

Module_2
Enhanced Analysis on SQL, NoSQL, ERD, and RDBM

2.1 Paradigm in Database

 Relational Database Management Systems (RDBMS) are a theoretical framework supported by
specific tools like SQL and NoSQL, where data is organized into two-dimensional tables consisting of
rows and columns. To understand the interactions within these systems, Entity-Relationship (ER) diagrams
are utilized, serving as visual representations of the relationships between entities. Similar to a storyboard
for a film, an ER diagram outlines the underlying structure of the internal database, aiding in
comprehension, enhancing efficiency, and identifying logical errors.

An ER diagram comprises entities, attributes, and the relationships connecting them. For instance,
in the complex systems of Amazon, there would be an entity for customers, encompassing attributes such
as name, address, payment details, and email. When an order is placed and prepared for shipment, the
shipping database would retrieve necessary information from the customer database to fulfill the order and
dispatch the package. An ER diagram would illustrate how the shipping department can access multiple
customers within the database and the specific information required for successful shipment.

 “The Entity-Relationship Model – Toward a Unified View of Data” (Kempe, 2013). As databases
and businesses grew more complex, a unified modeling system became more important so that structures
could be modeled across industries consistently. After the original ERD was developed by Peter Chen,
many of his colleagues adapted and made small alterations to improve and simplify the overall model. The
key components are still present; the look has been simplified to accommodate more complex systems.
Below we see examples of both the original and newer ERD models.

 Figure 1 – Entity Relationship Diagram

(1) This is an example of an older ERD version depicting e-commerce Company.
We can tell because there are action diamonds between entities, and attributes are each listed
separately in individual ovals.

(2) In this newer ERD e-commerce example, we see attributes listed within each entity, and no actions
are present. If depicted in the older model, we would see 21 attribute ovals and a minimum of 8
actions. This would create visual clutter, making the ERD harder to examine, detracting from its
usefulness.

2.2 Database Paradigm Shift on SQL & NoSQL

 Many years ago, several authors of this article worked extensively with large amounts of data – or
at least what they considered to be large amounts at the time. At that time, 200,000 records in an Excel
spreadsheet were a large amount of data. Later, we came across Access and watched how it devoured that
little Excel spreadsheet. However, Access became just as inadequate once the databases ballooned to two
gigabytes, on the weight of five tables and limited queries. Consider, at this juncture, the size of backend
operations of old dialer systems, which had a mix of database and telecommunications functionality.
Although the amount of data these systems could handle was astounding, it was obvious even then that
there were data architectures that could go beyond the capacity of even those dialers: thus, the Big Data
era gradually appeared on the horizon, and the research that related to this field quickly followed it.

Figure 2 – New Style ERD (Lucidchart)

A quick review indicates that the bulk of articles about Data and Database materials used to focus
on the creation, implementation, and maintenance of well-planned relational databases, whereas Big Data
articles outline it as a panacea for all problems. From an information systems perspective, no paper exists
that does a comprehensive comparison of the two dominant technologies in terms of their database and
business intelligence (BI) capabilities as well as plausible trends (Abbasi, 2016).

This paper addresses this literature gap. It provides a comprehensive review of modern relational

database technologies, and NoSQL based database management systems. The summary of the comparison
is presented in Table I under the subheading of “The Big Bang of the BIG DATA.” Authors use this to
guide the structure of the paper.

The Big Data knowledge and expertise are important for our students to acquire as marketable skills

for successful career. To this end, this article delivers an overview of Big Data by providing a
comprehensive definition of the term and surveying its sources of origin. Next authors present the
applications trends in different industries. Afterward, some of the technologies and techniques being
utilized to handle Big Data are explored, including Relational Databases (with a twist) and No-Structured
Query Language Databases. In addition, new concepts, and trends, including approximate computing and
data visualization, designed to speed up Big Data and make it more useable, are briefly introduced. To
conclude, we define issues that remain with techniques used to drive and utilize Big Data.

Keeping a well-documented model of a database is important for overall business efficiency. ER
diagrams are easy to use and understand, allowing for simple cross-departmental understanding. As new
changes or expansions are proposed, an understanding of current workflow and capabilities is key to
managing these projects. Also, as new team members join, an ERD allows for quick and efficient training.
New and current team members can revisit this often as a reference while working on individual pieces to
understand the overall effect.

