
Module_6 – SQL & Client/Server Architecture

Structured Query Language (SQL) is a well-known database language that enables us to perform
various operations on existing databases and even create new ones. SQL employs specific commands
such as Create, Drop, Alter, Truncate, and Insert to execute the desired tasks on tables within the
database. These commands provide the necessary functionality for managing and manipulating data in
a structured manner.

• These SQL commands are mainly categorized into four categories as:
• DDL – Data Definition Language
• DQl – Data Query Language
• DML – Data Manipulation Language
• DCL – Data Control Language

Many resources claim there to be another category of SQL clauses TCL – Transaction Control
Language. TCL commands deals with the transaction within the database.

Examples of TCL commands:

• COMMIT– commits a Transaction.
rollbacks a transaction in case of any error occurs.

• SAVEPOINT–sets a savepoint
 within a transaction.
 SET TRANSACTION–specify characteristics for the transaction

Source: GeeksforGeeks

 6.2 - Introduction and Background to Client/Server Systems and Multi-tier Architecture

The client/server model has become the prevailing standard for networked traffic in contemporary
computing and database systems. Originally designed to support world wide web services, this model
enables servers to offer services to end user devices across the network. As a result, it has been widely
adopted as the standard approach for content publishing and retrieval in modern network systems. This
client/server methodology facilitates efficient communication and seamless interaction between clients
and servers, enhancing the overall functionality and accessibility of networked services.

Figure 1. A graphic demonstrating the architecture of client/server systems. From

“An Introduction to Client/Server Computing” by Yadav SC, Singh SK, 2009.

For databases, the model of client/server is ideal because the database can easily serve
multiple users at the same time through standardized calls for information. If multiple users
are looking to fetch the same files on a routine basis, tools can be deployed which monitor the
trends of usage and allow for IT administrators to beef up the systems which serve those files,
reducing wait times and increasing overall system performance. Similarly, for systems or
databases which are accessed less frequently, those costs can be avoided.

Prior to the client/server architecture, peer-to-peer networking was used. This means
that for every request to send or receive, devices would communicate one-to-one, and for each
transaction of data, this process had to be repeated. By taking on the role of a “server”, a system
can handle more than one call at once, drastically improving throughput and efficiency. Using
the client/server model gives rise to a very specific set of requirements when designing a
transport layer protocol. Generally, a transport layer protocol needs to cover all of the
following requirements: a connection between a client and server, an interaction between the
client and server, authentication of the client and server, and a checksum or other method to
maintain data integrity after having sent and received packets.

Multi-Tier Architecture (MTA) can be generalized as a separation and duplication of a
server/database system by decentralizing data and compute resources. MTA is used to improve
reliability and throughput, similarly to client/server architecture. As such, an MTA
environment will almost certainly use client/server communication.

MTA systems are composed of 6 basic layers (Wall, D, Morgan Kaufmann):
● Persistence: The database which serves files to the applications that service the clients

or users.
● Accessor: Typically, the SQL server. Not the disks in the database, but the part of the

database which does the thinking.

● Logic: The applications which the users interact with, in turn providing instructions to
the database from which files are requested.

● Presentation: Systems applications which package data from the database into web
browser languages such as HTML or XML.

● Requester/consumer: The web browser itself; this is on the client side.
● Elsewhere: The sources of information hosted on other platforms, such as AWS, Azure,

or GCP, or other sources of HTML content that are not native.

Figure 2. A graphic demonstrating the architecture of multi tier architecture.

From “Multi-Tier Application Programming with PHP: Practical Guide for Architects
and Programmers” by Wall, D, Morgan Kaufmann, 2004.

6.2 - Three components of client/server systems

The client/server model is designed to manage data and facilitate the methods by which
users can access it. In the client/server model, data is shared between one central server that
houses and provides access to it and one or more clients that access the data through either a
direct or remote feed. By calling requests to the server, clients can access any information they
have access to, but clients cannot access information from other clients, as that would represent
a peer-to-peer system, rather than a client/server model.

