (2) MAX-HEAPIFY(A, 1, 5)

1 2 3 4 5 6

6 3 5 1 2 4

5

3

2

4

61

Increasing Key Value

Given set 𝑆, array index i, and a new value k, Update A[i] to k. (Assume k ≥ A[i].)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 24

HEAP-INCREASE-KEY(A, i, k)
1 if k < A[i]
2 error “new key is smaller than current key”
3 A[i] = k
4 while i > 1 and A[PARENT(i)] < A[i]
5 swap A[i] with A[PARENT(i)]
6 i = PARENT(i)

• Example: HEAP-INCREASE-KEY(A, 5, 9)

6

3

9

5

41

6

9

3

5

41

9

6

3

5

41

1st swap: 2nd swap: 3rd swap:

1 2 3 4 5 6

6 3 5 1 2 4

• Running time: 𝑇 𝑛 ∈ 𝑂 ℎ = O(log 𝑛)

Inserting into the Heap
• Example: MAX-HEAP-INSERT(A, 8)

• Running time: O(log 𝑛)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 25

MAX-HEAP-INSERT(A, k)
1 A.heapsize = A.heapsize + 1
2 A[A.heapsize] = – ∞
3 HEAP-INCREASE-KEY(A, A.heapsize, k)

1 2 3 4 5 6

9 6 5 1 3 4

9

6

3

5

41 −∞

(1) A[7] = – ∞ (2) HEAP-INCREASE-KEY(A, 7, 8)

9

6

3

8

41 5

9

6

3

5

41 8

Max-Priority Queue Operations

• Max-priority queue supports the following operations:
1. HEAP-MAXIMUM(A): returns element of A with largest key.
2. HEAP-EXTRACT-MAX(A): removes and returns element of A with the

largest key.
3. HEAP-INCREASE-KEY(A, i, k): increases A[i] to k. Assume k ≥ A[i].
4. MAX-HEAP-INSERT(A, k): inserts element with value k into A.

• Time complexity:
• HEAP-MAXIMUM(A) takes Θ(1) time
• The other three take O(log 𝑛) time

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 26

Review: Binary Search Trees

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 27

Binary Search Trees

• Binary search trees (BST) are an important data structure for dynamic sets.
• Stored keys in a BST must satisfy the BST property:
• If 𝑦 is in 𝑥’s left subtree, then 𝑦. 𝑘𝑒𝑦 ≤ 𝑥. 𝑘𝑒𝑦.
• If 𝑦 is in 𝑥’s right subtree, then 𝑦. 𝑘𝑒𝑦 ≥ 𝑥. 𝑘𝑒𝑦.

• Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 28

Implementing A Binary Search Tree

• A BST T is represented by a linked
data structure, with each node being
an object.
• T.root points to the root of tree T.
• Each node contains attributes key,

left, right, and parent (or just p).
• For an empty child or parent, the

attribute contains the value NIL.
• Empty children are called external

nodes, and the original nodes are
called internal nodes.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 29

Example:

Height of a Binary Search Tree

• The height of a tree is the length of the longest root-to-leaf path.
• Consider a size-𝑛 binary search tree of height ℎ.
• The height ℎ is
• Θ(𝑛) in the worst case and
• Θ(log 𝑛) in the best case (balanced)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 30

• Note: on the same set of nodes/keys, there
could be many binary trees of different heights.
• Example:

Review: Binary Search Trees

Binary Tree Traversals

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 31

Binary Tree Traversals (1/3)

• Inorder tree walk: print out the left subtree first, then the root, and finally
the right subtree (print all the keys in sorted order)
• Example: INORDER-TREE-WALK(T.root)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 32

INORDER-TREE-WALK(x)
1 if x ≠ NIL
2 INORDER-TREE-WALK(x.left)
3 print x.key
4 INORDER-TREE-WALK(x.right)

Binary Tree Traversals (2/3)

• Preorder tree walk: print out the root first, then the left subtree, and
finally the right subtree
• Example: PREORDER-TREE-WALK(T.root)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 33

PREORDER-TREE-WALK(x)
1 if x ≠ NIL
2 print x.key
3 PREORDER-TREE-WALK(x.left)
4 PREORDER-TREE-WALK(x.right)

Binary Tree Traversals (3/3)

• Postorder tree walk: print out the left subtree first, then the right subtree,
and finally the root
• Example: POSTORDER-TREE-WALK(T.root)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 34

