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Algorithms
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What is an Algorithm?

• Computational Problem: Given an input 𝑋 satisfying..., output 𝑌 satisfying...
• Algorithm: A well-defined step-by-step procedure that transforms the input

of a problem into the output.
• Instance: A specific input for a problem is called an instance of the problem.
• An algorithm is said to be correct if, for every input instance, it halts with the 

correct output.
• We say that a correct algorithm solves the given computational problem.
Problem Examples:
1. Input: A non-negative integer 𝑋 Output: 𝑌 = 𝑋!
2. Input: A sequence of 𝑛 numbers 𝑋 = 𝑎!, 𝑎", ⋯ , 𝑎#

Output: A permutation 𝑌 = 𝑎′!, 𝑎′", ⋯ , 𝑎′# of 𝑋 s.t. 𝑎′! ≤ 𝑎′" ≤ ⋯ ≤ 𝑎′#
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Argue About An Algorithm

What do we need to argue about an algorithm?
1. Provide an accurate description - pseudocode

2. Correctness
3. Amount of resources (time and space) - analysis
• For any instance?
• For a good instance?
• For an average instance?

4. Can we do better?
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Describe an Algorithm in Pseudocode

• Pseudocode is designed for 
expressing algorithms to humans.
• Name and a clear indication of 

the input is a must.
• Short description, input/output 

or pre/post-conditions are 
optional but strongly encouraged 
to include.
• Pseudocode conventions: 

textbook pages 20-22
• Be consistent and clear!
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INSERTION-SORT(A)
// <Short description>
// Precondition: An array A[1..n] containing a
// sequence of n pair-wise comparable elements.
// Postcondition: The array A contains a sorted 
// sequence of n elements.
for j = 2 to A.length // n = A.length

key = A[j]
// Insert A[j] into the sorted sequence A[1..j - 1].
i = j - 1
while i > 0 and A[i] > key

A[i + 1] = A[i]
i = i – 1

A[i + 1] = key

Example:



Asymptotic Notations
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Asymptotic Notations (1/2)

• 𝑶(𝑔(𝑛)) is the set of all functions 𝑓(𝑛) that
• roughly, grow no faster than 𝑔(𝑛)
• formally, ∃𝑐 > 0 and 𝑛! > 0 such that 𝑓(𝑛) ≤ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛!

• 𝛀(𝑔(𝑛)) is the set of all functions 𝑓(𝑛) that
• roughly, grow no slower than 𝑔(𝑛)
• formally, ∃𝑐 > 0 and 𝑛! > 0 such that 𝑓(𝑛) ≥ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛!

• 𝚯(𝑔(𝑛)) is the set of all functions 𝑓(𝑛) that
• roughly, grow at the same rate as 𝑔(𝑛)
• formally, ∃𝑐" > 0, 𝑐# > 0 and 𝑛! > 0, such that 𝑐"𝑔(𝑛) ≤ 𝑓(𝑛) ≤
𝑐#𝑔(𝑛) for all 𝑛 ≥ 𝑛!
• Θ 𝑔 𝑛 = 𝑂(𝑔(𝑛)) ∩ Ω(𝑔(𝑛))
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Asymptotic Notations (2/2)

lim
#→%

𝑓(𝑛)
𝑔(𝑛)

= 2
0 ⇒ 𝑓 𝑛 grows slower than 𝑔 𝑛 ⇒ 𝑓(𝑛) ∈ 𝒐(𝑔(𝑛))
𝑐 > 0 ⇒ 𝑓 𝑛 grows at the same rate as 𝑔 𝑛 ⇒ 𝑓(𝑛) ∈ 𝚯(𝑔(𝑛))
∞ ⇒ 𝑓 𝑛 grows faster than 𝑔 𝑛 ⇒ 𝑓(𝑛) ∈ 𝝎(𝑔(𝑛))

• We write: 𝑓 𝑛 ∈ 𝑂(𝑔(𝑛)), instead of “𝑓 𝑛 = 𝑂(𝑔(𝑛))” in the textbook.
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Exercises: Comparing Functions

• Exercise 1: Compare the orders of growth of the following two functions: 

𝑓 𝑛 = "
#
𝑛(𝑛 − 1) and   𝑔 𝑛 = 𝑛#.

• Exercise 2: Compare the orders of growth of the following two functions: 
𝑓 𝑛 = log# 𝑛 and   𝑔 𝑛 = 𝑛.

Hint: Use L’Hôpital’s rule: lim
$→&

'($)
*($)

= lim
$→&

'+($)
*+($)

.

