

Module_4 - Physical Database Design and Database Security
4.1.1 - Introduction

In this chapter, we describe physical database design, with special emphasis on the
relational data model. Physical database design is the process of transforming logical data
models into physical data models. An experienced database designer will make a physical
database design in parallel with conceptual data modeling if they know the type of database
technology that will be used. Conceptual data modeling is about understanding the organization
and gathering the right requirements. Physical database design, on the other hand, is about
creating stable database structures correctly expressing the requirements in a technical language.
Although there are other data models, we have two reasons for emphasizing the relational data
model in this chapter. First, the relational data model is one most commonly used in
contemporary database applications. Second, some of the principles of logical database design
for the relational model apply to other logical models as well.

We introduced the relational data model informally through simple examples in earlier

chapters. It is important, however, to note that the relational data model is a form of logical data
model, and as such, it is different from the conceptual data models. Thus, an Entity-Relationship
(E-R) data model is not a relational data model, and an E-R model may not obey the rules for a
well-structured relational data model, called normalization. The E-R model was developed for
other purposes such as understanding data requirements and business rules about the data rather
than structuring the data for sound database processing.

We next describe and illustrate the process of transforming an EER (Enhanced Entity-

Relationship) model into the relational model. Many CASE tools support this transformation
today at the technical level; however, it is important to understand the underlying principles and
procedures. We then describe the concepts of normalization in detail. Normalization, which is
the process of designing well-structured relations, is an important component of logical design
for the relational model. Finally, we describe how to merge relations while avoiding common
pitfalls that may occur in this process.

In Chapters two and three, we learned how to describe and model organizational data
during the conceptual data modeling and logical database design phases of the database
development process. We learned how to use EER notation, the relational data model, and
normalization to develop abstractions of organizational data that capture the meaning of data.
However, these notations do not explain how the data will be processed or stored. The purpose of
physical database design is to translate the logical description of data into the technical
specifications for storing and retrieving data. The goal is to create a design for storing data that
will provide adequate performance and ensure database integrity, security, and recoverability.

Physical database design does not include implementing files and databases (i.e., creating
them and loading data into them). Physical database design produces the technical specifications
that programmers, database administrators, and others involved in information systems
construction will use during the implementation phase. In this chapter, we study the basic steps
required to develop an efficient and high-integrity physical database design. We concentrate in
this chapter on the design of a single, centralized database and how to estimate the amount of
data that users will require in the database.

We will also learn about choices for storing attribute values and how to select from
among these choices to achieve efficiency and data quality. Because of recent U.S. and
international regulations (e.g., Sarbanes-Oxley) on financial reporting by organizations, proper
controls specified in physical database design are required as a sound foundation for compliance.
Hence, we place special emphasis on data quality measures you can implement within the
physical design. We will also learn why normalized tables are not always the basis for the best
physical data files and how to de-normalize the data to improve the speed of data retrieval.
Finally, we learn about the use of indexes, which are important in speeding up the retrieval of
data.

When performing physical database design, the decisions made during this stage have a
major impact on data accessibility, response times, data quality, security, user friendliness, and
similarly important information system design factors. Database administration plays a major
role in physical database design. Advanced design will be discussed in this chapter.

Comparison between Logical and Physical Design:

Logical Physical

Entity Table

Relationship Foreign Key

Attribute Column

Unique Identifier Primary Key

4.1.2 - Background

The first database system was created in the 1960s as computers became affordable for
private organizations. The two most popular data models during this time were the network
model CODASYL (Conference/Committee on Data Systems Languages) and the hierarchical
model called IMS (Information Management System). These two systems were used by private

organizations, but the SABRE (Semi-Automated Business Research Environment) system saw
commercial success through International Business Machines (IBM). IBM used the SABRE
system to help American Airlines manage reservation data for customers. These database
systems began to change in the 1970s when E.F. Codd published a scientific paper that explored
the idea of a relational database model. E.F. Codd’s ideas about a relational database
revolutionized the way people view databases. Codd's relational database schema separated the
physical information storage, which became the new standard for database systems.