POSTORDER-TREE-WALK(x)
1 if x ≠ NIL
2 POSTORDER-TREE-WALK(x.left)
3 POSTORDER-TREE-WALK(x.right)
4 print x.key

Analysis of Binary Tree Traversals

• Running time:

𝑇 𝑛 = ?0, 𝑛 = 0
𝑇 𝑛, + 𝑇 𝑛- + 1, 𝑛 > 0

• Solves to 𝑇(𝑛) ∈ Θ(𝑛).*

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 35

INORDER-TREE-WALK(x)
1 if x ≠ NIL
2 INORDER-TREE-WALK(x.left)
3 print x.key
4 INORDER-TREE-WALK(x.right)

PREORDER-TREE-WALK(x)
1 if x ≠ NIL
2 print x.key
3 PREORDER-TREE-WALK(x.left)
4 PREORDER-TREE-WALK(x.right)

POSTORDER-TREE-WALK(x)
1 if x ≠ NIL
2 POSTORDER-TREE-WALK(x.left)
3 POSTORDER-TREE-WALK(x.right)
4 print x.key

* See Theorem 12.1 on p.288 of the textbook for a formal proof.

Review: Binary Search Trees

Querying a Binary Search Tree

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 36

Querying a Binary Search Tree

• Search for a particular key stored in a binary search tree (BST):
1) Searching: TREE-SEARCH(x, k)
2) Find minimum: TREE-MINIMUM(x)
3) Find maximum: TREE-MAXIMUM(x)
4) Find successor: TREE-SUCCESSOR(x)
5) Find predecessor: TREE-PREDECESSOR(x)
• TREE-PREDECESSOR is symmetric to TREE-SUCCESSOR.

• The time complexity of every operation is 𝑂(ℎ) on any BST of height ℎ.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 37

Searching

• TREE-SEARCH returns a pointer to a node with key 𝑘 if one exists;
otherwise, it returns NIL.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 38

Example: TREE-SEARCH(T.root, 4)TREE-SEARCH(x, k)
1 while x ≠ NIL and k ≠ x.key
2 if k < x.key
3 x = x.left
4 else
5 x = x.right
6 return x

• Time complexity: 𝑇(𝑛) ∈ 𝑂(ℎ)

Find Minimum and Maximum

• The BST property guarantees that
• the minimum key of a BST is located at the leftmost node, and
• the maximum key of a BST is located at the rightmost node.

• Assume input x ≠ NIL.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 39

TREE-MINIMUM(x)
1 while x.left ≠ NIL
2 x = x.left
3 return x

TREE-MAXIMUM(x)
1 while x.right ≠ NIL
2 x = x.right
3 return x

Example: TREE-MINIMUM(T.root)

• Time complexity: 𝑇 𝑛 ∈ 𝑂(ℎ).

Successor and Predecessor

• Given a node in a binary search tree, find its successor/predecessor in the
sorted order determined by an inorder tree walk.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 40

• If all keys are distinct,
• The successor of a node 𝑥 is the

node with the smallest key > 𝑥. 𝑘𝑒𝑦.
• The predecessor of a node 𝑥 is the

node with the largest key < 𝑥. 𝑘𝑒𝑦.
• If 𝑥 has the largest key in the BST, then
𝑥’s successor is NIL.
• If 𝑥 has the smallest key in the BST, then
𝑥’s predecessor is NIL.

Example:

Inorder tree walk: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

Find Successor (1/3)
Case 1: 𝑥 has a non-empty right subtree.
• The successor of 𝑥 is the node with the minimum key in its right subtree.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 41

TREE-SUCCESSOR(x)
1 if x.right ≠ NIL
2 return TREE-MINIMUM(x.right)
3 y = x.p
4 while y ≠ NIL and x == y.right
5 x = y
6 y = y.p
7 return y

Example:

Inorder tree walk: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

Find Successor (2/3)
Case 2: The right sub-tree of 𝑥 is empty
• The successor of 𝑥, say 𝑦, is the first ancestor for which 𝑥 is in its left

subtree. (𝑥 is the maximum in 𝑦’s left subtree)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 42

TREE-SUCCESSOR(x)
1 if x.right ≠ NIL
2 return TREE-MINIMUM(x.right)
3 y = x.p
4 while y ≠ NIL and x == y.right
5 x = y
6 y = y.p
7 return y

Example:

Inorder tree walk: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

Find Successor (3/3)

• Time complexity:
• Either visit nodes on a path down

the tree:
• TREE-MINIMUM: 𝑂(ℎ)

• Or visit nodes on a path up the
tree:
• while loop: 𝑂(ℎ)

Thus, 𝑇 𝑛 ∈ 𝑂(ℎ).

