
Kennesaw State University

Parallel and Distributed Computing

Project - OpenMP

Instructor: Kun Suo
Points Possible: 100

The following code implements multiplication of two matrices. The order of the matrix is 2048.
Function matrixInit() initializes a double type value for all elements in the matrix. Function
matrixMulti() performs the multipy calculation. However, the program executes in the
sequential implementation.

https://github.com/kevinsuo/CS4504/blob/master/Matrix_Multiple_Sample.c

--
#include <stdio.h>
#include <omp.h>
#include <time.h>
#include <stdlib.h>

#define N 2048
#define FactorIntToDouble 1.1;

double firstMatrix [N] [N] = {0.0};
double secondMatrix [N] [N] = {0.0};
double matrixMultiResult [N] [N] = {0.0};

void matrixMulti()
{
 for(int row = 0 ; row < N ; row++){
 for(int col = 0; col < N ; col++){
 double resultValue = 0;

https://github.com/kevinsuo/CS4504/blob/master/Matrix_Multiple_Sample.c

 for(int transNumber = 0 ; transNumber < N ; transNumber++) {
 resultValue += firstMatrix [row] [transNumber] *
secondMatrix [transNumber] [col] ;
 }

 matrixMultiResult [row] [col] = resultValue;
 }
 }
}

void matrixInit()
{
 for(int row = 0 ; row < N ; row++) {
 for(int col = 0 ; col < N ;col++){
 srand(row+col);
 firstMatrix [row] [col] = (rand() % 10) * FactorIntToDouble;
 secondMatrix [row] [col] = (rand() % 10) *
FactorIntToDouble;
 }
 }
}

int main()
{
 matrixInit();

 clock_t t1 = clock();
 matrixMulti();
 clock_t t2 = clock();
 printf("time: %ld", t2-t1);

 //double t1 = omp_get_wtime();
 //matrixMulti();
 //double t2 = omp_get_wtime();
 //printf("serial time: %3f\n", ((double)t2 - t1) / CLOCKS_PER_SEC *
1000000.0);
 return 0;
}
--

Note: You have two ways to measure the execution time.

(1) clock() records the number of ticks of the CPU. When multiple processes are calculated

simultaneously in parallel, the number of CPU ticks increases multiplied. You should divide
the clock() by N if you use N processes.

(2) omp_get_wtime() returns the timestamp, which is irrelevant to the number of processes.

Task 1 (50 points):

Write a parallel program using OpenMP based on this sequential solution.

To compile the program with OpenMP, use:
$ gcc program.c -o program.o -fopenmp

Please write a one-page report (with number and figures), which compares the execution
time of sequential solution and parallel solution under different matrix orders (value of N).
To get stable values, try to get the average time for each execution.

Order of Matrix 1024 2048 4096
Sequential Time

Parallel Time
Speedup

Task 2 (50 points):

In order to further improve the performance, the matrix can be divided into blocks, and a
part of the matrix can be calculated at one time. Under such the implementation, the CPU
can move a part of the matrix data into the cache, which can improve the cache hit rate and
the program performance.

Please write a block-optimized matrix multiplication program and use OpenMP to parallel its
execution. Compare the program execution time with that in Task 1 and write another report
with data and figures. To get stable values, try to get the average time for each execution.

You can use the following template:
https://github.com/kevinsuo/CS4504/blob/main/OpenMP_block_optimized_template.c

https://github.com/kevinsuo/CS4504/blob/main/OpenMP_block_optimized_template.c

Order of Matrix 1024 2048 4096

Block-optimized Sequential Time
Block-optimized Parallel Time

Speedup

Expected Output

Normally, for a certain size of the matrix, the execution time of a single-thread program (ST),
OpenMP-optimized program (OMP), and OpenMP with block-optimized program (OMP-b)
should be:

ST > OMP > OMP-b

0

1

2

3

4

5

6

N1 N2 N3 N4

Ti
m
e

Matrix execution time

A B C

Submitting Assignment

Submit your assignment file through D2L using the appropriate link.
The submission must include the source code, and a report describe your code logic. Output
screenshot of your code should be included in the report.

Reference

When you compare the results in above Task 1 and Task 2, here are some aspects you can
compare and analyze:

