
Kennesaw State University

Parallel and Distributed Computing

Project - Pthread

Emoji is popular in today’s world. Given two emoji strings s1 and s2. Write a Pthread program
to find out the number of subEmojiStrings, in string s1, that is exactly the same as s2.

For example, suppose number_subEmojiStrings(s1, s2) implements the function, then
number_subEmojiStrings(“🥎🍈🍉🍊🎊🍈🍉🥭🍈”, “🍈🍉”) = 2,
number_subEmojiStrings(“🥎🥎🥎”, “🥎”) = 3,
number_subEmojiStrings(“💚❤💙❤”, “💚💙”) = 0.

The size of s1 and s2 (n1 and n2) as well as their data are input by user file. Assume that
n1 mod NUM_THREADS = 0
and
n2 < n1/NUM_THREADS.

The following is a sequential solution of the problem. read_f() reads the two emoji strings
from a file named “emoji.txt and num_subEmojiString() calculates the number of substrings.
Here s1 is a string with thousands of emojis and s2 = “❤🦉”.

https://github.com/kevinsuo/CS4504/blob/main/project-pthread.c

--
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define MAX 102400

int total = 0;
int n1,n2;
char *s1,*s2;
FILE *fp;

int readf(FILE *fp)
{
 if((fp=fopen("emoji.txt", "r"))==NULL){

https://github.com/kevinsuo/CS4504/blob/main/project-pthread.c

 printf("ERROR: can't open string.txt!\n");
 return 0;
 }
 s1=(char *)malloc(sizeof(char)*MAX);
 if(s1==NULL){
 printf("ERROR: Out of memory!\n");
 return -1;
 }
 s2=(char *)malloc(sizeof(char)*MAX);
 if(s1==NULL){
 printf("ERROR: Out of memory\n");
 return -1;
 }
 /*read s1 s2 from the file*/
 s1=fgets(s1, MAX, fp);
 s2=fgets(s2, MAX, fp);
 n1=strlen(s1); /*length of s1*/
 n2=strlen(s2); /*length of s2*/
 if(s1==NULL || s2==NULL || n1<n2) /*when error exit*/
 return -1;
}

int num_subEmojiString(void)
{
 int i,j,k;
 int count;

 for (i = 0; i <= (n1-n2); i++){
 count=0;
 for(j = i,k = 0; k < n2; j++,k++){ /*search for the next string of size of n2*/
 if (*(s1+j)!=*(s2+k)){
 break;
 }
 else
 count++;
 if(count==n2)
 total++; /*find a substring in this step*/
 }
 }
 return total;
}

int main(int argc, char *argv[])
{
 int count;

 readf(fp);
 count = num_subEmojiString();
 printf("The number of substrings is: %d\n", count);
 return 1;
}

--

You can find an example of the “emoji.txt” here:
https://raw.githubusercontent.com/kevinsuo/CS4504/main/emoji.txt

To compile the program with Pthread, use:
$ gcc project-pthread.c -o project-pthread.o -pthread

Current output:

https://raw.githubusercontent.com/kevinsuo/CS4504/main/emoji.txt

 (Different text files output is also different. For the emoji.txt, the output is 55)

Download the emoji.txt:
$ wget https://raw.githubusercontent.com/kevinsuo/CS4504/main/emoji.txt

Write a parallel program using Pthread based on this sequential solution. Please set the
thread number as 20 in your code. You can start with this template code:
https://github.com/kevinsuo/CS4504/blob/main/parallel-template.c

To compile the program with Pthread, use:
$ gcc file.c -o file.o -pthread
Here file refers to your source code name.

Expected output (the thread order can be random):
Suppose thread 𝑖 finds 𝑛! substrings, the total number of substrings should be equal to ∑ 𝑛!"#

!$%

HINT: Strings s1 and s2 are stored in a file named “emoji.txt”. String s1 is evenly partitioned
for NUM_THREADS threads to concurrently search for matching with string s2. After a thread
finishes its work and obtains the number of local matchings, this local number is added into

https://raw.githubusercontent.com/kevinsuo/CS4504/main/emoji.txt
https://github.com/kevinsuo/CS4504/blob/main/parallel-template.c

a global variable showing the total number of matched substrings in string s1. Finally, this
total number is printed out. Please make sure the number of substrings of parallel program
is the same as the serial program.

Submission

Submit your assignment file through D2L using the appropriate link.
The submission must include the source code, and a report describe your code logic. Output
screenshot of your code should be included in the report.

