		[image: Georgia Southern University Logo]

		
Lecture 9 – Logical Data Types

Objectives: To identify, describe, and apply basic logical data type operations (relational operators, logical operators, and logical function) and evaluate these operations given via MATLAB statements.

The goal of this lecture is to explore the concept of logical data types via examples, illustrate their importance and the number of operators that give logical data types as a result, how they affect the operational hierarchy of operators, and introduce a few functions that operate with logical data types. Understanding these concepts are essential when making decisions in your program and controlling the flow of your code in future lectures using if/else conditions, switch/case conditions, while loops, for loops, functions, etc.

[bookmark: _heading=h.30j0zll][bookmark: bookmark=id.gjdgxs]9.1 Logical Data Type
9.1.1 What is the Logical Data Type?
Recall from previous lectures we have studied two types of data types so far: double and char. Double is the default data type in MATLAB whenever a variable is defined with a numeric value or numeric computation, and char is a data type which represents a character array, which can be defined by enclosing the characters within single quotes. Logical data type is a new type of data we will be covering in this lecture.

The logical data type can take on one of two values: true (a logical 1) or false (a logical 0). The operations of many decision-making branches in MATLAB are controlled by logical variables or expressions.

9.1.2 How to Create a Logical Data Type
To create a logical variable, just assign a TRUE or FALSE value to it using the assignment statement. For example:
	>> my_var = true

My_var =

 logical

 1

>> whos
 Name Size Bytes Class Attributes

 my_var 1x1 1 logical

Note: In the above example, when you assign a TRUE value to a variable, MATLAB interprets that value as a logical 1. After executing the whos command, observe the class type is a logical array. Similarly, when you assign a FALSE value to a variable, MATLAB interprets that value as a logical 0.

Similarly, a logical variable can be also be defined by using the logical function.
	>> my_var = true

my_var =

 logical

 1

[bookmark: _heading=h.1fob9te]>> my_var = logical(1) % logical function take any non-zero value and convert to logic 1

my_var =

 logical

 1

Note: In the above example, defining the variable, my_var, with the value true or by using logical() function results in the variable getting a logical value of 1. The way the logical() function works is that it defines any non-zero value as a logical 1, the only value that converts to a logical 0 is if the value was a 0.

9.1.3 Difference between Double & Logical data types
In essence, the ‘double’ data type is used for numeric data. As it utilizes double-precision floating-point numbers, it can store a wide range of numerical values, including integers, fractions, and very large or small number. However, the precision comes at the cost of increased memory usage. In contrast, the ‘logical’ data type is used for representing Boolean values, thus offering only two states: true or false, and takes only 1 byte of memory.

9.2 Relational Operators
Relational operators are used to compare values and determine the relationship between them. The operators that yield a logical result are called relational operators. The operands used with the relational operators are either numerical or string operands. The following table lists the relational operators in MATLAB.

Table 9.1: List of Relational Operators and Descriptions
	Operator
	Description

	==
	Equal to

	~=
	Not Equal to

	>
	Greater than

	>=
	Greater than or equal to

	<
	Less than

	<=
	Less than or equal to

Note: relational operators return logical values based on the comparison result.

9.2.1 Relational Operations with Scalars
Problem 1
Find the result of the following commands:
i. 4 > 9
ii. ‘L’ < ‘R’
iii. (8*3)~=(8*(2+1))
iv. 2 ~= 5

Solution:
i. False
ii. True
iii. False
iv. True

9.2.2 Relational Operations with Arrays
NOTE: Relational Operation are element by element wise operations. Therefore, they can be used with arrays operands under the following conditions:
1) Arrays compared with Scalar values
2) Arrays compared with Arrays (Arrays must be the same size)

9.2.2.1 Comparing Scalars with Arrays
We can use relational operators to compare scalar values with array. For example:
Consider the following definitions in MATLAB:
a1 = [1 2 3; 0 -2 1];
b1 = 1.5;

Evaluation of the relational operation
a1 > b1

yields
ans =

 2×3 logical array

0 1 1
0 0 0

9.2.2.2 Comparing Arrays with Arrays
We can also use relational operators to compare two arrays with same size. For example:
Consider the following definitions in MATLAB:
a1 = [1 2 3; 0 -2 1];
b1 = [2 2 -2; 1 1 1];

Evaluation of the relational operation
a1 > b1

yields
ans =

 2×3 logical array

 0 0 1
 0 0 0

Problem 2
For the following question, work out by hand first and then verify the result with MATLAB:
	a1 = [1 2; 0 -2];
b1 = [2 2 -2];
a1<=b1

Solution:
The two array we can comparing do not have the same size, therefore, there will be an error when we run the program.
MATLAB Verification:
	Arrays have incompatible sizes for this operation.

Error in example_problem2 (line 3)
a1<=b1

Note about operational hierarchy: In general, logical functions are evaluated after arithmetic functions have been evaluated. For example, the following command will output true, because the arithmetic operation will execute first.
	>> 1 ~= 4 – 2 * 1

Caution related to round-off errors: Users need to be aware of round-off errors as some numerical results of logical operations may yield unexpected results until observed carefully.