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 43

TREE-SUCCESSOR(x)
1 if x.right ≠ NIL
2 return TREE-MINIMUM(x.right)
3 y = x.p
4 while y ≠ NIL and x == y.right
5 x = y
6 y = y.p
7 return y

Review: Binary Search Trees

Insertion

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 44

Insertion (1/2)

• Insertion and deletion allows the dynamic set represented by a BST to
change. The BST property must hold after the change.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 45

• To insert a new value v into the
BST, procedure TREE-INSERT
takes a node z with
• z.key = v
• z.left = NIL
• z.right = NIL

Example:
6

2

1 5

7

9

Insert 3: 3

Insertion (2/2)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 46

TREE-INSERT(T, z)
1 y = NIL
2 x = T.root
3 while x ≠ NIL
4 y = x
5 if z.key < x.key
6 x = x.left
7 else x = x.right
8 z.p = y
9 if y == NIL
10 T.root = z // Tree T was empty
11 elseif z.key < y.key
12 y.left = z
13 else y.right = z

Example: Insert 3 to the following BST

6

2

1 5

7

9

• Time complexity: 𝑇 𝑛 ∈ 𝑂(ℎ)

Sorting Using BST

• To sort a given list of 𝑛 keys, we can
1. Make 𝑛 TREE-INSERT calls. - 𝑂(𝑛ℎ)
2. Call INORDER-TREE-WALK. - 𝑂(𝑛)

• Example: Sort a sequence of 7 numbers 16, 4, 3, 9, 1, 35, 23 .
1) Initialize T = NIL
2) TREE-INSERT(T, 16)
3) TREE-INSERT(T, 4)
4) TREE-INSERT(T, 3)
5) TREE-INSERT(T, 9)
6) TREE-INSERT(T, 1)
7) TREE-INSERT(T, 35)
8) TREE-INSERT(T, 23)
9) INORDER-TREE-WALK(T.root)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 47

Review: Binary Search Trees

Deletion

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 48

Three Cases of Deletion

• The BST property must hold after deletion.
• To delete a node z from BST T:
• Case 1: z has no left child
• E.g.: Delete 7

• Case 2: z has no right child
• E.g.: Delete 5

• Case 3: z has two children
• Will discuss shortly

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 49

Example:

6

2

1 5

7

9

3

4

8

Deletion Cases 1&2

• TRANSPLANT(T, u, v) replaces
the subtree rooted at u by the
subtree rooted at v.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 50

TRANSPLANT(T, u, v)
1 if u.p == NIL
2 T.root = v
3 elseif u == u.p.left
4 u.p.left = v
5 else u.p.right = v
6 if v ≠ NIL
7 v.p = u.p

Example: TRANSPLANT(T, u, v)
where u.key = 2 and v.key = 5

6

2

1 5

7

9

3

4

8

6

5 7

93

4 8

Deletion Cases 1

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 51

• Case 1: z has no left childTREE-DELETE(T, z)
1 if z.left == NIL
2 TRANSPLANT(T, z, z.right)
3 elseif z.right == NIL
4 TRANSPLANT(T, z, z.left)
5 else y = TREE-MINIMUM(z.right)
6 if y.p ≠ z
7 TRANSPLANT(T, y, y.right)
8 y.right = z.right
9 y.right.p = y
10 TRANSPLANT(T, z, y)
11 y.left = z.left
12 y.left.p = y

6

2

1 5

7

9

3

4

8

• Example:
Delete 7

Deletion Cases 2

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 52

• Case 2: z has no right childTREE-DELETE(T, z)
1 if z.left == NIL
2 TRANSPLANT(T, z, z.right)
3 elseif z.right == NIL
4 TRANSPLANT(T, z, z.left)
5 else y = TREE-MINIMUM(z.right)
6 if y.p ≠ z
7 TRANSPLANT(T, y, y.right)
8 y.right = z.right
9 y.right.p = y
10 TRANSPLANT(T, z, y)
11 y.left = z.left
12 y.left.p = y

• Example:
Delete 5

6

2

1 5

7

9

3

4

8

Deletion Case 3 (1/3)

Case 3: z has two children
1. Find z’s successor y: TREE-MINIMUM(z.right).
• We must have y.left = NIL.