In client/server systems, there are three main components of logic. Presentation logic
controls the inputs and outputs. It "presents" the data to the user in a readable format and also
collects information that a user inputs using their system. Processing logic oversees everything
around turning the client request into a request the server can use in the next step to find
information. The final component is storage logic, which handles physical data storage and
processes retrieving it upon user request.

Figure 3. Client distribution models (made via Microsoft PowerPoint, Michael Nolan 2020)

The way that systems using this model delegate these logical applications defines
individual databases further. Two-tier database architecture is divided into three groups named
to specify what the client takes care of, as shown in Figure 1. In fat client distribution,
presentation and processing are both handled by the client system, while the server exclusively
handles the storage logic application. In thin client distribution, the client only handles
presentation, while the server takes care of processing the request and dealing with storage.
Finally, when a two-tier system is distributed in design, the client and server both handle parts
of processing logic. In these sorts of systems, presentation logic is still handled by the client
and storage is still handled by the server exclusively.

Further levels of tiered architecture in databases works similarly to the
aforementioned design ideas, but splits processing logic applications further between
multiple intermediate applications and web servers before the client's request reaches the
database server.

a. Presentation
Presentation logic is the high-level interactive portion of the database. It is where the

end-user can input requests and receive output on their host device. Input in the presentation
level of the client-server model can be many different things. GUI elements can be added to
make it easier, such as text fields that users can modify, copy, or delete, buttons for submitting
requests, menus, links, and more. Output is handled by the system to present the server
response to user queries in a readable way that gives the user all the information they need
without giving them information they did not request or information to which they are not
allowed access.

Presentation logic is handled exclusively by client software on the host device. This

can be managed by some language such as HTML to quickly take inputs and display outputs
in a controlled location.

b. Processing

The processing logic layer is an intermediary layer that translates information back and
forth between user language coming from the client software and abstracted language used by
the database's storage unit to quickly access the correct information. The processing layer also
handles business rules, assuming they are not already built into the organizational DBMS.

Processing logic has many automated measures defined by business logic and business

rules that are tailored to the specific company or organization the database is a part of. It is
also where data integrity is insured whenever commands are sent to the storage database.

Applications for this are generally coded in Java or C, as those languages can be applied

to many kinds of hardware with ease and offer some scalability without slowing down the
system. Attention needs to be paid to these processes to make sure that this stage of data
transfer does not bottleneck, as the processing logic may have to handle many requests per
day.

Processing logic is also where the majority of differences in database architecture lie.
Two-tier architecture can be split three ways: fat client, thin client, and distributed. Fat client
distribution has all processing logic handled on the client's side, so the user host machine sends
a request to the database having already translated the language from the user's input into
whatever language that specific database uses for queries. Fat client distribution is the most
commonly used organization of database access in the client-server system. Thin client
distribution has all processing logic handled by the server system. The goal of this is to keep
the user interface as light as possible. Distributed systems have processing logic handled by
both the client and server in a way that boosts efficiency. It is more complex than the other two
methods to set up.

Multi-tier organization splits processing logic in different ways. Three-tier systems
may have processing logic all performed on a separate web server that clients and servers both
access. Above that, processing can be handled by multiple web and application servers that
each manage smaller parts of the translation. The goal of these larger systems is to be more
modular and scalable while still being easy to maintain, since problems can be pinpointed
easily.

c. Storage
The storage logic represents the physical database and storage devices. It is where data

storage and retrieval is handled in the system, and it is the part of the client-server system
where the DBMS interacts with everything else.

Data in the database can be stored in many different ways. Data can be accessed using
the information provided by the processing applications very quickly.