• Exercise 3: Compare the orders of growth of the following two functions: 
𝑓 𝑛 = 𝑛! and   𝑔 𝑛 = 2$.

Hint: Take advantage of Stirling’s formula: 𝑛! ≈ 2𝜋𝑛 $
,

$
.
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Basic Efficiency Classes

• Notation: log 𝑛 = lg 𝑛 = log" 𝑛
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Class Name Comments / Algorithm Examples
1 Constant Usually short of best-case efficiencies.

log 𝑛 Logarithmic Problem’s size cut by a constant factor on each 
iteration.

𝑛 Linear Scan an array of size n.
𝑛 log 𝑛 Linearithmic Many divide-and-conquer algorithms.
𝑛" Quadratic Algorithms with two embedded loops.
𝑛& Cubic Algorithms with three embedded loops.
2# Exponential Generate all subsets of an n-element set.
𝑛! Factorial Generate all permutations of an n-element set.



Solving Recurrences

The Substitution Method
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The Substitution Method Examples (1/4)

Example 1:

𝑇 𝑛 = @1, for 𝑛 = 1
𝑇 𝑛 − 1 + 𝑛, for 𝑛 > 1

Step 1: Guess by either backward substitution or forward substitution.
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The Substitution Method Examples (2/4)

Example 1:

𝑇 𝑛 = @1, for 𝑛 = 1
𝑇 𝑛 − 1 + 𝑛, for 𝑛 > 1

Guess: 𝑇 𝑛 = #(#(!)
"

Step 2: Show that the solution is correct.
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The Substitution Method Examples (3/4)

Example 2:

𝑇 𝑛 = @0, for 𝑛 = 1
2𝑇 𝑛 − 1 + 1, for 𝑛 > 1

Step 1: Guess by either backward substitution or forward substitution.
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The Substitution Method Examples (4/4)

Example 2:

𝑇 𝑛 = @0, for 𝑛 = 1
2𝑇 𝑛 − 1 + 1, for 𝑛 > 1

Guess: 𝑇 𝑛 = 2# − 1
Step 2: Show that the solution is correct.
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Solving Recurrences

The Recursion-Tree Method
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The Recursion-Tree Method Examples (1/2)

• Example 1: 

𝑇 𝑛 = @1, for 𝑛 = 1
2𝑇 𝑛/2 + 𝑛, for 𝑛 > 1
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The Recursion-Tree Method Examples (2/2)

• Example 2: 

𝑇 𝑛 = C
1, for 𝑛 = 1

𝑇
𝑛
3 + 𝑇

2𝑛
3 + 𝑛, for 𝑛 > 2
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Solving Recurrences

The Master Theorem Method
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The Master Theorem Method

• Used for many divide-and-conquer recurrences of the form:

𝑇 𝑛 = 𝑎𝑇 $
-
+ 𝑓 𝑛 ,

where 𝑎 ≥ 1, 𝑏 > 1, and 𝑓 𝑛 > 0.
• Master Theorem: Let 𝑎 ≥ 1 and 𝑏 > 1 be constants, let 𝑓(𝑛) be a function, 

and let 𝑇(𝑛) be defined on the nonnegative integers by the recurrence 
𝑇 𝑛 = 𝑎𝑇 $

-
+ 𝑓 𝑛 . Then 𝑇 𝑛 has the following asymptotic bounds:

1. If 𝑓 𝑛 ∈ 𝑂(𝑛*+,! -./) for some constant 𝜖 > 0, then 𝑇 𝑛 ∈ Θ(𝑛*+,! -).
2. If 𝑓 𝑛 ∈ Θ(𝑛*+,! - log0𝑛) for some 𝑘 ≥ 0, then 𝑇 𝑛 ∈ Θ(𝑛*+,! - log0(! 𝑛).
3. If 𝑓 𝑛 ∈ Ω(𝑛*+,! -(/) for some constant 𝜖 > 0, and if 𝑎𝑓(𝑛/𝑏) ≤ 𝑐𝑓(𝑛) for 

some constant 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 ∈ Θ 𝑓 𝑛 .
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The Master Theorem Method Examples (1/3)

Master Theorem: Let 𝑎 ≥ 1 and 𝑏 > 1 be constants, let 𝑓(𝑛) be a function, 
and let 𝑇(𝑛) be defined on the nonnegative integers by the recurrence 
𝑇 𝑛 = 𝑎𝑇 $

-
+ 𝑓 𝑛 . Then 𝑇 𝑛 has the following asymptotic bounds:

1. If 𝑓 𝑛 ∈ 𝑂(𝑛./0" 123) for some constant 𝜖 > 0, then 𝑇 𝑛 ∈ Θ(𝑛./0" 1).
Example:

𝑇 𝑛 = @
1, for 𝑛 = 1
5𝑇 𝑛/2 + 𝑛# log 𝑛 , for 𝑛 ≥ 2
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The Master Theorem Method Examples (2/3)

Master Theorem: Let 𝑎 ≥ 1 and 𝑏 > 1 be constants, let 𝑓(𝑛) be a function, 
and let 𝑇(𝑛) be defined on the nonnegative integers by the recurrence 
𝑇 𝑛 = 𝑎𝑇 $

-
+ 𝑓 𝑛 . Then 𝑇 𝑛 has the following asymptotic bounds:

2. If 𝑓 𝑛 ∈ Θ(𝑛./0" 1 log4𝑛) for 𝑘 ≥ 0, then 𝑇 𝑛 ∈ Θ(𝑛./0" 1 log45" 𝑛).
Example:

𝑇 𝑛 = @
1, for 𝑛 = 1
9𝑇 𝑛/3 + 𝑛#log#𝑛, for 𝑛 ≥ 2
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The Master Theorem Method Examples (3/3)

Master Theorem: Let 𝑎 ≥ 1 and 𝑏 > 1 be constants, let 𝑓(𝑛) be a function, 
and let 𝑇(𝑛) be defined on the nonnegative integers by the recurrence 
𝑇 𝑛 = 𝑎𝑇 $

-
+ 𝑓 𝑛 . Then 𝑇 𝑛 has the following asymptotic bounds:

3. If 𝑓 𝑛 ∈ Ω(𝑛./0" 153) for some constant 𝜖 > 0, and if 𝑎𝑓(𝑛/𝑏) ≤ 𝑐𝑓(𝑛)
for some constant 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 ∈ Θ 𝑓 𝑛 .

Example:

𝑇 𝑛 = @1, for 𝑛 = 1
3𝑇 𝑛/4 + 𝑛, for 𝑛 ≥ 2
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Algorithm Analysis
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Algorithm Analysis

• Analyze an algorithm: predict the resources that the algorithm 
requires. We will measure
• Time efficiency/complexity – how fast an algorithm runs
• Space efficiency/complexity – the amount of memory units required in 

addition to the space needed for its input and output
• When running time depends not only on an input size but also on the 

specifics of a particular input (instance), we discuss
• Best case – gives a lower bound on the algorithm’s running time
• Worst case – gives an upper bound on the algorithm’s running time
• Average case – by forcing a distribution over the instances (we are 

making a huge assumption)
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Algorithm Analysis

Non-Recursive Algorithm Analysis
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INSERTION-SORT Time and Space Complexity
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INSERTION-SORT(A)
for j = 2 to A.length // n = A.length

key = A[j]
// Insert A[j] into the sorted sequence A[1..j].
i = j - 1
while i > 0 and A[i] > key

A[i + 1] = A[i]
i = i – 1

A[i + 1] = key

• Worst-case running time:
• Best-case running time:
• Space complexity:

Θ(𝑛#)
Θ(𝑛)
Θ(1)



Algorithm Analysis

Recursive Algorithm Analysis
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MERGE-SORT Time and Space Complexity
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• Worst-case/Best-case running time:

𝑇 𝑛 = U𝑐, for 𝑛 = 1
2𝑇 𝑛/2 + 𝑐𝑛, for 𝑛 ≥ 2

⟹ 𝑇 𝑛 ∈ Θ(𝑛 log 𝑛)
• Space complexity: 𝑂(𝑛)



Prove Algorithm Correctness
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Prove the Correctness of An Algorithm

• Claim: For any instance 𝐼 (satisfying...), Algorithm-Name(𝐼) returns...
• Example claim: For any array 𝐴 containing a sequence of pair-wise 

comparable elements, INSERTION-SORT(𝐴) correctly sorts 𝐴.
• To prove the correctness of an algorithm,
• When recursion is involved, use mathematical induction
• When loop is involved, use loop invariant (and induction)

• Anything that can be computed using a recursion can be computed using 
loops, and vice-versa.
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Convert Recursion to Loops (1/2)
Example 1:
Factorial(n)
if n = 0

return 1
else

return n × Factorial(n - 1)

Factorial-Loop(n)
res = 1
for i = 1 to n

res = i × res
return res
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Convert Recursion to Loops (2/2)
Example 2:
Find(A, n, x)
if n == 0

return NIL
else if A[n] == x

return n
else

return Find(A, n-1, x)

Find-Loop(A, n, x)
for i = n downto 1

if A[i] == x
return i

return NIL
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A[3] == x ?