2. Replace z by y.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 53

TREE-DELETE(T, z)
1 if z.left == NIL
2 TRANSPLANT(T, z, z.right)
3 elseif z.right == NIL
4 TRANSPLANT(T, z, z.left)
5 else y = TREE-MINIMUM(z.right)
6 if y.p ≠ z
7 TRANSPLANT(T, y, y.right)
8 y.right = z.right
9 y.right.p = y
10 TRANSPLANT(T, z, y)
11 y.left = z.left
12 y.left.p = y

• Case 3.1:
y is z’s right child
• E.g.: Delete 6

• Case 3.2:
y is not z’s right child
• E.g.: Delete 2

6

2

1 5

7

9

3

4

8

Deletion Case 3 (2/3)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 54

TREE-DELETE(T, z)
1 if z.left == NIL
2 TRANSPLANT(T, z, z.right)
3 elseif z.right == NIL
4 TRANSPLANT(T, z, z.left)
5 else y = TREE-MINIMUM(z.right)
6 if y.p ≠ z
7 TRANSPLANT(T, y, y.right)
8 y.right = z.right
9 y.right.p = y
10 TRANSPLANT(T, z, y)
11 y.left = z.left
12 y.left.p = y

• Case 3.1: y is z’s right child

6

2

1 5

7

9

3

4

8

• Example:
Delete 6
(y.key = 7)

Deletion Case 3 (3/3)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 55

TREE-DELETE(T, z)
1 if z.left == NIL
2 TRANSPLANT(T, z, z.right)
3 elseif z.right == NIL
4 TRANSPLANT(T, z, z.left)
5 else y = TREE-MINIMUM(z.right)
6 if y.p ≠ z
7 TRANSPLANT(T, y, y.right)
8 y.right = z.right
9 y.right.p = y
10 TRANSPLANT(T, z, y)
11 y.left = z.left
12 y.left.p = y

• Case 3.2: y is not z’s right child

6

2

1 5

7

9

3

4

8

• Example:
Delete 2
(y.key = 3)

Deletion Time Complexity

Time complexity:

• TREE-MINIMUM: 𝑂(ℎ)
• Everything else: 𝑂(1)
In total, 𝑇 𝑛 ∈ 𝑂(ℎ).

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 56

TREE-DELETE(T, z)
1 if z.left == NIL
2 TRANSPLANT(T, z, z.right)
3 elseif z.right == NIL
4 TRANSPLANT(T, z, z.left)
5 else y = TREE-MINIMUM(z.right)
6 if y.p ≠ z
7 TRANSPLANT(T, y, y.right)
8 y.right = z.right
9 y.right.p = y
10 TRANSPLANT(T, z, y)
11 y.left = z.left
12 y.left.p = y

TRANSPLANT(T, u, v)
1 if u.p == NIL
2 T.root = v
3 elseif u == u.p.left
4 u.p.left = v
5 else u.p.right = v
6 if v ≠ NIL
7 v.p = u.p

Balanced BST: Red-Black Trees

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 57

Balanced BST

• Recall: To sort a given list of 𝑛 keys, we can
1. Make 𝑛 TREE-INSERT calls. - 𝑂(𝑛ℎ)
2. Call INORDER-TREE-WALK. - 𝑂(𝑛)

• In the worst case, ℎ ∈ Θ(𝑛)
⟹ Sorting using BST takes 𝑂(𝑛') time.

• Whereas we can sort already in 𝑂(𝑛 log 𝑛) time.
• Observation: If we maintain the tree of height 𝑂(log 𝑛), then sorting

via BST would take 𝑂(𝑛 log 𝑛) time.
• For that end, we need a balanced BST: ℎ ∈ 𝑂(log 𝑛)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 58

Balanced BST: Red-Black Trees

Properties of Red-Black Trees

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 59

Properties of Red-Black Trees

• A red-black tree (RB-tree) is a BST with one extra bit of storage per node:
its color, which can be either RED or BLACK.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 60

• Red-black properties:
1) Every node is either red or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then both its

children are black.
5) Each root-to-leaf simple path has

the same number of black nodes.
(Black-heights matter!)