Two major relational database systems emerged in 1974 and 1977. One of the databases
was called Ingres, which was created at UBC; the second was called System R, developed at
IBM. Ingres used a query language known as QUEL, and it led to the creation of systems such
as Ingres Crop., MS SQL Server, Sybase, Wang’s PACE, and Britton-Lee (Quick Base). On the
other hand, System R used the SEQUEL query language, and it contributed to the development
of SQL/DS, DB2, All base, Oracle, and Non-Stop SQL (Quick Base). Relational Database
System became the standard and a recognized term in industry.

The next evolution in database systems came in 1976 through the Entity-Relationship (E-
R) model. Entity-Relationship database model was created by P. Chen. The E-R model allowed
developers to focus less on logic table structure and more on research data application. In 1980,
Structured Query Language (SQL) became the standard query language among databases. Also
during this time, computer sales saw commercial success, which aided the database market. This
increase in sales led to the decline in legacy network and hierarchical database models. With the
development of the Internet, the database industry saw substantial growth. Databases started to
be accessed from client-servers. Online business was becoming popular, and with the demand
came the need for internet database connectors increased. Security also played an important part
in the development of databases.

Before 1980, Government organizations such as the Department of Defense were the first
to invest heavily into security of data. This was due to the type of data they were storing, such as
military data and census data. Most organizations framed security policies around the few
vulnerabilities they detected. During this time, physical threats were understood and preventive
measurements were put in place. Logical threats or digit threats were difficult to understand and
were very weak during this time. Mainstream research was focused on statistical databases.
Access Control was the first security control to come out of this research. “Access Control for
databases was to be expressed in terms of logical data model with authorizations in terms of
relations and tuples. It also had to be content-aware to allow the system to determine whether
access should be granted based on the content of the data item” (Lesov, 2010). This type of
access control became known as the Bell-LaPadula model or BLP. Systems were now required
to store shared resources which also increased the need for security across those resources. Two
new models were created: the Mandatory Access Control (MAC) and the Discretionary Access
Controls (DAC). However, both of these did not create great success and were later reinforced
with encryptions. Two designs for encryptions were the Access Control Kernels and Encrypted
Databases. Kernels isolate and contain security policies inside different modules. Cryptography
was used through keys to encrypt and store data to maximize security. Paul Lesov from
University of Minnesota writes, “Access control was not sufficient by itself to address the issue
of DBA being able to exercise complete control over the data residing in the database.
Encryption provides a way to encrypt data in the database and store an encryption key external to
the database thereby preventing the DBA from accessing the data” (2010).

The digital environment went through a massive transformation that was driven by
commercialization of the digital space. Windows was developed and adopted during this time
along with the World Wide Web. The idea of using the web as a place to conduct commerce

made the security required of the early nineties very different from the late nineties. Another
major development during this time was the idea of Object-Oriented Programming. Object-
Oriented Programming allowed for more complex and efficient ways to deal with complex data.
Early security for databases connected through the web took the form of firewalls which control
access to internal servers. Firewalls provided protection against direct attacks on the database
but the front-end were left susceptible to SQL Injections.

SQL Injections allowed users to insert scripts into the database which would retrieve
information. The idea of data mining extended the threat to individual privacy. Government
regulations such as the Health Insurance Portability and Accountability Act (HIPAA) and the
Federal Financial Institutions Examination Council (FFIEC) were enacted during this time to
protect individual privacy. Paul Lesov stated, “It is important to note that many problems with
securing data stored in a database is not due to the lack of research but lacking security in
implementation of the database product or an application front ending the database. The shift
from full trust to partial trust was driven in part by natural tendency to not provide full trust to
anyone single individual based on dual control principle but also due to the inability of the users
to keep their own PC computer secure and database frontend not being able to detect malicious
attacks such as SQL injections” (2010). Since then, the growth of the databases outgrew the pace
of security research. Due to the amount of data and complexity around data security, research
was slow. Today research is still being conducted on database security and is ever evolving year
to year.