 6.3 Two-tier and three-tier architectural distinctions

Though many people may not realize it, when a group of tech-savvy individuals
develops software, one of the most important decisions at the start is the architecture:
“architecture is a key feature which decides that the system will meet its performance and other
quality objectives” (Hayat and Akram, 2007). Several main components come into play when
it comes to deciding the type of architecture, including performance, availability, complexity,
and cost.

Performance depends on the quantity of simultaneous users that can be processed by

the database system to ensure smooth processing. Typically, most applications limit the
number of users accessing different services of the application by only providing them with
restricted data. While choosing an architecture, it is quite important to keep in mind the
performance component. Another significant factor is the cost. The selected architecture must
be affordable for any organization just starting. Availability is the accessibility of the system
to the community of users. Complexity is the extent of difficulty of the system in terms of the
user’s and developer’s viewpoint. If the developers feel they want a lower level of difficulty,
they can make the user’s level of difficulty rise due to lack of user interface
organization/improvements. However, to lower the user’s level of difficulty, the developers
may have to increase their effort and continuously improve, revise, and contemplate new ways
to make the user interface easier and more accessible.

In two-tier architectures, the interfaces run on a client, which means the client

communicates with the server directly, and because it runs on a client, another data layer or
structure is then stored on a server, as seen in Figure 4 below. The client's responsibility covers
user interface logic from the presentation, which deals with how objects in the business get
shown to other users of the software as well as data processing and rules (algorithms) that
dictate the information that gets exchanged between the database system and the user interface.
Meanwhile, database servers access and process requests from the clients.

This architecture allows for optimization of the processing time in the database servers

and is highly recommended for small workgroups. However, clients or servers that use two-
tier architecture tend only to support a relatively small number of users, because the transaction
of information is usually low, and security is not necessarily the top priority. Because of this,
two-tier architectures are not used for applications with large user bases due to their limited
flexibility.

Figure 4 Visual of two-tier architecture (two layers)

(Made via Draw.io, Martin Nguyen, 2020)

In general, three-tier (n-tier) architecture includes another server layer, as seen in Figure 2. This extra
layer makes it much easier to scale the system, which makes performance much better, resulting in a
highly flexible and reusable structure. The extra layer can have several purposes, such as an application
server, or it can be used as local storage and hold local databases. In contrast, the other servers hold
more enclosed data. Utilizing a three-tier architecture can lead to better performance and make it easier
to transport application code to other platforms, reducing dependency on commonly domain-specific
language. Three-tier systems can often be found in Web-based applications—any program accessible
using HTTP.

Figure 2 Visual of three-tier (three or nth layers)
(Made via Draw.io, Martin Nguyen, 2020)

6.4 Connecting to databases in three-tier applications.

Three-tier application structure is similar to the 7-layer OSI model of telecommunications, in

that it breaks up the presentation, data, and application functions into each of their own levels. This
segmentation provides for a more streamlined approach to scalability and ease of development, since
the developer does not have to produce a new web technology for every instance. Instead, standards
such as HTML, CSS, or JavaScript may be used.

When connecting to a three-tier based web application, the user will interact with the
presentation tier. This layer is the visual wrapper between the functionality, database, and UI elements.
This layer is displayed in a web browser, and served through the World Wide Web or a Local Area
Network. Connecting to an IP address using a compatible browser will provide the web page to the
user, being provided through a server which hosts the website and has access to the databases which
it uses. The presentation tier is largely the visual aspect of a website or application and does not
perform the computing or data storage/retrieval. This layer is important, however, because data entry
and user intent must be clearly interpreted for the right API calls to be made by the presentation layer,
to be sent to the application and data tiers.

By using a three-tier architecture, developers are able to concurrently work on each tier of the
application as they are designing it. This parallel development allows for fewer limitations due to older
design which cannot easily be changed. This is relevant to the connection to databases, due to the
ability of the development teams to agree on which APIs and methods they wish to communicate with
between each layer. For the database to be accessed, the user would make a request for a piece of
information to be pulled from the database through the presentation layer. The presentation layer
would process the request through the application layer (or logic layer) which would request the data
from the database. All of this would happen through the use of API calls in a modern application. The
database layer would be a version of SQL such as MySQL, Microsoft SQL Server, or another database
type.

