		[image: Georgia Southern University Logo]

		
Lecture 7 – Array Operations

Objectives: To discuss fprintf() function to display outputs, and to explore array operations in MATLAB.

The goal of this lecture is to introduce the function, fprintf(), to display outputs generated by the program based on interaction with the user, and then follow up with the types of array operations, the hierarchy of math operations in MATLAB, and introduce a few built-in array functions.

7.1 Displaying output using fprintf() function
In previous lectures, we have discussed a couple of different ways to display information as outputs in the command window.
1) The first method was to avoid putting a semicolon at the end of the MATLAB statement so we could see its result.
2) The second method was to use the disp() function to display the result of a variable which was either a string, a number, or a mixture of both. When combining a string and a number, we used the function num2str() to convert the number to a string and then displayed the complete result as a string.
3) The third method, which we introduce here, is to use the fprintf() function that provides more flexibility and control over the formatting of how the output needs to be displayed. It also allows us to write to text files instead of simply printing to the Command Window, a feature that will be introduced later in the course.

7.1.1 The basic fprintf() function
The most basic way of using the fprintf() function is to put the string by itself that needs to be displayed.
>> fprintf('It is a beautiful day!\n')
It is a beautiful day!
Note: In the example, \n character inside the prompt (single quotes) is used to start a new line after the statement is printed.

7.1.2 Using fprintf() function to pass single variables
With fprintf() function we can create a template of the string we want to display and then pass data variables into that template using the appropriate format for the data. Let’s explain this with an example.
If the user has temperature in a variable T as a value 95.23 degrees Fahrenheit and it needs to be displayed using fprintf() function, this can be done as follows.
>>T=95.23;
>>fprintf('The temperature is %f degrees Fahrenheit.\n',T);
The temperature is 95.230000 degrees Fahrenheit.
Note: The fprintf() function accepts two input arguments. One is the string (indicated with single quotes) with format specification (indicated by %f) and the other is the input variable (in this example the variable T). The function will print the variable in place of the format specification in the string. The % tells MATLAB where to print the number as a string. The f tells MATLAB to print the number as a floating-point decimal. This is what we typically think of as decimal notation.

Generally, when representing temperature, we want to only see one digit after the decimal point, so we can do that by being more specific when writing format specifications. Consider the modification to the previous example below.
>>fprintf('The temperature is %.1f degrees Fahrenheit.\n',T);
The temperature is 95.2 degrees Fahrenheit.
Note: After the % sign is a decimal point and the number one (1), that indicates to MATLAB that when displaying a floating-point value, only display one (1) digit after the decimal point. If two numbers need to be displayed, we can use .2 after the % sign.

We can also control the number of digits before the decimal. If we wanted to pad all the output with leading zeros (which is sometimes useful for formatting data) then we could type something like this.
>>fprintf('The temperature is %5.1f degrees Fahrenheit.\n',T);
The temperature is 95.2 degrees Fahrenheit.
Note: In the fprintf() prompt, after the % is the number five (5). That reserves five (5) total spaces for the result of the variable T, with two spaces used by the number “95”, and two spaces used by the “decimal point” and the number “2”. So, there is one space left, which is shown before the number “95”.

7.1.3 Common format strings for fprintf() function
There are other format specifiers besides %f. Table 7.1 illustrates the other common types of formats that can be used with the fprintf() function.

Table 7.1: Common format specifiers for fprintf() function
	Format specification for fprintf()
	Description

