		[image: Georgia Southern University Logo]
		
[bookmark: _Hlk164531828]Lecture 5 – Introduction to Problem-Solving

Objectives: To become familiar with the classification of programming languages and introduce and apply the top-down approach of engineering problem-solving.

The goal of this lecture is twofold: First, to familiarize yourself with the broad classification of programming languages to understand how the MATLAB language is classified, and second, to refresh the fundamentals of problem-solving, an essential skill for all professions, especially engineers. The problem-solving approach will then be applied by implementing and testing the solution using MATLAB software.

5.1 How to Classify MATLAB Programming Language?

The programming language’s classification can be described in terms of its abstraction level, generality, and implementation.

5.1.1 Abstraction level: High-level vs. Low-level language
A simple way to describe the abstraction level is to think about how close the programming language is to human language (high level) or to machine language (low level).

· High-level languages are closer to human language, meaning they use words in the programming language we use while speaking, such as print, plot, etc. Such languages abstract or hide low-level details (while programming) to allow the user to focus on problem-solving instead of hardware details. Examples of high-level languages include MATLAB, Python, Java, etc.
· Low-level languages are closer to machine language (think 0s and 1s for ease of understanding), meaning they are more difficult for beginners to learn as they require a deeper understanding of the programmed system. Examples include Assembly language and Machine language.

In other words, high abstraction levels make programming easier for beginners and allow faster development, while low abstraction levels offer more control and performance optimizations but demand deeper technical knowledge.

5.1.2 Generality: General-Purpose vs. Targeted/Special Purpose Language
The generality of a programming language can be classified as general-purpose or targeted/special-purpose language.

· General purpose languages can be used for various applications; they give reasonable performance but cannot be optimized for everything. Examples of general-purpose language would be C, C++, Java, etc.
· Targeted/Special Purpose languages are optimized for specific applications. They have special instructions for text processing, graphics, and engineering, which allows ease of use in those applications. Examples: MATLAB, VHDL, HTML, etc.

5.1.3 Implementation: Interpreted vs. Compiled Language
The implementation of a programming language refers to how its program (or code) is executed on a computer system. There are two main types of implementations: Complied and interpreted.

Compiled Languages: In compiled languages, the high-level program (called source code) is sent through a compiler, which transforms all of it at once into machine code (1s and 0s). The compilation produces an executable file, which is run whenever the program is executed on the hardware. Examples include C, C++, etc.

Interpreted Languages: Interpreted languages, on the other hand, are executed line-by-line, and an interpreter translates each line of code into machine code just before it is executed. This makes running larger codes a little slower than compiled languages; however, as there is no compilation step, they are more flexible and suitable for platform-independent applications. Examples include MATLAB, Python, etc.

It is important to note that there is no best programming language. Rather, some of them are better suited for something than others. We will be the MATLAB programming language, and its classification can be summarized as a High-level, Targeted (special purpose), and interpreted language.

5.2 What is a program?

A program is a sequence of instructions that specifies how to perform a computation. The computation might be mathematical, like solving a system of equations or finding the roots of a polynomial, but it can also be symbolic, like searching and replacing text in a document or (strangely enough) compiling a program.

The instructions, which we will call statements, look different in different programming languages, but there are a few basic operations most languages can perform:

Input: Get data from the keyboard, a file, or another device.
Output: Display data on the screen or send data to a file or other device.
Math: Perform basic mathematical operations like addition and multiplication.
Testing: Check for certain conditions and execute the appropriate sequence of statements.
Repetition: Perform some action repeatedly, usually with some variation.

That’s pretty much all there is to it. No matter how complicated, every program you have ever used is made up of statements that perform these operations. Thus, one way to describe programming is to break a large, complex task up into smaller and smaller subtasks until, eventually, the subtasks are simple enough to be performed with one of these basic operations. This leads to the definition of our approach to problem-solving called the Top-Down Approach.

5.3 Problem-Solving: Top-Down Approach

Problem-solving means formulating problems, thinking creatively about solutions, and expressing a solution clearly and accurately. The top-down approach is a problem-solving or design methodology that involves breaking down a large task into smaller, more manageable subtasks. The process starts with understanding the overall task and gradually breaking it into smaller components. These smaller components are programmed and tested, and when all components work, they are combined to form the complete solution for the larger task. Figure 1 illustrates the five-step approach to implementing the top-down design.

[image: Flowchart diagram to illustrate the flow of the top-down design approach of problem-solving. It begins with a start block and goes to step 1 which is "Understand the Problem and state it clearly" then it flows to Step 2, which is "Describe input and output information", then it flows to Step 3, which is "Solve by hand & develop and algorithm (represented via pseudocode). In this stage there is another arrow indicating decomposing of code into subtasks which is basically breaking the code into subtasks, and then another arrow leading it to be refined and this completes step 3. Step 4 is converting pseudocode from previous step to MATLAB statements, and last step is to Test MATLAB code for correctness, and this completes the flowchart with a stop block"]
Figure 5.1 - illustrates the five-step process for the top-down design approach

The process described in Figure 5.1 is explained below, followed by an application of this approach with an example.

Step 1 – Understand the problem and state it clearly
In this step, the objective is to clearly understand the problem, such as its objectives and outcomes and any constraints it has, and then state it clearly. This step involves understanding the problem, organizing its information, and restating it in your own words.

Step 2 – Describe input and output information
Once the problem has been clearly stated, the next task is to identify the inputs that will be given to the program and the outputs that will be computed by the program.