Once the request reaches the data layer, the database management system (DBMS) is what will
actually do the work of finding what the request is looking for. This includes querying the database
indexes to see where the information is stored, as databases are usually composed of one or more
storage devices with many logical storage endpoints.

6.5 - Section Concise Summary
 The client-server model is widely employed in system architecture design, offering a flexible and
customizable approach to information exchange. At its core, it involves the transfer of data between
client requests and server responses, forming the foundation of communication. However, its versatility
allows for a variety of functions and configurations.

Client-server implementations can manifest in different forms, depending on the number of tiers present
in the system design. These implementations span from simple two-tier systems with thin or fat clients
to more complex modular distributed systems. In the latter, multiple tiers of web and application servers
are utilized to separate clients from their corresponding servers. This layered approach adds levels of
abstraction, resulting in user interfaces that are user-friendly and intuitive, making them highly
desirable for end users.

By employing the client-server model and incorporating layers of abstraction, system designers can
streamline the user experience, making complex systems more accessible and user-friendly. This
adaptability and customization make the client-server model a popular choice in contemporary system
architecture design.

6.6 – Extended Resources

1. Gives the definition and a brief background of client server model/architecture.
Explains the topics of advantages and disadvantages of the model as well as protocols
and other program relationship models as well. The video goes through and describes
as well as gives a visual of client server architectures.

 https://searchnetworking.techtarget.com/definition/client-server

2. This video talks about software multilayered architectures consisting of one tier, two
tier, three tier, and n-tier architectures.

 https://www.youtube.com/watch?v=ccOzcjHQVo s

3. This slideshow walks you through and visually shows you how to connect database
files to tier architecture applications.

 https://www.slideshare.net/fkbullet11/con-stringslideshare

4. A history of the client server.
 https://pdfs.semanticscholar.org/f47d/f7345d0e5bdf5500c5f27a4ba92ac400685a.pdf

5. Microsoft’s client/server application guidelines.
 https://docs.microsoft.com/en-us/windows/win32/termserv/client-server-application-guideline
s

6. A detailed overview of client server applications.
 https://www.sciencedirect.com/topics/computer-science/client-server-application

7. This video gives a basic tutorial on client server applications.
 https://www.youtube.com/watch?v=3FKHKiNVYI 4

8. Client-Server Paradise, David De Witt, Navin Kabra, etal., University of Wisconsin, Madison,
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e1d9f9d615473c13859761
ddc12a6f2eb6071522

9. Microsoft SQL Server 2000 Unleashed, Ray Rankins, Paul Jensen, Paul Betuccui,

https://www.google.com/books/edition/Microsoft_SQL_Server_2000_Unleashed/G2YqBS9C
Q0AC?hl=en&gbpv=0

10. Understanding SQL's stored procedures: a complete guide to SQL/PSM, Jim Melton, by

Morgan and Kaufmann Publishers Inc., San Francisco, CA, ISBN:978-1-55860-461-2,
https://dl.acm.org/doi/book/10.5555/274866