4.2.1 - Physical DB Design Process
The design of a physical database is heavily influenced on integrity and performance for

the system (Hoffer et al., 2015). To maximize efficiency for user interactions with an
information system, minimizing time constraints associated with user interactions must be taken
into account. According to Adrienne Watt, database design starts with a conceptual data model
and produces a specification of a logical schema; this will determine the specific type of database
system (network, relational, object-oriented) that is required. The relational representation is still
independent of any specific DBMS; it is another conceptual data model (Watt, n.d.). The
database design process is initialized from the logical data model that will be used in the
database design and can be represented as an E-R (Entity-Relationship) diagram (Figure 1).

Physical database designs require preliminary pieces of information that are collected
prior to development. For a physical file design and database design, normalized relations,
attribute definition, descriptions of data handling, the expectations for response times, data
security, backup, recovery, retention, and integrity of data, and descriptions of the technology are
utilized to implement the database (Hoffer et al., 2015). Before commencing analysis and
implementation of the database design, designers must first consult with customers to acquire
relevant documents and data to be used in analysis and implementation to achieve the desired
results based on the customers’ needs.

Physical database design is also concerned with the design of fields. A field is the
smallest unit of application data recognized by system software. Fields are associated with the
columns found in a relationship table and rely on the data types, coding techniques, data
integrity, and handling of empty data entry. Efficient database performance relies on adequately
defined fields and subsequently relies on adequate specifications for each field.

Figure 1. E-R Diagram, by Visual Paradigm, 2020, https://www.visual-paradigm.com/guide/data-
modeling/what-is-entity-relationship-diagram/. Copyright 2020 by Visual Paradigm

The format for data storage is an imperative decision to be made when considering
storage space and data-related integrity as shown in Figure 1. This format can be integrated with
the selection of data types that are only needed for the database design to be implemented. Data
types can be categorized as a string, numerical, and datetime data values, and can be further
decomposed into varying lengths of data for their respective categories as shown in Table 1.

Table 1.

String Numeric Date/Time

CHAR SMALLINT DATE

https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/

VARCHAR INTEGER TIME

CLOB DOUBLE TIMESTAMP

Coding and compression techniques are critical for handling data storage within fields.
Allowing for smaller-sized codes reduces the space usage of data values within databases. An
example of such a coding technique could involve cross-referencing to other tables in order to
retrieve a field value. Aside from using data types as a form of data integrity, other forms of data
integrity to be considered in a physical database design include default values, which are
automatically assigned unless specified otherwise by a user; range control, which a preset range
limit specifies the set of values a field can be assigned; and null control, which restricts null
values.

4.2.2 - Data Partitioning

Partitioning is a concept in databases in which very large tables and data are partitioned
into smaller, individual tables, and queries which helps the data process more quickly and
efficiently. One form of partitioning is called horizontal partitioning. Horizontal partitioning is
the classification of the rows based on common characteristics into several, separate tables. For
example, students with scores less than 70 might be stored in the FAIL table, while students who
scored greater than 70 might be stored in the PASS table. The two partitioned tables would be
FAIL and PASS. In doing so, the database is partitioned into two tables, both of which will be
processed more quickly than a single table. The two typical methods of horizontal partitioning
are to partition a sole column value and to partition the date (as the date helps organize the query
chronologically). The keyword SELECT represents a horizontal partition in SQL. Below is an
example of what horizontal partitioning would look like in SQL in which the first name, last
name, class number and grade are specifically chosen as desired values:

SELECT viewClassGradeReport.[FirstName],

viewClassGradeReport.[LastName],

viewClassGradeReport.[ClassName],

viewClassGradeReport.[Grade] FROM viewClassGradeReport;

The Oracle DBMS (Database Management System) provides support for multiple forms
of partitioning. The first one is range partitioning. In range partitioning, each partitioned portion
is characterized by a range of values for one or multiple columns, such as IDs or dates. For
instance, rows for a column titled COUNTRY containing India, Sri Lanka, Pakistan, Nepal, and
Bangladesh could be a partition for South Asian countries.

The next form of partitioning is hash partitioning. Hash partitioning is the spreading of
data in even partitions autonomous of the key value. Hash partitioning outperforms the uneven
distributions or rows.

The next partitioning is known as list partitioning. List partitioning is a technique where a
list of distinct values is defined as the partitioning key in the characterization for each partition.

The best use of list partitioning is when one requires specifically to highlight rows established on
discrete values. For instance, a global distributor may only want data regarding deliveries to
China and Japan while ignoring deliveries to other nations.