• Example:

Implementing RB-Trees

• Each node of a RB-tree contains the attributes color, key, left, right, and p.
• We use a single sentinel, T.nil, for all the leaves and the root’s parent.
• T.nil.color is black, and we don’t care about the key in T.nil.
• Black-height of a node 𝑥: 𝑏ℎ(𝑥) is the number of black nodes (including

NIL) on the 𝑥-to-leaf path, not counting 𝑥.
• Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 61

Height of a RB-Tree (1/2)

Lemma: A RB-tree with 𝑛 internal nodes has height ℎ ≤ 2 log(𝑛 + 1).
Proof. Consider the longest root-to-leaf path 𝑃 in the RB-tree.
• There are ℎ + 1 nodes on 𝑃.
• 𝑃 has no two consecutive red nodes (due to property 4).

⟹ # black nodes on 𝑃 ≥ ℎ/2
• Claim: The first ℎ/2 layers in the tree are full.
• Can be proved by induction.*

➔ Continued on next slide...

*See the complete proof of Lemma 13.1 on p.309 of the textbook.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 62

Height of a RB-Tree (2/2)

Lemma: A RB-tree with 𝑛 internal nodes has height ℎ ≤ 2 log(𝑛 + 1).
Proof. Consider the longest root-to-leaf path 𝑃 in the RB-tree. (cont’d)
• The first ℎ/2 layers in the tree are full.
• Thus,

𝑛 ≥ 1 + 2 + 2! +⋯+ 2
!
" %$ = 2

!
" − 1

⟹ log 𝑛 + 1 ≥
ℎ
2

⟹ ℎ ≤ 2 log(𝑛 + 1) ☐

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 63

Operations in RB-Trees

• These five BST operations
1) Searching: TREE-SEARCH(x, k)
2) Find minimum: TREE-MINIMUM(x)
3) Find maximum: TREE-MAXIMUM(x)
4) Find successor: TREE-SUCCESSOR(x)
5) Find predecessor: TREE-PREDECESSOR(x)

all take 𝑂(log 𝑛) time on RB-trees.
• Insertion and deletion are not so easy.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 64

Insertion and Deletion in RB-Trees

• Insertion and deletion on RB-trees are not so easy.
• If we insert, what color to make the new node?
• If we delete, thus removing a node, what color was the node that was

removed?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 65

• Red-black properties:
1) Every node is either red or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then both its children are black.
5) Each root-to-leaf simple path has the same number of black nodes.

Balanced BST: Red-Black Trees

Rotations

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 66

Rotations (1/2)

• Only insertion and deletion will alter the tree structure.
• In order to maintain the RB-tree as a balanced BST and preserve the BST

property, we introduce two kinds of rotations:
• Left-rotation: the old root becomes the left child of the new root.
• Right-rotation: the old root becomes the right child of the new root.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 67

• Examples:
• Do left-rotation on 17
• Do right-rotation on 8

Rotations (2/2)

• RIGHT-ROTATE is symmetric.
• Time complexity for both LEFT-ROTATE and

RIGHT-ROTATE: Θ 1

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 68

LEFT-ROTATE(T, x)
1 y = x.right
2 x.right = y.left
3 if y.left ≠ T.nil
4 y.left.p = x
5 y.p = x.p
6 if x.p == T.nil
7 T.root = y
8 elseif x == x.p.left
9 x.p.left = y
10 else x.p.right = y
11 y.left = x
12 x.p = y

• For LEFT-ROTATE(T, x), assume x is a node in T and
x.right ≠ T.nil

Balanced BST: Red-Black Trees

Insertion

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 69

Insertion on A RB-Tree

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 70

1. Insert node 𝑧 by TREE-INSERT (insertion for
BST) and color it red.
Q: Why color it red initially?

2. Recolor and/or rotate nodes to fix violation.
Relationships of z:
• b: z’s grandparent (z.p.p)
• a: z’s parent (z.p)
• y: z’s uncle
• w: z’s sibling

b

a

w z

y

w

Red-black properties:
1) Every node is either red

or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then

both its children are
black.

5) Each root-to-leaf simple
path has the same
number of black nodes.

Four Cases of Insertion

Recolor and/or rotate nodes to fix violation.
• Case 0: z is the root

Just color it black. Done.
• Cases 1-3: z.p is also red

z.p.p must be black – why?
Consider z’s uncle, y:
• Case 1: y is red
• Case 2: y is black (LR/RL)
• E.g.: b - a - z1

• Case 3: y is black (LL/RR)
• E.g.: b - a - z2

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 71

Red-black properties:
1) Every node is either red

or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then

both its children are
black.