A[2] == x ?

A[1] == x ?



Convert Loops to Recursion
Example:
Sum(A, n)
s = A[1]
for i = 2 to n

s = s + A[i]
return s

Sum-Recursion(A, n)
if n ≤ 1

return A[1]
else

return A[n] + Sum-Recursion(A, n - 1)
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Prove Correctness using Loop Invariants (1/4)

• A loop invariant (LI) is a statement/ 
assertion/predicate about the state 
of the code that is always true at the 
beginning of each loop-iteration.
• What type of assertion? 

It should accurately describe the 
cumulative effect of repeatedly 
iterating through the loop.

• Q: What is the LI of the for loop?
• A: At the start of each iteration of 

the for loop, the subarray A[1..j-1] 
consists of the elements originally in 
A[1..j-1], but in sorted order.
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INSERTION-SORT(A)
for j = 2 to A.length // n = A.length

key = A[j]
// Insert A[j] into the sorted sequence A[1..j-1].
i = j - 1
while i > 0 and A[i] > key

A[i + 1] = A[i]
i = i – 1

A[i + 1] = key

Example: A = ⟨5, 2, 4, 6, 1, 3⟩



Prove Correctness using Loop Invariants (2/4)

To prove correctness using LI, we 
must show:
1. Initialization: LI is true prior to 

the first iteration of the loop.
2. Maintenance: If LI is true before 

an iteration of the loop, it remains 
true before the next iteration.

3. Termination: When the loop 
terminates, LI gives us a useful 
property that helps show the 
correctness of the overall 
algorithm.
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INSERTION-SORT(A)
for j = 2 to A.length // n = A.length

key = A[j]
// Insert A[j] into the sorted sequence A[1..j-1].
i = j - 1
while i > 0 and A[i] > key

A[i + 1] = A[i]
i = i – 1

A[i + 1] = key

LI of the for loop:
At the start of each iteration, the 
subarray A[1..j-1] consists of the 
elements originally in A[1..j-1], but 
in sorted order.



Prove Correctness using Loop Invariants (3/4)

Prove the correctness of the for loop
(correctness of INSERTION-SORT):
1. Initialization: j = 2 and A[1] is 

trivially sorted.
2. Maintenance: Show that if LI is 

true before an iteration of the 
loop, it remains true before the 
next iteration. (see next slide)
• Q: What is the while loop doing?

3. Termination: The for loop 
terminates when j = n + 1. LI
indicates that A[1..n] is sorted.

CSCI 7432, Fall 2022DR. YAO XU, DEPARTMENT OF COMPUTER SCIENCE, GEORGIA SOUTHERN UNIVERSITY 38

INSERTION-SORT(A)
for j = 2 to A.length // n = A.length

key = A[j]
// Insert A[j] into the sorted sequence A[1..j-1].
i = j - 1
while i > 0 and A[i] > key

A[i + 1] = A[i]
i = i – 1

A[i + 1] = key

LI of the for loop:
At the start of each iteration, the 
subarray A[1..j-1] consists of the 
elements originally in A[1..j-1], but 
in sorted order.



Prove Correctness using Loop Invariants (4/4)

2. Maintenance: Show that if LI is 
true before an iteration of the 
loop, it remains true before the 
next iteration. 
• Q: What is the while loop doing?

• Assume LI is true for j = k. That is, 
subarray A[1..k-1] is sorted.
• Need to prove LI is true for j = k + 1 

before the next iteration. That is, 
subarray A[1..k] is sorted.
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INSERTION-SORT(A)
for j = 2 to A.length // n = A.length

key = A[j]
// Insert A[j] into the sorted sequence A[1..j-1].
i = j - 1
while i > 0 and A[i] > key

A[i + 1] = A[i]
i = i – 1

A[i + 1] = key

LI of the for loop:
At the start of each iteration, the 
subarray A[1..j-1] consists of the 
elements originally in A[1..j-1], but 
in sorted order.



Exercise: Prove Correctness of Merge-Sort
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1. Prove the correctness of the major for 
loop of the MERGE(A, p, q, r) 
procedure.
• Use LI. (p.32-33 of the textbook)

2. Prove the correctness of algorithm 
MERGE-SORT(A, p, r).
• Prove by induction.



Thank you!
Questions?
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