Oracle provides another form of partitioning known as composite partitioning. Composite
partitioning is a combination of the general data allocation methods in which a table is
partitioned using one allocation method, and then each partition is subdivided into smaller
partitions through another general allocation method.

The counterpart of horizontal partitioning, vertical partitioning is another form of
partitioning. Vertical partitioning, as opposed to horizontal partitioning, is the distribution of
columns based on their commonalities and separating them into independent tables. Vertical
partitioning helps identify the dynamic data from the stable, immutable data. Vertical
partitioning is represented with the keyword PROJECT.

Partitioning is a useful tool that helps with the design of the database and has many
advantages. Partitioning is practical and helps manage the table because partitioning helps
identify the area where maintenance is needed and saves storage space. Partitioning is also
secure, as only the relevant and necessary data can be specifically chosen and accessed by the
user. Another benefit of implementing partitioning is that backing up and securing files is easier
due to their smaller size, and if one file is corrupted, the other is still accessible. Partitioning
works similarly with cars and replaceable parts: if one piece of equipment is damaged, the rest of
the car will still be functioning. Partitioning also helps with balancing the load. The partitioned
files can be designated to different storage locations, reducing conflict and maximizing
performance.

Although partitioning proves to be quite handy, it does have its drawbacks. The first
drawback of partitioning is the inconsistency of the access speed that it provides. All partitions
are not identical; therefore, depending on the data the specific partition consists, access speeds
will differ. Another drawback is complexity. Due to the complex nature of partitions, the code
required to program will need to be more complex and challenging to maintain. The final
disadvantage of partitioning is the excess storage space and time. Data can be replicated multiple
times, which in turn takes up storage and can affect the time taken to process.

Figure 2. Sharding, by Digital Ocean, 2019,
https://www.digitalocean.com/community/tutorials/understanding-database-sharding. Copyright 2020 by
Digital Ocean

The user view, in a database, is a tool that helps visualize the tables in a database. Using
the user view, physical tables can be partitioned coherently. The main intention of utilizing the
user view is that it simplifies query editing and develops a secure database. In Oracle, a form of
user view is offered called partition view, which displays physically partitioned tables that can be
logically merged into one using the SQL union operator. This manner of partitioning does have
its limitations. Firstly, there should not be any global index. Second, the physical tables should
be independently handled. Lastly, fewer choices are at your disposal with partition view.

4.3.1 Describe three types of file organization

A physical file contains the actual data that is stored on the system and a description of
how the data is to be presented to or received from a program. Physical files can be separated
into extents. Extents are a spreadable section of disk storage space. Many database management
systems store many different kinds of data in one operating system file. According to
(Venkataraman, R., Topi, H. 2011) a “tablespace is a named logical storage unit in which data
from one or more database tables, views, or other database objects may be stored.” A tablespace
consists of one or several physical operating system files. Thus, “Oracle has responsibility for
managing the storage of data inside a tablespace, whereas the operating system has many
responsibilities for managing a tablespace, but they are all related to its responsibilities related to
the management of operating system files” (Venkataraman, R., Topi, H. 2011).

https://www.digitalocean.com/community/tutorials/understanding-database-sharding

Because an instance of Oracle usually supports many databases for many users, a database
administrator usually will create many user tablespaces, which helps to achieve database
security, since the administrator can give each user selected rights to access each tablespace. As
stated by Venkataraman, R. and Topi, H. (2011) “each tablespace consists of logical units called
segments consisting of one table, index, or partition, which, in turn, are divided into extents
these consist of a number of contiguous data blocks, which are the smallest unit of storage”.
Each table, index, or other so-called schema object belongs to a single tablespace, but a
tablespace may contain one or more tables, indexes, and other schema objects. Physically, each
tablespace can be stored in one or multiple data files, but each data file is associated with only
one tablespace and only one database.