5) Each root-to-leaf simple
path has the same
number of black nodes.

b

a

z2 z1

yy

Insertion Case 1

Case 1: z’s uncle, y, is red

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 72

Red-black properties:
1) Every node is either red

or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then

both its children are
black.

5) Each root-to-leaf simple
path has the same
number of black nodes.

1) Color 𝑧. 𝑝 and 𝑦 black
2) Color 𝑧. 𝑝. 𝑝 red
3) Recurse up with 𝑧 = 𝑧. 𝑝. 𝑝

Insertion Case 1 Example

Case 1: z’s uncle, y, is red
1) Color 𝑧. 𝑝 and 𝑦 black
2) Color 𝑧. 𝑝. 𝑝 red
3) Recurse up with 𝑧 = 𝑧. 𝑝. 𝑝

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 73

2

85
4

15

2

85
4

157
2

7

4

15

Example: Insert 4

Step 3):Steps 1) – 2):

Insertion Case 2

Case 2: z’s uncle, y, is black (LR/RL)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 74

Red-black properties:
1) Every node is either red

or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then

both its children are
black.

5) Each root-to-leaf simple
path has the same
number of black nodes.

1) Let 𝑧 = 𝑧. 𝑝
2) Make it Case 3 by
• Calling LEFT-ROTATE(T, z) for the LR case
• Calling RIGHT-ROTATE(T, z) for the RL case

3) Solve Case 3

Insertion Case 2 Example

Case 2: z’s uncle, y, is black (LR/RL)
1) Let 𝑧 = 𝑧. 𝑝
2) Make it Case 3 by
• Calling LEFT-ROTATE(T, z) for

the LR case
• Calling RIGHT-ROTATE(T, z) for

the RL case
3) Solve Case 3: z’s uncle, y, is black

(LL/RR)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 75

Example: 𝑧. 𝑘𝑒𝑦 = 7

2
7

4

15

Steps 1) – 2):

15
7

4

2

Insertion Case 3

Case 3: z’s uncle, y, is black (LL/RR)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 76

Red-black properties:
1) Every node is either red

or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then

both its children are
black.

5) Each root-to-leaf simple
path has the same
number of black nodes.

1) Flip colors of 𝑧. 𝑝. 𝑝 and 𝑧. 𝑝
2) Call
• RIGHT-ROTATE(T, z.p.p) for the LL case
• LEFT-ROTATE(T, z.p.p) for the RR case

Done.

Insertion Case 3 Example

Case 3: z’s uncle, y, is black (LL/RR)
1) Flip colors of 𝑧. 𝑝. 𝑝 and 𝑧. 𝑝
2) Call
• RIGHT-ROTATE(T, z.p.p) for

the LL case
• LEFT-ROTATE(T, z.p.p) for the

RR case

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 77

Example: 𝑧. 𝑘𝑒𝑦 = 7

15
7

4

2

Steps 1) – 2):

15

112

4

Running Time of Insertion

In RB-INSERT,
• Lines 1-16: 𝑂(ℎ)
In RB-INSERT-FIXUP,
• # iterations: 𝑂(ℎ)
Thus, running time of
RB-INSERT:

𝑇 𝑛 ∈ 𝑂 ℎ
⟹ 𝑇(𝑛) ∈ 𝑂(log 𝑛)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 78

Exercise: RB-Tree Insertion

• Show the red-black trees that result after successively inserting the keys 41, 38,
31, 12, 19, 8 into an initially empty red-black tree.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 79

Balanced BST: Red-Black Trees

Deletion

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 80

Deletion on A RB-Tree

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 81

1. Delete a node 𝑧 by TREE-DELETE (deletion
for BST) with a slight modification.
• Observation: TREE-DELETE eventually

deletes/moves a node with at least one
child missing. - See next slide
• 𝑦: the node either removed from the tree

or moved within the tree.
2. Recolor and/or rotate nodes to fix violation.
• If 𝑦 was red, no violation occurs.
• If 𝑦 was black, we fix-up with 𝑦’s child 𝑥
• that moves into 𝑦’s original position
• could be black NIL

Red-black properties:
1) Every node is either red

or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then

both its children are
black.