https://searchnetworking.techtarget.com/definition/client-serve
https://searchnetworking.techtarget.com/definition/client-server
https://searchnetworking.techtarget.com/definition/client-server
https://www.youtube.com/watch?v=ccOzcjHQVo
https://www.youtube.com/watch?v=ccOzcjHQVos
https://www.slideshare.net/fkbullet11/con-stringslideshar
https://www.slideshare.net/fkbullet11/con-stringslideshare
https://pdfs.semanticscholar.org/f47d/f7345d0e5bdf5500c5f27a4ba92ac400685a.pd
https://pdfs.semanticscholar.org/f47d/f7345d0e5bdf5500c5f27a4ba92ac400685a.pdf
https://pdfs.semanticscholar.org/f47d/f7345d0e5bdf5500c5f27a4ba92ac400685a.pdf
https://docs.microsoft.com/en-us/windows/win32/termserv/client-server-application-guideline
https://docs.microsoft.com/en-us/windows/win32/termserv/client-server-application-guidelines
https://docs.microsoft.com/en-us/windows/win32/termserv/client-server-application-guidelines
https://www.sciencedirect.com/topics/computer-science/client-server-application
https://www.sciencedirect.com/topics/computer-science/client-server-application
https://www.sciencedirect.com/topics/computer-science/client-server-application
https://www.youtube.com/watch?v=3FKHKiNVYI
https://www.youtube.com/watch?v=3FKHKiNVYI4
https://www.youtube.com/watch?v=3FKHKiNVYI4
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e1d9f9d615473c13859761ddc12a6f2eb6071522
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e1d9f9d615473c13859761ddc12a6f2eb6071522
https://www.google.com/books/edition/Microsoft_SQL_Server_2000_Unleashed/G2YqBS9CQ0AC?hl=en&gbpv=0
https://www.google.com/books/edition/Microsoft_SQL_Server_2000_Unleashed/G2YqBS9CQ0AC?hl=en&gbpv=0
https://dl.acm.org/doi/book/10.5555/274866

6.8 - Reference List

Akram, Muhammad. “Qualitative & Quantitative analysis of tiered Architecture of Web-

Applications. “ 2007. PDF.

Bussche J and Vansummeren S. (2007). Polymorphic type inference for the named nested relational
calculus. ACM Transactions on Computational Logic (TOCL). 9:1. (3-es). Online publication
date: 1-Dec-2007. https://doi.org/10.1145/1297658.1297661

Chaudhri A. (2019). An annotated bibliography of benchmarks for object databases. ACM SIGMOD
Record. 24:1. (50-57). Online publication date: 1-Mar-1995.
https://doi.org/10.1145/202660.202668

Chen M. (1995). A model-driven approach to accessing managerial information. Journal of
Management Information Systems. 11:4. (33-63). Online publication date: 1-Mar-1995.
https://doi.org/10.1080/07421222.1995.11518059

Röhm U and Diep T. How to BLAST your database — a study of stored procedures for BLAST
searches. Proceedings of the 11th international conference on Database Systems for Advanced
Applications. (807-816). https://doi.org/10.1007/11733836_58

Van den Bussche J, Van Gucht D and Vansummeren S. A crash course on database queries.
Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems. (143-154). https://doi.org/10.1145/1265530.1265551

Yadav SC, Singh SK. An Introduction to Client/Server Computing. New Delhi: New Age

International; 2009.

Wall, D, Morgan Kaufmann. Multi-Tier Application Programming with PHP : Practical

Guide for Architects and Programmers; 2004.

https://dl.acm.org/author/Bussche%2C+Jan+van+den
https://dl.acm.org/author/Vansummeren%2C+Stijn
https://doi.org/10.1145/1297658.1297661
https://dl.acm.org/author/Chaudhri%2C+Akmal+B
https://doi.org/10.1145/202660.202668
https://dl.acm.org/author/Chen%2C+Minder
https://doi.org/10.1080/07421222.1995.11518059
https://dl.acm.org/author/R%C3%B6hm%2C+Uwe
https://dl.acm.org/author/Diep%2C+Thanh-Mai
https://doi.org/10.1007/11733836_58
https://dl.acm.org/author/van+den+Bussche%2C+Jan
https://dl.acm.org/author/van+Gucht%2C+Dirk
https://dl.acm.org/author/Vansummeren%2C+Stijn
https://doi.org/10.1145/1265530.1265551

	6.2 - Three components of client/server systems
	c. Storage
	6.4 Connecting to databases in three-tier applications.
	6.5 - Section Concise Summary
	6.6 – Extended Resources
	6.8 - Reference List