	%d or %i
	Display integer value

	%e
	Displays exponential format of value

	%g
	Displays value in either floating-point or exponential whichever is shorter

	%f
	Displays floating-point format of value

	%c
	Single character

	%s
	Character vector or string array

	\n
	Jumps to the next line

	\t
	Inserts a tab

7.1.4 fprintf() and disp() to pass multiple types of variables
To pass multiple data variables to a string is much easier with fprintf() function than with the disp() function. Remember, first form the template of the format you want the sentence to display, and wherever the data needs to be placed, put a % sign followed by the type of format specifier based on the data that will be pulled into that space. For example, if the sentence needs to be “John is 20 years old.”, where John is a string in the variable “firstname”, and 20 is the value in the variable “age”. Consider the following script written in MATLAB and executed:
firstname=input('Enter your first name: ','s');
age=input('Enter your age: ');
fprintf('%s is %d years old.\n',firstname,age);
Display of results from the command window:
[image: image displaying command window results of running the input() and fprintf functions to seek firstname and age and then displaying them.]
Note: In the fprintf() function the format specifying string (inside the single quotes) has the template of what the sentence should display, and %s is a place holder for the” firstname” variable as it is a string, and %d is a place holder for the “age” variable as it is an integer. Similarly, more variables can be displayed in fprintf() function, as needed.

If the same string would have to be represented using the disp() function, the following would be the commands to do so:
disp([firstname,' is ',num2str(age),' years old.'])
Note: When using disp() function, we have to note that we are representing data that has string format and the number format. So, we have to use num2str() to convert a number to a string, and also use square brackets inside the function to join the different strings. To display a variable that is a string, just write the name of the variable. When putting something in string format use single quotes and make sure to account for the white space between words (as indicated in “ is “ which has a space before it and after it).

[bookmark: Special_Characters][bookmark: _bookmark81]7.1.5 Comparison of fprintf() and disp()
A few key pointers about the fprintf() and the disp() functions.
1) The fprintf() function needs the \n character to start a new line, however, the disp() function automatically starts a new line at the end of its prompt. (This can be observed from the example presented in section 7.1.4)
2) It is easy to display data using fprintf() using different formats, however, fprintf () has a limitation in that it cannot display complex numbers, which have a real component and an imaginary component.
[image: image of the command window where x is defined as a complex number, x=3+4j, and then using disp(x) and fprintf('%g\n',x) to show limitation of fprintf() function that it cannot show complex result.]
Note: The disp() function displays the complex number in variable x correctly, but the fprintf() function only displays the real components.

[bookmark: Aesthetics][bookmark: _bookmark83]7.2 Formatting output in the command window
MATLAB allows the user to change the way the numbers are displayed in the command window using the format command. Table 7.2 provides a brief summary of the commands.

Table 7.2: A few numerical output display formats in MATLAB
	Matlab Command
	Description

	format short
	Displays 4 digits after decimal (default)

	format long
	Displays 14 digits after decimal

	format bank
	Displays “dollars and cents” format

	format hex
	Displays hexadecimal format

	format long e
	Displays 15 digits plus exponent

	format short e
	Displays 5 digits plus exponent

	format long g
	Displays 15 digits without or with exponent

	format short g
	Displays 5 digits without or with exponent

Table 7.3: Illustration of format commands and their outputs
	>> format short;
>> disp(pi) ;
 3.1416
	>> format long;
>> disp(pi) ;
 3.141592653589793

	>> format short e;
>> disp(pi) ;
 3.1416e+00
	>> format long e;
>> disp(pi) ;
 3.141592653589793e+00

	>> format short g;
>> disp(pi) ;
 3.1416
	>> format long g;
>> disp(pi);
 3.14159265358979

	>> format bank;
>> disp(pi) ;
 3.14
	>> format hex;
>> disp(pi) ;
 400921fb54442d18

This format can also be applied using the MATLAB Desktop toolstrip. From the Home TAB, select Preferences
[image: Image of Toolstrip in MATLAB desktop, under HOME Tab, showing Preferences to access Graphic User Interface (GUI) to change MATLAB format for number representation in the command window.]
The following menu opens which allows the user to select the format to display numbers in the command window.

[image: image of Graphic User Interface for the Preferences option from MATLAB Desktop's toolstrip under home tab]

7.3 Array and Matrix Operations
Since MATLAB is used for computations using arrays and matrices, it is important to understand how the math operations are represented in MATLAB and how they are evaluated.
7.3.1 Mathematical Operators
Addition, subtraction, multiplication, division, and exponentiation are all operations and the symbol associated with each of them is an operator. MATLAB syntax for the common algebraic operators is given in Table 7.4, which will be used for the evaluation of array and matrix operations.