5) Each root-to-leaf simple
path has the same
number of black nodes.

Review: TREE-DELETE
Example:

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 82

6

2

1 5

7

9

3

4

8
3.1) Delete 6:

𝑦 =

6

2

1 5

9

3

4

8

7

2

1 5

9

3

4

8

3.2) Delete 2:
𝑦 =

6

3

1 5

7

9

4 8

1) Delete 7:
𝑦 = 𝑧

2) Delete 5:
𝑦 = 𝑧

6

2

1 3

7

9

4 8

7 3

Cases of Deletion (1/2)

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 83

If 𝑦 was black, we fix-up with 𝑦’s child 𝑥.
Recall: 𝑥 is the node that moves into 𝑦’s original
position.
• Case 0: 𝑥 is the root or 𝑥 is red

Just color it black. Done.
• Cases 1-4: 𝑥 is black and not the root
• 𝑥 is considered “doubly black” (𝑦 and 𝑥)
• Goal: preserve the number of black nodes

in each sub-path.
We look into 𝑥’s sibling 𝑤.

Red-black properties:
1) Every node is either red

or black.
2) The root is black.
3) Every leaf (NIL) is black.
4) If a node is red, then

both its children are
black.

5) Each root-to-leaf simple
path has the same
number of black nodes.

Cases of Deletion (2/2)
Cases 1-4: 𝑥 is black and not the root – 𝑥 is “doubly black”. Look into 𝑥’s sibling 𝑤.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 84

Case 1: 𝑤 is red Case 2: 𝑤 and both its children are all black

Case 3: 𝑤 is black and it has exactly ONE
red child on the opposite side (RL/LR).

Case 4: 𝑤 is black and its child on the same
side (RR/LL) is red.

Deletion Case 1

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 85

Case 1: 𝑤 is red

1) Color 𝑤 black, color 𝑥. 𝑝 red
2) Call LEFT-ROTATE(T, x.p) if 𝑥 is a left child OR

Call RIGHT-ROTATE(T, x.p) if 𝑥 is a right child
3) New 𝑤 is 𝑥’s new sibling, which must be black – Why?
4) Check Cases 2, 3, and 4.

Deletion Case 2

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 86

Case 2: 𝑤 and both its children are all black

1) Color 𝑤 red
2) The color of 𝑤. 𝑝 is unknown.

• Case 2.1: 𝑥. 𝑝 is red ➞ Color 𝑥. 𝑝 black. Done.
• Case 2.2: 𝑥. 𝑝 is black ➞ Recurse up with 𝑥 = 𝑥. 𝑝

2.1

2.2

Deletion Case 3

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 87

Case 3: 𝑤 is black and it has exactly ONE red child on the opposite side (RL/LR).

1) Color 𝑤 red and w’s red child black
2) Make it Case 4 by calling
• RIGHT-ROTATE(T, w) for the RL case (𝑤 is a right child and w.left is red)
• LEFT-ROTATE(T, w) for the LR case (𝑤 is a left child and w.right is red)

3) New 𝑤 is 𝑥’s new sibling ➔ Check Case 4.

Deletion Case 4

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 88

Case 4: 𝑤 is black and its child on the same side (RR/LL) is red.

1) Give 𝑤 the color of 𝑥. 𝑝;
2) Color 𝑥. 𝑝 and 𝑤’s same side red child black.
3) Call LEFT-ROTATE(T, x.p) for the RR case (𝑤 is a right child and w.right is red) OR

Call RIGHT-ROTATE(T, x.p) for the LL case (𝑤 is a left child and w.left is red)
Done.

Running Time of Deletion

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 89

In RB-DELETE,
• Lines 1-21: 𝑂(ℎ)
In RB-DELETE-FIXUP,
• # iterations only

depends on Case 2:
𝑂(ℎ)

Thus, running time of
RB-DELETE:

𝑇 𝑛 ∈ 𝑂 ℎ
⟹ 𝑇(𝑛) ∈ 𝑂(log 𝑛)

Exercise: RB-Tree Deletion

• In the Exercise for RB-tree insertion, you found the red-black tree that results
from successively inserting the keys 41, 38, 31, 12, 19, 8 into an initially empty
tree. Now show the red-black trees that result from the successive deletion of the
keys in the order 8, 12, 19, 31, 38, 41.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 90

Thank you!
Questions?

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 91