Modern database management systems have an active role in managing the use of the
physical devices and files on them; for example, the allocation of schema objects (e.g., tables and
indexes) to data files is typically fully controlled by the DBMS. A database administrator does
have the ability to manage the disk space allocated to tablespaces and a number of parameters
related to the way free space is managed within a database. Because this is not a text on Oracle,
we do not cover specific details on managing tablespaces; however, the general principles of
physical database design apply to the design and management of Oracle tablespaces, as they do
to whatever the physical storage unit is for any database management system

File Organization

A “file organization is a technique for arranging the records of a file on secondary
storage devices” (Venkataraman, R., Topi, H. 2011). With modern relational DBMS it is not
necessary to design file organizations, but you are to be allowed to select an organization and its
parameters for a table or physical file. In choosing a file organization for a particular file in a
database, consider seven important factors: fast data retrieval, high throughput for processing
data input and maintenance transactions, efficient use of storage space, protection from failures
or data loss, minimizing need for reorganization, accommodating growth, and security from
unauthorized use.

SEQUENTIAL FILE ORGANIZATIONS

In a sequential file organization, the records in the file are stored in sequence according to
a primary key value. To locate a particular record, a program must normally scan the file from
the beginning until the desired record is located. A common example of a sequential file is the
alphabetical list of persons in the white pages of a telephone directory. A comparison of the
capabilities of sequential files with the other two types of files can be seen in Figure 1.3.
“Because of their inflexibility, sequential files are not used in a database but may be used for
files that back up data from a database” (Venkataraman, R., Topi, H. 2011).

INDEXED FILE ORGANIZATIONS

In an index file organization, records are stored either sequentially or nonsequentially,
and an index is created that allows the application software to locate individual records. “A card
catalog in a library, an index is a table that is used to determine in a file the location of records
that satisfy some condition” (Venkataraman, R., Topi, H. 2011). Each index entry matches a key
value with one or more records. An index can point to unique records or to potentially more than
one record, and an index that allows each entry to point to more than one record is called a
secondary key index. Secondary key indexes are important for supporting many reporting
requirements and for providing rapid ad hoc data retrieval. An example would be an index on the
ProductFinish column of a Product table. Because indexes are extensively used with relational

DBMSs, the choice of what index and how to store the index entries matters greatly in database
processing performance.

Fig 1.1 Modern Database Management (Venkataraman, R., Topi, H. (2011))

Fig 1.3 Modern Database Management 10th edition.((Venkataraman, R., Topi, H. 2011))

When the address of a record within a file is to be determined or computed, the technique
of hash file organization may be considered and implemented as an algorithm or function. A
hash algorithm is an algorithm that takes an input of random size and proceeds to transform the
input such that the hash result is an output of fixed length. Once the output is determined or
computed, the hash result is irreversible, meaning that the algorithm can only process data in one
direction. The use of hashing algorithms is commonly found in databases for practically any
website that requires a password to login to an account and is illustrated in Figure 1.4.

Figure 1.4. Hashing Algorithm, by jscrambler, 2020, https://blog.jscrambler.com/hashing-algorithms/.
Copyright 2020 by jscrambler

In other hashing algorithms, the primary key value of a record is typically divided by a
prime number that is suitable for use and the remainder of the divided value is used as a relative
storage location. Due to limitations in which only one key is used for storage retrieval through
hashing, hashing and indexing are used in combination to address this issue. According to Jeffrey
A. Hoffer, Venkataraman Ramesh, and Heikki Topi, a hash index table uses hashing to map a
key into a location in an index (sometimes called a scatter index table), where there is a pointer
(a field of data indicating a target address that can be used to locate a related field or record of
data) to the actual data record matching the hash key (Hoffer et al., 2015).

 In an effort to preserve memory space, database management systems may allow for
several rows of related tables to be joined together and store the same amount of units of storage
(data block). An example of this is seen when a common primary key between related tables
such as a CustomerID or ItemID are utilized to join rows of separate tables together which are
related by these two primary keys. According to Jeffrey A. Hoffer, Venkataraman Ramesh, and
Heikki Topi, time is reduced because related records will be closer to each other than if the
records are stored in separate files in separate areas of the disk. Defining a table to be in only one
cluster reduces retrieval time for only those tables stored in the same cluster. This technique of
file organization is known as clustering files and is illustrated in Figure 1.5.

https://blog.jscrambler.com/hashing-algorithms/
https://blog.jscrambler.com/hashing-algorithms/

Figure 1.5. A clustering file for Ordering, by Hoffer et al., 2015, Modern Database Management 12e (E-
Reader Version). Copyright 2015 by Pearson Education, Inc.