 While the foundation of an ERD is to show the relationship between entities, they can also be
helpful in other instances. Designing and debugging databases can be very complex tasks, but having ER
diagrams can simplify the process and reduce the chance of error. In designing an entirely new system, an
ER diagram can aid in planning the logic and requirements of a database before any part of it is built. This
can save money and hours, and it ultimately cuts down on redundancies and time spent on unneeded builds.
Visualizing the overall structure allows programmers to locate any errors in logic or flaws in the overall
design before creation. Once a system is already created, an ERD is still useful in debugging as errors
occur. Because developers can see how all entities and attributes are linked, it is easier to trace down where
any error stems from. In fixing the issue, the ERD also helps in seeing if any side effects may occur (Visual
Paradigm).

 ER diagrams are especially useful in organizations with bigger and more complex database systems
that have many different entities, data points, and relationships between them. A good example of this can
be found in any major hospital. All hospitals have doctors and patients, but the larger one’s deal with
doctors across different specialized departments and all the components that interact. When a patient makes
a yearly checkup appointment online, their appropriate insurance is checked and logged into their profile.
When they arrive, the doctor is able to access all previous medical records and current medication, even if
prescribed by a different doctor. Any samples taken are processed by the laboratory, who have editing
access to the patient profile in order to update the results.

The information is then posted to the account, and both the doctor and patient are notified. Patients
have view-only capabilities, while doctors can edit and add on prescriptions as needed. If a prescription is
added, the in-house pharmacy can view and notify patients when filled. While this process is going on, the
billing department can see activities in all other departments as it relates to the individual case, viewing
insurance information to forward and process bills. They can communicate between both the insurance
provider and the patient to fulfill total costs.

In this example, the process is not linear, and each department has different levels of access and
editing capabilities. Not included in the example, but still present in the situation, are all the back-end
human resources for the hospital as an organization with employees. This becomes increasingly complex
as more patients, doctors, specializations, and privacy concerns are added into the mix. In health care
professions where certain situations can literally be life or death, efficiency is of the utmost importance.
ER diagrams are essential to keeping hospital databases well-organized and free from error. While the
figure below depicts a simplified and basic interaction with a doctor’s office, we can already see many
entities and complex relationships between them. A full-service hospital ER diagram would be much larger.

2.3 Naming and Definitions

Now that we have covered what an ER diagram is, let’s go into more detail regarding the finer
points of data modeling. ER diagrams are used to visually represent data relationships in many settings,
but they are most used in business environments. These data representations allow many companies to
better use their resources and make well-informed decisions. These diagrams should be easily representable
and understandable by a wide majority of employees, as they represent data and/or inner functions of the
company. Therefore, it is obvious that such diagrams must be easily readable and functional to allow quick
decision-making.

Figure 3 – Basic Route to Shop (Creaturely, 2015)

 Speaking of readability, in these ER diagrams, naming values and objects is half the battle.
Something that shares this need is programming, as creating variables and methods with explanatory yet
short names helps to increase readability of the code. Understanding this, writing ER diagrams brings many
similar concepts, so writing an ER diagram is nearly the same as writing the code that drives it. The value
of self-explanatory variable names cannot be understated, as they help keep the company and its employees
informed. However, explaining such concepts without an example is needlessly abstract, so let’s start by
making a few tables and bringing them up to snuff.

Now with these tables, we can start to fix problems, but first let’s start with some baselines. Firstly,
we can see an empty value in table 3, and with no relations, table names, or variable names these tables do
not convey any meaningful information. Choosing an example set of data, we can display the relationship
between a Student, a College, and their Professors.

Figure 4 – Entity Relation Tables

Now this table is still far from ideal. Tables share variables, and these names are terrible, and would require
a large amount of explanation to make sense. Let’s start fixing it step by step. Our first objective will be
getting the data to a more readable state. The variable names currently in the table are atrociously low on
elaboration or are so general that anything could fit where they are. Other variables are even repeated, so
if they were used as a unique identifier or a primary key the program would give irrelevant or hindering
information. This would lead to many problems, both in coding and in viewing. Let’s make some edits to
the table to better represent the variables that are in there right now.

 Now that the variables have been clarified, we can begin fixing some finer details like the relations
between each table. The student and college relation are not indicative of the general format. A student at
college will only have one college, and a college will have far more than one student enrolled. Additionally,
professors that teach generally tend to stay at one college, so changing that correlation will better fit the
represented data. Fixing this will better clarify the tables’ reliance on each other, as well as opening more
relation options between them.