Table 7.4: Math operations and equivalent MATLAB syntax
	Operation
	Expression
	MATLAB Command

	Addition
	
	a + b

	Subtraction
	
	a – b

	Multiplication
	
	a * b

	Division
	
	a / b

	Exponentiation
	
	a ^ b

7.3.2 Operator Precedence
Additionally, it is important to note that there is a level of precedence that is followed when evaluating math operations. Generally, MATLAB follows the familiar PEMDAS standard shown in Table 7.5.

Table 7.5: Hierarchy of Basic Math Operations.
	Level of Precedence
	Operation (PEMDAS)
	Description of Operations

	1
	Parenthesis
	Parentheses are evaluated first beginning with the innermost parentheses

	2
	Exponents
	Exponential operations are evaluated from left to right

	3
	Multiplication, Division
	Multiplication, and division operations are evaluated from left to right

	4
	Addition, Subtraction
	Addition, and subtraction operations are evaluated from left to right

An example to illustrate the importance of applying the math operators correctly. If the following equation needs to be computed:

and while entering in MATLAB the following was typed:
>> 2+3/5
The result would be 2 + 0.6 = 2.6 instead of getting the desired result of 1. Since the Division operator has higher precedence than the addition operator, it was evaluated first. So, we need to use parenthesis to evaluate 2+3 first and then divide by 5. So, the correct statement would be:
>> (2+3)/5

There are two types of operations between arrays in MATLAB:
1) Array operations, which are performed on an element-by-element basis.
2) Matrix operations, which differ from array operations when multiplying dividing, and taking exponentiation.

7.3.3 Array Operations (Element-by-Element)
1) For element-by-element operations, the arrays must be the same size.
	[image: image of matrix a which is a 2x2 matrix]
	[image: image of matrix b which is a 2x2 matrix]
	[image: image of the result of a+b which is a 2x2 matrix showing addition works with arrays of same size]

Note: The example shows the values in matrix a (a 2x2 matrix) and in matrix b (also a 2x2 matrix) and that the addition of the two matrices is an element-by-element operation (resulting in a 2x2 matrix).

2) Array operations can occur between an array and a scalar.
	[image: image of matrix b which is a 2x2 matrix]
	[image: image of result of b+1 which is a 2x2 matrix showing scalar can add to an array operation]

Note: The example shows the addition of matrix b (a 2x2 matrix) with a scalar value of 1. Note that 1 gets added to each element of b.

3) Addition and subtraction by nature are element-by-element operations. To do element-by-element multiplication, division, or even exponentiation, MATLAB adds the dot operator before the multiplication (.*), division (. /), or exponentiation (. ^).
	[image: image of matrix a which is a 2x2 matrix]
	[image: image of matrix b which is a 2x2 matrix]
	[image: image of the result of a.*b which is a 2x2 matrix]

Note: The example shows an element-by-element operation when a dot operator is used with the multiplication operator to multiply a and b, which are of the same size.

Table 7.6: Summary of Common Array Operations
	Operation
	MATLAB Syntax
	Description

	Array Addition
	
	Addition, arrays of the same size, or one of them is a scalar.

	Array Subtraction
	
	Subtraction, arrays of the same size, or one of them is a scalar.

	Array Multiplication
	
	Multiplication, arrays of the same size, or one of them is a scalar.

	Array Right Division
	
	Division, arrays of the same size, or one of them is a scalar. Array a in numerator

	Array Left Division
	
	Division, arrays of the same size, or one of them is a scalar. Array b in numerator

	Array Exponentiation
	
	Exponentiation, arrays of the same size, or one of them is a scalar. Array b in numerator

7.3.4 Matrix Operations
The addition and subtraction are by nature element-by-element operations. However, when performing multiplication and division, we need to be mindful of the size of the matrix along the order in which the operation is mentioned.
	[image: image of matrix a which is a 2x2 matrix]
	[image: image of matrix b which is a 2x2 matrix]
	[image: image of result of matrix a*b which is a 2x2 matrix showing matrix multiplication is legal for these matrix dimensions.]