When considering security to protect files from damage, types of control are useful
elements of database files to use for unforeseen file corruptions. Database files are stored in a
proprietary format by the database which allows for access controls over the files. Some useful
procedures to consider are backups to ensure that stored data may be retrieved in the event that
data may be compromised. Another technique employs the utilization of encryption to encrypt
data contained within files and allow for only programs with access to decrypt them. There are
two main methods of encryption: symmetric encryption and asymmetric encryption. Symmetric
encryption makes use of a single key for all parties communicating and is used for both
encrypting data and decrypting data. Asymmetric encryption makes use of two keys for all
parties communicating where the first key is used for encryption and the second key is used for
decryption.

4.4.1 - Translate a database model into efficient structures

A majority of database manipulations demand the location of a row or a collection of rows that
satisfies a condition. Given the magnitude of a database, searching for data can be quite the
laborious task. Hence, using indexes can vastly increase the speed of the process and reduce the
time and work. The usage and definition of indexes are a crucial spoke on the wheel of physical
database design. Indexes are defined as either a primary key, secondary key, or both. It is
ordinary to define an index for the primary key of a table. The index is formed of two columns:
one column for the key and the other column for the address of the record that consists of the key
value. In the case of a primary key, the index will only have one entry for each key value.

Indexing in Databases, by GeeksforGeeks, 2020, https://www.geeksforgeeks.org/indexing-in-databases-set-
1/ Copyright 2020 by GeeksforGeeks.org

CREATING A UNIQUE KEY INDEX

The syntax to create a unique key index in SQL is "CREATE [UNIQUE] INDEX index_name
ON table_name(column1, ... column_n);". The UNIQUE modifier specifies the values in the
indexed columns. Creating a non-unique key index is equivalent to a secondary key index. The
term UNIQUE isn't used to create a secondary key index, because values can be repeated.

WHEN TO USE INDEXES

It is important to know when to use an index and which attributes to use when creating an index.
Using indexes come at the price of performance. Performance is compromised when using
indexes due to the overload for maintenance for insertions, deletions, and updating records. For
this reason, indexes should be utilized mainly for data retrieval (Hoffer, Venkataraman, & Topi,
2011). Here are some rules or conditions that suggest the use of indexes.

1) Indexes are a lot more efficient and practical for substantial tables.
2) Indexes are useful when there is a need to set out a unique index for the primary key.
3) Indexes are frequently used for columns that appear in WHERE modifiers of SQL

commands.
4) Indexes should be used when for attributes referenced in ORDER BY and GROUP BY

statements.
5) Indexes are convenient when there is diversity in the values of an attribute. For Oracle's

standards, it is unproductive to use an index when an attribute has fewer than 30 values.
6) One point to keep in mind is to consider developing a compressed version of the values.

Doing this will ensure that the index isn't slower to process.
7) If the index is used for finding the location of where the record will be stored, make sure

the key of this index is a surrogate key to ensure the records will be fairly spread across
the storage space.

8) Make sure to check the limit of indexes on the DBMS because some systems do not
allow for more than 16 indexes.

9) Find a way to index attributes that have null values because rows with a null value won't
be referenced.

4.4.1 Designing a Database for Optimal Query Performance

https://blog.jscrambler.com/hashing-algorithms/

Databases are used every day, which makes it important to optimize the performance of
database processing. Database processing can include adding, deleting, and modifying a
database along with methods of retrieving data. Since databases have more traffic retrieving data
from the database than maintenance, it is important to optimize query performance. Producing
reports and ad hoc screens for users is the primary goal. The amount of work required to
optimize query performance heavily relies on DBMS. Some DBMS give little control to the
developer on how the database is designed and where the query can be processed. This can limit
how optimized data reads and writes are in the database. However, other systems give complete
control to the developer and require a lot of setup work. Since workloads often vary, it is
difficult to reach peak performance from a database unless the workload is focused. “For
example, the Teradata DBMS is highly turned for parallel processing in a data warehousing
environment. In this case, rarely can a database designer or query writer improve on the
capabilities of the DBMS to store and process data” (Hoffer, Venkataraman, & Topi, 2011).
This situation is rare; thus, it is important as a database designer to consider ways to improve the
processing capabilities of the database.