Figure 5 – College, Professor, Student ER Diagram

Now with the inter-table relations fixed, our focus can shift to the formatting of variables and table
names. Some variables have far too long a name to be practically used or understood. Be careful when
fixing these names, however, as cutting off too much or using unorthodox acronyms can lead to the same
confusion regarding the variables. Also, no one wants to read super long variable names, and doing so in a
conference or meeting puts an unnecessarily large amount of time spent explaining what a simple diagram
should be.

In programming, such variables would never be used, mainly because no one wants to type out
student identification number, and then find out they misspelled it. Additionally, such values are memory
inefficient, wasting space that could be used to make processes run faster. So, now to fix the table, look for
shorter variable names or acronyms to replace the names already there, but remember, going for shortness
over functionality could lead to a similarly cryptic graph.

Figure 8 – ER Diagram With Corrected Relation Formatting (Bartz, 2020)

Figure 7 – ER Diagram With Corrected Relation Types (Bartz, 2020)

Now that these variable names are much shorter, let’s format them more professionally.
Capitalization is an easy way to better present data in a professional way. Capitalizing acronyms and one-
word variables is one more layer to add to the credibility of the relation. Additionally, we can format
variables in a better way than just a long string of characters. There are many naming conventions common
in programming that can be applied outside of code to ER diagrams, but for this example, we will use the
Camel case convention. Camel case uses capital letters after the first word to increase readability of longer
variable names (ex: numapplepie to numApplePie).

Figure 9 – ER Diagram With Corrected Attribute Format (Bartz, 2020)

This table has come a long way, and now that it is properly formatted, let’s focus on details like the
primary key for each table. For formatting, the primary key should go at the top of the table variables to
better represent its role. Adding to the layers of complexity, let’s examine some of the variables and their
use. What about student names? Attempting to separate the name down into 2-3 parts is a tactic that is
required, as most universities and colleges order role via last name.

So, let’s add some clarification to that name. Remember if we apply some convention to the visual,
it should carry through, so if we edit studentName, we must edit the professorName variable as well.
Another topic to cover is sub tables, that is tables that elaborate on certain variables within another linked
table. In the next example, we will add the dependent variable to the Professor table as well as a sub table.
One other topic to cover is useless data. Look at the college table and see that there are two employee
variables. That’s a waste of both space and data, so they can be combined into one variable.

 Figure 10 – ER Diagram with Corrected Keys (Bartz, 2020)

2.4 Modeling
Finally, speaking of data, entities and variables might have relationships to other entities, so this

should be the last phase of ER diagram assembly. Take, for example, the order and customer entities in the
context of the company. The relationship is as such, for each customer, they may have multiple orders,
while each order will only have one customer who made it. The storage facility may have multiple incoming
orders or requests, but the order only references one facility.

Figure 11 – Entity-to-Entity Relation (Bartz, 2020)

Thus we can see the importance of properly laying out and describing ER relations to better
represent the data. However, let’s address some smaller, more technical issues that may arise when creating
a diagram. Given a diagram, sometimes concepts or variables put onto the board that others are not familiar
with. Say you use some in-house acronyms at a large event, and then people ask questions about those
topics. That is wasted time that could have been spent asking better questions that you prepared to answer.
Remember that while you want to inform your audience, it is important to present that in an easily
comprehendible way. Following some commonly used conventions, as well as using some advice outlined
above, will allow you to work smarter, not harder.

2.5 Examples

Figure 12 – Store ER Diagram (Bennett, 2020

2.6 Business Intelligence Systems and Data Warehouse

Business Intelligence (BI) Systems are any database system that has data, programs, and personnel
and are specialized for the preparation of data for BI processing. A Data Warehouse is a system used for
reporting and data analysis and is considered a core component of business intelligence. This includes day-
to-day transactions and other internal data or external data from sources by the Extract, Transform, and
load (ETL) System.

Database SKUs (A s tock-keeping unit (SKU) is a scannable bar code, most often seen printed on
product labels in a retail store) where the primary key consists of one or more columns will uniquely
identify each row or record in the table. Some tables may have one or more foreign keys that are used to
create relationship between tables logically link the tables together.

2.7 Introduction to Structure Query Language (SQL)

SQL is the universal query language of relational database management systems (DBMS) that is
almost always behind user-friendly GUIs. In this section, we will briefly talk about SQL queries. We
will visit SQL in more detail in later chapters.