7.3.4.1 Matrix Rules:
1. When multiplying two matrices, such as a * b, note the size of each matrix, and the number of columns in the first matrix (“a”) must be equal to the number of rows in the second matrix (“b”).

2. To multiply, the following format is followed:
 and

3. Matrix with left Division (a \ b) is equivalent to inv(a) * b, where inv(a) is inverse of matrix a. This operation is used in finding the solution to a system of equations and will be used later in the course.

4. Matrix with right Division (a / b) is equivalent to a * inv(b), where inv(b) is inverse of matrix a.

7.3.4.2 Key Matrix Multiplication Properties
1. Matrix multiplication is not Commutative, meaning

2. Matrix multiplication is Associative, meaning

3. Matrix multiplication is distributive over matrix addition

4. Multiplication of a matrix with its inverse yields the identity matrix

7.4 Built-in Array Functions
There are many built-in array functions that can be used for math operations. For instance, the common trigonometry functions are listed in Table 7.7 along with its description.

Table 7.7a: Built-in Trigonometric Array Function
	MATLAB Functions
	Description

	sin(x)
	Calculates when is in radians

	sind(x)
	Calculates when is in degrees

	cos(x)
	Calculates when is in radians

	cosd(x)
	Calculates when is in degrees

	tan(x)
	Calculates when is in radians

	tand(x)
	Calculates when is in degrees

	asin(x)
	Calculates when is in radians

	asind(x)
	Calculates when is in degrees

	acos(x)
	Calculates when is in radians

	acosd(x)
	Calculates when is in degrees

	atan(x)
	Calculates when is in radians

	atand(x)
	Calculates when is in degrees

	atand2(y,x)
	Calculates over all four quadrants, result in radians over the range

	atand2d(y,x)
	Calculates over all four quadrants, result in degrees over the range

Table 7.7b: Commonly used Math and rounding Functions
	MATLAB Functions
	Description

	abs(x)
	Finds absolute value of x

	sqrt(x)
	Finds the square root of x

	exp(x)
	Find the value of

	log(x)
	Finds the natural logarithm of x: (with base e)

	log10(x)
	Finds the common logarithm of x: (with base 10)

	mod(x,y)
	Calculates the remainder or modulus of

	[value,index]=max(x)
	Returns the maximum value in vector x in variable value, and the position of value in variable index

	[value,index]=min(x)
	Returns the minimum value in vector x in variable value, and the position of value in variable index

	ceil(x)
	Rounds to the nearest integer towards positive infinity

	fix(x)
	Rounds to the nearest integer towards zero

	floor(x)
	Round to the nearest integer towards minus infinity

	round(x)
	Rounds to the nearest integer.

7.4 Explore Further
To further explore fprintf() function, think of examples you want to print, and see if you are able to print them in the correct format. Make sure to explore the different format specifiers. Practice matrix operations following the rules and checking if you get the same result with MATLAB as you calculated by hand. Also, use MATLAB documentation to further explore the built-in functions mentioned in this lecture along with examples listed in the documentation.

7.5 Conclusion/Summary of Key Points
1) fprintf() function makes it easy to display text using the formatting template of the sentence and using format specifiers to pull in data into the template.
2) fprintf() has limitations, it cannot work properly with complex numbers
3) format() function can help change the way the numbers are displayed in the command window
4) Array operations are element-by-element operations that work with arrays of the same size, or an array operated with a scalar.
5) Matrix operation has specific rules for multiplication and division and has key properties that should be applied correctly to compute results.
6) Taking note of common built-in functions available in MATLAB to help do math computations using the MATLAB platform.

Last modified May 12, 2024

[image: Creative Commons License] This work by Salman Siddiqui & Rami Haddad is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 4.0 International License

1

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image1.png

image2.png

image12.png

Lecture 7

–

Array Operations

Objectives:

To discuss

fprintf()

function to display outputs, and to explore array operations in

MATLAB.

The goal of this lecture is to introduce the function,

fprintf

(), to display outputs generated by the

program based on interaction with the user, and then follow up with the types of array operations,

the hierarchy of math operations in MATLAB, and introd

uce a few built

-

in array functions.

7.1 Displaying output using

fprintf()

function

In previous lectures, we have discussed a couple of different ways to display information as

outputs in the command window.

1)

The first method was to avoid putting a semicolon at the end of the MATLAB statement

so we could see its result.

2)

The second method

was to use the

disp()

function to display the result of a variable

which was either a string, a number, or a mixture of both. When combining a string and a

number, we used the function

num2str()

to convert the number to a string and then

displayed the c

omplete result as a string.

3)

The third method, which we introduce here, is to use the

fprintf()

function that provides

more flexibility and control over the formatting of how the output needs to be displayed.

It also allows us to write to text files inste

ad of simply printing to the Command Window,

a feature that will be introduced later in the course.

7.1.1 The basic fprintf() function

The most basic way of using the

fprintf()

function is to put the string by itself that needs to

be displayed.

>> fprin

tf(

'It is a beautiful day!

\

n'

)

It is a beautiful day!

Note: In the example,

\

n

character inside the prompt (single quotes) is used to start a new line

after the statement is printed.

7.1.2 Using fprintf() function to pass single variables

With

fprintf()

function we can create a template of the string we want to display and then

pass

data variables into that template using the appropriate format for the data. Let’s explain this with

an example.

If the user has temperature in a variable

T

as a value 95.23 degrees Fahrenheit and it needs to be

displayed using fprintf() function, t

his can be done as follows.

>>T=95.23;

>>fprintf(

'The temperature is %f degrees Fahrenheit.

\

n'

,T);

The temperature is 95.230000 degrees Fahrenheit.

Note: The

fprintf()

function accepts two input arguments. One is the string (indicated with

single quotes)

with format specification (indicated by

%f

) and the other is the input variable (in

this example the variable

T

). The function will print the variable in place of the format

specification in the string. The

%

tells MATLAB where to print the number as a str

ing. The

f

tells MATLAB to print the number as a

floating

-

point

decimal. This is what we typically think of

Lecture 7 – Array Operations

Objectives: To discuss fprintf() function to display outputs, and to explore array operations in

MATLAB.

The goal of this lecture is to introduce the function, fprintf(), to display outputs generated by the

program based on interaction with the user, and then follow up with the types of array operations,

the hierarchy of math operations in MATLAB, and introduce a few built-in array functions.

7.1 Displaying output using fprintf() function

In previous lectures, we have discussed a couple of different ways to display information as

outputs in the command window.

1) The first method was to avoid putting a semicolon at the end of the MATLAB statement

so we could see its result.

2) The second method was to use the disp() function to display the result of a variable

which was either a string, a number, or a mixture of both. When combining a string and a

number, we used the function num2str() to convert the number to a string and then

displayed the complete result as a string.

3) The third method, which we introduce here, is to use the fprintf() function that provides

more flexibility and control over the formatting of how the output needs to be displayed.

It also allows us to write to text files instead of simply printing to the Command Window,

a feature that will be introduced later in the course.

7.1.1 The basic fprintf() function

The most basic way of using the fprintf() function is to put the string by itself that needs to

be displayed.

>> fprintf('It is a beautiful day!\n')

It is a beautiful day!

Note: In the example, \n character inside the prompt (single quotes) is used to start a new line

after the statement is printed.

7.1.2 Using fprintf() function to pass single variables

With fprintf() function we can create a template of the string we want to display and then pass

data variables into that template using the appropriate format for the data. Let’s explain this with

an example.

If the user has temperature in a variable T as a value 95.23 degrees Fahrenheit and it needs to be

displayed using fprintf() function, this can be done as follows.

>>T=95.23;

>>fprintf('The temperature is %f degrees Fahrenheit.\n',T);

The temperature is 95.230000 degrees Fahrenheit.

Note: The fprintf() function accepts two input arguments. One is the string (indicated with

single quotes) with format specification (indicated by %f) and the other is the input variable (in

this example the variable T). The function will print the variable in place of the format

specification in the string. The % tells MATLAB where to print the number as a string. The f

tells MATLAB to print the number as a floating-point decimal. This is what we typically think of