Since computer architecture has changed greatly over the years, the use of multiple
processors in database servers has become standard. Symmetric multiprocessor (SMP)
architecture is commonly used in database servers to allow parallel processing. DBMS that use
parallel query processing break up a query such that it can be processed in parallel by different
processors. These partitions must be defined before the query by the database designer. An
example of instructing Oracle to execute a query using parallel processing is below:

ALTER TABLE ORDER_T PARALLEL 3;

 (Hoffer, Venkataraman, & Topi, 2011)

Each table needs to be finely tuned to best support parallelism and can undergo multiple
changes to find the best performance. Schumacher reported, “on a test in which the time to
perform a query was cut in half with parallel processing compared to using a normal table scan.
Because an index is a table, indexes can also be given the parallel structure, so that scans of an
index are also faster.” Schumacher also reported an example of parallel processing reducing the
time of creating an index from seven minutes to five seconds (Hoffer, Venkataraman, & Topi,
2011). Parallel processing not only improves the time of table scans but also can be used on
joining tables, grouping query results, sorting, deleting, updating, and insertion. Oracle requires
the number or virtual parallel database servers to be defined beforehand. Once the servers are
defined, the processor will decide what is the best use of parallel processing for that specific
command.

(Burleson Consulting, 2014)

Often the designer creating the query has information to better optimize the query that the
query module in the DBMS does not. In most relational DBMs, the optimizer’s plan for
processing the query can be known by the designer before actually running the query. This is
done through the command EXPLAIN or EXPLAIN PLAIN, which display all the information
about the optimizer’s plans to process the query. The query optimizer makes its decision on how
to process the query by looking at data from each table such as average row length or the number
or rows. You can submit multiple EXPLAIN commands with a query written in different ways
to see if the optimizer predicts different performance. That then allows you to find the best
performance and submit that for actual processing. With some DBMs you can force the
optimizer to take different steps or use resources other than what the optimizer thinks is the best
performance. The clause /**/ can be used to override what the query determines is the best way
to process the query.

4.5 - Concise Summary

Physical database design translates the logical data model into a set of SQL statements
that define the database. For relational database systems, it is relatively easy to translate from a
logical data model into a physical database (“Physical Database Design,” n.d.). The design
process is a collaborative one where preliminary information is collected to determine technical
properties of the database, such as response times and data security. In the database design
process, fields are heavily emphasized to determine the corresponding attributes and logical data
model. Often, a database design is concerned with data partioning of large tables, which are
partitioned into smaller, individual tables, allowing for more efficient processing of data and
database performance overall.

The database design process is also concerned with file organization of physical files.
File organization is responsible for managing records of a file on a secondary storage device.
Physical file organization is typically divided into three types of file organization: Sequential,
Indexed, and Hashed file organization. In sequential file organization, records on an arbitrary file
are stored in sequence onto a secondary storage device based on primary key values. In indexed
file organization, records may be stored sequentially or non-sequentially and an index is created

to assist with locating individual files. In hashed file organization, a hash algorithm or function is
created when the address of a record within a file is to be determined or computed. Efficient
structures are a necessary component of database design and are achieved through the use of
indexes for database models. The indexes are comprised of primary keys and are convenient in
different scenarios with the trade-off of potentially decreased database performance.

Databases are an integral aspect for the successful operations of businesses, and other
fields that depend on optimal technology to process information. Physical database design is a
process that requires careful fundamental planning in order to realize optimization in technology.

Extended Resources

1. This is a video lecture from the University of Washington by Grey Hay, about the
physical database design methodology. This video goes into extreme detail about
physical database design from the ground up and how the methodology is implemented.
https://www.youtube.com/watch?v=S98_8HalY5Q

2. This video talks about the oracle database security in a broad approach, mainly focused in
Europe. The video discusses important security topics from current database security
laws, benefits, history, risks and many more topics.
https://www.youtube.com/watch?v=GXF3T4g2tJg

3. This video by Kimberly Tripp discusses why physical database design matters. Kimberly
discusses the importance of good design and also how poor design and can lead to major
performance issues. https://www.youtube.com/watch?v=H-
jPsp2QlT0

4. Lightstone, S., Nadeau, T., & Teorey, T. J. (2007). Physical Database Design : The
Database Professional’s Guide to Exploiting Indexes, Views, Storage, and More. Morgan
Kaufmann.