SQL statements can also include a SQL comment, which is a block of text used to document the
SQL statement but not executed as part of the statement. SQL comments are enclosed in the symbols /*
and */, and any text between these symbols is ignored when the SQL statement is executed. Here is an
example:

/* SQL-Quaery-Ch02 */

 The fundamental statement of SQL query can apply to Microsoft Access, SQL Server, Oracle
Database, and MySQL. The basic form of SQL queries uses SQL SLECT – FROM – WHERE
framework. Here are some basic specifications:

 The SQL SELECT statement specifies which columns are to be listed in the query results.
 The SQL FROM statement specifies which tables are to be listed in the query results.
 The SQL WHERE statement specifies which rows are to be listed in the query results.

Reading Specified Columns from Single Table – to obtain values from the SKU_Data table, we
write a SQL SELECT statement that contains all of the column names in the table:

/* SQL-Query-Ch_02 */

 SELECT SKU, SKU_Description, Department, Buyer

 FROM SKU_DATA;

Below is a SQL queries from a single table, which obtains just the value of the Department and Buyer
columns of the SKU_Data table:

Department Buyer
Clothing Tyra Perry
Clothing Bradly Cooper
Clothing Cora Mathis

 SELECT Department, Buyer
 FROM SKU_DATA;

The Catalog_SKU_2019 table shows DateOnWebSite. To see these items, we use the follow query:

/* SQL-Query-Ch_02 */

 SELECT *
 FROM CATALOG_SKU_2020
 WHERE DateOnWebSite = '10-Oct-2020';

2.8 Submitting SQL Statement to the DBMS

Using SQL in Microsoft Access 2016, we can execute SQL statements and run Query windows in
Design view.

1. Click the Create command tab to display the Create command groups, as shown in Figure 2-
13.

2. Click the Query Design button.
3. The Query1 tabbed document window is displayed in Design view, along with the Show Table

dialog box, as shown in Figure 2-10.
4. Click the Close button on the Show Table dialog box. The Query1 document window now

looks as shown in Figure 2-11, with the Query Tools contextual command tab and the Design
command tab displayed. This window is used for creating and editing Microsoft Access queries
in Design view and is used with Microsoft Access QBE (Query By Design).

Figure 2-13- Microsoft Access 2016 Design view

2.9 Concise Summary

An Entity Relationship Diagram, or ER diagram, is a visual representation of a database and the
interactions between its entities and attributes. The need for ER diagrams arose from the need to structure
complex databases in the 1970s. Aspects of ER diagrams that are appealing include their not only being
easy to understand but also easy to create and teach.

One of the earliest models was developed by Peter Chen, which included entities (rectangles),
attributes (ovals) and their relationships (diamonds). Newer ER diagrams (using Unifying Modeling
Language) simplify this by attaching attributes to their entities in a rectangle and by having relationships
designated by lines with specific end-connection symbols that represent the following:

• One-to-one
• One-to-many
• Many-to-one
• Many-to-many

All four of the above relationships are also combined with a symbol for mandatory or optional cardinality.

There are a few naming conventions that have evolved since Chen’s original model. Entity names
are typically one word, bolded, and put in the upper rectangle (the case can be interchangeable, but most
use either Pascal or Camel). When keys are introduced, primary keys are camel-case and underlined, and
secondary keys are just camel-case; all keys must have the same name as their corresponding entities.
Attributes are camel-case, unique, and as short as possible.

ER diagrams allow a prebuild for databases which saves time, effort, and confusion for
programming teams. They are also a great tool when used to help diagnose errors in the database. These
simple diagrams are crucial when creating a database as efficiently and quickly as possible.

2.10 Extended Resources

1. ScyllaDB is most widely use and considered the best tools NoSQL database using Monogo for Big data
Applications, that provide low cost and ultra-low latency.
https://www.youtube.com/watch?v=v-mxfp6lJBI

2. This explains ER diagrams in depth. They go over each of the main parts; entity, attribute, and
relationship, and each of the variations of them.

https://beginnersbook.com/2015/04/e-r-model-in-dbms/

3. https://www.tutorialspoint.com/dbms/er_diagram_representation.htm

This site shows the old method of making ER diagrams and gives a good description of each of the types
of connections between the entities.