Step 3- Solve by hand and develop an algorithm (pseudocode)
In this step, the problem is first analyzed by hand; if an equation needs to be rearranged, it is also done in this step. Also, testing a couple of values to see how the result will turn out helps in understanding the process before trying to write a program for it. When the process of how to achieve the solution is clear, developing an algorithm starts. An algorithm is a step-by-step procedure for finding the solution of a problem. This algorithm is described in pseudocode, which uses a mixture of language like English and programming-like constructs to illustrate the logic and flow of the program. When writing a pseudocode, a separate line is written for each distinct idea or segment.

As the algorithm development process starts, the problem is broken down into smaller tasks to make it easy to program, troubleshoot, and optimize. This process is also called decomposition.

Once the algorithm is developed, it is not optimized, as it is not always possible to optimize the code during the first attempt. This process is called stepwise refinement.

Step 4- Convert pseudocode into MATLAB statements
Once the pseudocode is developed, the programmer converts it into MATLAB statements.

Step 5- Test MATLAB Code for correctness
The final step is to verify that the solution generated for solving the problem is correct. It is important to have some results done by hand to verify this step.

Comment on the top-down Approach:
When consulting other textbooks and literature, it may be observed that there are multiple variations of the problem-solving approach; however, most of the steps are very similar to the ones mentioned in this lecture.

5.3.1 Example Problem
Consider that as an engineer, you work with a system that operates in degrees Fahrenheit units of temperature, but the input coming from the temperature sensor is collecting its data in degrees Celsius. Write a program to take the input and convert it into Fahrenheit units. For ease of testing, assume your input temperature is 30 C, and you need to convert it into Fahrenheit.

A solution to the problem using the top-down approach:

Step 1 – Understand the problem and state it clearly
Write a program to take input from a temperature sensor (which is in degrees Celsius) and convert it into degrees Fahrenheit to display.

Step 2 – Describe input and output information

	Inputs
	Outputs

	TempC = 30

	TempF = ?

Table 5.1 – Description of inputs and outputs in problem stated

Step 3 - Solve by hand and develop an algorithm (pseudocode)
Assume you were given (or were able to find) the equation to convert from Fahrenheit to Celsius, which is: °C = (°F - 32) × 5/9. As part of the solution, you need first to rearrange the equation, so you are solving for °F.
9/5×°C = (°F - 32)

(9/5×°C +32) = °F

So, the solution needed to be implemented is: °F = (9/5×°C +32)

Develop Pseudocode:
Seek input value of temperature in Celsius as 30°C
Convert the input to Fahrenheit using the equation °F = (9/5×°C +32)
Display the result

Step 4 - Convert pseudocode into MATLAB statements
% Matlab Code to convert temperature from Celcius to Fahrenheit
tempC = 30; % Get user input which is in Celcius
tempF = (9/5 * tempC + 32); % Convert tempC into Fahrenheit
disp(tempF); % Display the result in Fahrenheit

Important tip: When writing code, it is important to document your work clearly so it can be understood by others on your team. It can also be used when the code needs to be revised. One way to provide good documentation is to write comments in your code to illustrate how you are developing it.

Step 5- Test MATLAB Code for correctness

[image: Illustration of the MATLAB program execution converting 30 degrees Celsius to 86 degrees Fahrenheit through the command window.]
Figure 5.2 – MATLAB command window result verification

Another way to verify would be to check your results from an online converter to see if they match. For instance, this can be checked online to show the result obtained is correct.

[image: Illustration of the conversion of 30 degrees Celsius into 86 degrees Fahrenheit using a converter found on the internet through google search.]
Figure 5.3 – Validation of program working correctly through converter on Internet

This example illustrated problem-solving using the five-step top-down approach. As we learn more about seeking inputs and displaying outputs, we will make this kind of code much more user-friendly throughout the rest of the course.

5.4 Explore Further
The best way to explore further the top-down approach to problem-solving is to try it on a variety of problems, ranging from physics problems to real-life situations. Check if you have a better understanding of your problems doing this approach and if the process makes it easy to solve problems. Since problem-solving is a skill, it develops over time and improves with practice and experience.

5.5 Conclusion/Summary of Key Points
1. Programming languages can be classified as:
a. Abstraction level: High-level vs. low-level language
b. Generality: General Purpose vs targeted/special purpose language
c. Implementation: Interpreted vs compiled language
2. MATLAB is classified as a High-level, Targeted, and Interpreted Language.
3. Top-Down Approach (definition): A problem-solving or design methodology that involves breaking down a large task into smaller, more manageable subtasks.
4. Steps in the top-down approach:
a. Understand the problem and state it clearly
b. Describe input and output information in the problem
c. Solve by hand (if needed) and develop pseudocode
d. Convert pseudocode to MATLAB code
e. Test MATLAB code for correctness

References
Portions of this lecture have been adapted and modified from Downey, Adam, and Scheffler, Thomas. “How to Think Like a Computer Scientist: C Version”. OER Commons. Green Tea Press. 18 Nov. 2021. Web. 01 Aug. 2023. < https://oercommons.org/courses/how-to-think-like-a-computer-scientist-c-version-2-2>

Last modified May 13, 2024

[image: Creative Commons License] This work by Salman Siddiqui & Rami Haddad is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 4.0 International License.

1

image4.png

image1.png

image2.png

image3.png

image5.png