5. Erickson, J., & Siau, K. (2009). Advanced Principles for Improving Database Design,
Systems Modeling and Software Development. IGI Global.

6. Carmel-Gilfilen, C. (2013). Bridging security and good design: Understanding
perceptions of expert and novice shoplifters. Security Journal, 26(1), 80–105.
https://doi.org/10.1057/sj.2011.34

7. Burtescu, E. (2009). Database Security - Attacks and Control Methods. Journal of
Applied Quantitative Methods, 4(4), 449–454.

https://www.youtube.com/watch?v=S98_8HalY5Q
https://www.youtube.com/watch?v=GXF3T4g2tJg
https://www.youtube.com/watch?v=H-jPsp2QlT0
https://www.youtube.com/watch?v=H-jPsp2QlT0
https://doi.org/10.1057/sj.2011.34

References

CloudGirl, & CloudGirl. (2017, March 26). Data Partitioning: Vertical Partitioning, Horizontal
Partitioning, and Hybrid Partitioning Project Update #3. Retrieved from
http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

DigitalOcean. (2019, October 28). Understanding Database Sharding. Retrieved from
https://www.digitalocean.com/community/tutorials/understanding-database-sharding

Database VLDB and Partitioning Guide. (2016, July 20). Retrieved from
https://docs.oracle.com/database/121/VLDBG/GUID-BE424ACC-F746-4CA8-973C-
F578CF98FF10.htm#VLDBG00225

Lesov, P. (2010). Database Security: A Historical Perspective. ArXiv, abs/1004.4022.

Quick Base. (n.d.). A Timeline of Database History. Retrieved from
https://www.quickbase.com/articles/timeline-of-database-history

Watt, Adrienne. (n.d.). Chapter 13 Database Development Process. Retrieved from
https://opentextbc.ca/dbdesign01/chapter/chapter-13-database-development-process/

What is Entity Relationship Diagram? (ERD). (2020). Retrieved from https://www.visual-
paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/

Hoffer, A. J., Venkataraman, R., Topi, H. (2011). Modern Database Management 10e[E-Reader
Version]. Retrieved from https://www.amazon.com/Modern-Database-Management-
Jeffrey-Hoffer/dp/0136088392

Burleson Consulting. (2014, April 23). Oracle parallel query tips. Retrieved March 28, 2020,
from http://www.dba-oracle.com/art_opq.htm

Chung, C. (n.d.). Introduction to Hashing and its uses. 2BrightSparks.
https://www.2brightsparks.com/resources/articles/introduction-to-hashing-and-its-
uses.html

Physical Database Design. (n.d.). Retrieved from http://ewebarchitecture.com/web-
databases/physical-database-design

https://docs.oracle.com/database/121/VLDBG/GUID-BE424ACC-F746-4CA8-973C-F578CF98FF10.htm#VLDBG00225
https://docs.oracle.com/database/121/VLDBG/GUID-BE424ACC-F746-4CA8-973C-F578CF98FF10.htm#VLDBG00225
https://opentextbc.ca/dbdesign01/chapter/chapter-13-database-development-process/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://www.amazon.com/Modern-Database-Management-Jeffrey-Hoffer/dp/0136088392
https://www.amazon.com/Modern-Database-Management-Jeffrey-Hoffer/dp/0136088392
http://www.dba-oracle.com/art_opq.htm
https://www.2brightsparks.com/resources/articles/introduction-to-hashing-and-its-uses.html
https://www.2brightsparks.com/resources/articles/introduction-to-hashing-and-its-uses.html

	4.1.2 - Background
	4.2.1 - Physical DB Design Process
	4.2.2 - Data Partitioning
	4.3.1 Describe three types of file organization
	4.4.1 - Translate a database model into efficient structures
	4.5 - Concise Summary