4. This resource shows two pictures; one shows possible individual components of an ERD, and the other
depicts an example of an ERD using all the components.

 https://www.oreilly.com/library/view/database-systems-
concepts/9788177585674/9788177585674_ch06lev1sec5.html

5. Learn Basic SQL in 15 Minutes | Business Intelligence For Beginners | SQL Tutorial For Beginners
https://www.youtube.com/watch?v=kbKty5ZVKMY

6. This video covers ER basics; what ER diagrams are, when to use them, and useful tips for creating them.
The video shows an example of an ERD being drawn out in ‘smart draw’ to get a better understanding on
how one is made from scratch

https://www.youtube.com/watch?v=dUJp0Yoq5eg

7. In this article they go over a brief history of ER diagrams. They discuss the different people involved
with the creation and changes made to the models over time.

https://www.dataversity.net/a-short-history-of-the-er-diagram-and-information-modeling/

8. ER Diagram Template: Old version

https://www.lucidchart.com/pages/templates/er-diagram/hospital-er-diagram-template

9. ER Diagram Template: New version

https://www.lucidchart.com/pages/templates/er-diagram/database-er-diagram-template

https://www.youtube.com/watch?v=v-mxfp6lJBI
https://beginnersbook.com/2015/04/e-r-model-in-dbms/
https://www.tutorialspoint.com/dbms/er_diagram_representation.htm
https://www.oreilly.com/library/view/database-systems-concepts/9788177585674/9788177585674_ch06lev1sec5.html
https://www.oreilly.com/library/view/database-systems-concepts/9788177585674/9788177585674_ch06lev1sec5.html
https://www.youtube.com/watch?v=kbKty5ZVKMY
https://www.youtube.com/watch?v=dUJp0Yoq5eg
https://www.dataversity.net/a-short-history-of-the-er-diagram-and-information-modeling/
https://www.lucidchart.com/pages/templates/er-diagram/hospital-er-diagram-template
https://www.lucidchart.com/pages/templates/er-diagram/database-er-diagram-template

2.11 References

Abbasi, A., Sarker, S., & Chiang, R.H.L. (2016), Big Data Research in Information Systems: Toward an

Inclusive Research Agenda. Journal of the Association for Information Systems, 17(2).

Abramova, V., & Bernardino, J. (2013), NoSQL databases: MongoDB vs Cassandra. International C*

Conference on Computer Science and Software Engineering (pp. 14-22). New York: Association
on Computing Machinary.

SmartDraw. Entity Relationship Diagram. (n.d.). Retrieved from https://www.smartdraw.com/entity-

relationship-diagram/#whatIsERD

Kempe, S. (2013, November 20). A Short History of the ER Diagram and Information Modeling.
Retrieved from https://www.dataversity.net/a-short-history-of-the-er-diagram-and-information-
modeling/#

Lucidchart. Template: Entity Relationship Diagram. (n.d.). Retrieved from
https://lucidchart.zendesk.com/hc/en-us/articles/360000478183-Template-Entity-Relationship-
Diagram

Visual Paradigm. What is Entity Relationship Diagram (ER)? (n.d.). Retrieved from https://www.visual-
paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/

Creately 2008. R Diagram for Hospital Management System (Entity Relationship Diagram). (n.d.).
Retrieved March 22, 2020, from https://creately.com/diagram/example/hwj0b7oy1/E-R Diagram
for Hospital Management System

https://www.smartdraw.com/entity-relationship-diagram/#whatIsERD
https://www.smartdraw.com/entity-relationship-diagram/#whatIsERD
https://www.dataversity.net/a-short-history-of-the-er-diagram-and-information-modeling/
https://www.dataversity.net/a-short-history-of-the-er-diagram-and-information-modeling/
https://lucidchart.zendesk.com/hc/en-us/articles/360000478183-Template-Entity-Relationship-Diagram
https://lucidchart.zendesk.com/hc/en-us/articles/360000478183-Template-Entity-Relationship-Diagram
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/

	Module_2
	Enhanced Analysis on SQL, NoSQL, ERD, and RDBM
	2.1 Paradigm in Database
	2.2 Database Paradigm Shift on SQL & NoSQL
	2.4 Modeling
	2.9 Concise Summary
	2.10 Extended Resources

	5. Learn Basic SQL in 15 Minutes | Business Intelligence For Beginners | SQL Tutorial For Beginners
	2.11 References
	Abbasi, A., Sarker, S., & Chiang, R.H.L. (2016), Big Data Research in Information Systems: Toward an Inclusive Research Agenda. Journal of the Association for Information Systems, 17(2).