Consider the following example:
In theory a and b should be equal to 0:
a = 0;
b = cos(pi/2);

Checking equality:
a == b

MATLAB result:
ans = logical 0
Notice: cos(π/2) = 6.12323 × 10-17 in MATLAB.

In this case, you may want to account for round-off error and use test criteria for comparing to see if two arrays are nearly equal. For example, we can say:
a = 0;
b = cos(pi/2);

Use test-criteria to avoid round-off error:
abs(a-b) < 1e-14

MATLAB result:
ans = logical 1

Problem 3
Given: a = 20; b=-2; c=0; d=1;
Evaluate the following expressions:
1) A > b
2) B > d

Solution:
1) 1
2) 0

9.3 Logical Operators
Logical operators are operators with one or two logical operands. The result of a logical expression is always a logical value (true or false). There are four main logical operators that are introduced here: logical AND, logical OR, Exclusive OR, and logical NOT.

Table 9.2: List of Logical Operators and Descriptions
	Logical Operator
	Symbol
	Description

	AND
	&
	True, if both conditions are true

	AND with shortcut
	&&
	As above, works only with scalar values (not matrices)

	OR
	|
	True, if one or both conditions are true

	OR with shortcut
	||
	As above, works only with scalar values

	Exclusive OR
	xor(,)
	True, when the two conditions are different.

	NOT
	~
	True, if condition is false, and false, if condition is true

9.3.1 With or Without Shortcut
The difference between & (logical AND) and && (logical AND with shortcut) is that the shortcut version avoids unnecessary evaluations of conditions, especially when one condition is sufficient to determine the outcome of a logical expression. However, it only works if the operation is on scalar values. This reduces memory and speeds up program execution. For example, a logical AND would give the result as ‘true’ if both conditions are ‘true’. But if any condition is ‘false’ the result will be a ‘false’. When doing a regular logical AND operation, both conditions are looked at before giving the result, however, when performing the shortcut logical AND operation, if any condition is ‘false’, the result is evaluated as ‘false’ without consideration of both conditions, as one condition of ‘false’ is sufficient to make the results be ‘false.

9.3.2 Logic Tables
Logic tables, also known as truth tables, provide a structured representation of all possible input values for a logical operator and their result truth values.
Table 9.3: Logic Table for Four basic Binary Logic Operation
	Input 1
	Input 2
	AND
	OR
	XOR
	NOT

	l1
	l2
	l1 & l2
	l1 | l2
	xor (l1 , l2)
	~ l1

	0
	0
	0
	0
	0
	1

	0
	1
	0
	1
	1
	1

	1
	0
	0
	1
	1
	0

	1
	1
	1
	1
	0
	0

Note: In the above table for AND, OR, and XOR, there are two inputs: l1 and l2, represented by the first and the second column respectively, with the third column illustrating the truth values when the expression is evaluated. The NOT table only has one input l1 and the result is an inverted version of the input.

9.4 Hierarchy of Operations
The hierarchy of operations defines the order of operations in which the mathematical and logical operations are evaluated in an expression. In MATLAB, the following hierarchy is used, with the operations being evaluated from left to right following the assignment operator:
1. Parentheses ()
2. Exponential (Transpose included)
3. Logical negation ~
4. Multiplication and Division from left to right
5. Addition and subtraction from left to right
6. Relational operators from left to right
7. All & and && operators from left to right
8. |, ||, and XOR operators are evaluated from left to right

Problem 4
	Given: a=20; b=-2; c=0; d=1;
	Evaluate the following expressions:

1) a > b && c>d
2) a == b
3) a && b > c
4) ~ ~b

Solution:
1) 1 && 0 = 0
2) False = 0
3) a && 0 = 0
4) ~ ~1 = 1

Problem 5
Given the following program, evaluate all expressions: m to t by hand first, then verify it with MATLAB.
	clc; clear all; close all;
a=2; b=[1,-2;0,10]; c=[0,1;2,0]; d=[-2,1,2;0,1,0];
m = ~(a > b);
n = a>c & b>c;
p = c<=d;
q = logical(d);
r = a*b>c;
s = xor(b,c);
t = mod(11,3); % remainder function

Solution:
M: m is the negation of a > b, a scalar with array comparison.
MATLAB Verification:
	>> m = ~(a > b)

m =

 2×2 logical array

 0 0
 0 1

N: both a>c and b>c will generate a 2 by 2 array, the final result is the and product of the two sides.
MATLAB Verification:
	>> n = a>c & b>c

n =

 2×2 logical array

 1 0
 0 1

P: c and d have different size, therefore, we should get an error
MATLAB Verification:
	>> p = c<=d
Arrays have incompatible sizes for this operation.

Q: logical function takes any non-zero value and convert to logic 1.
MATLAB Verification:
	>> q = logical(d)

q =

 2×3 logical array

 1 1 1
 0 1 0

R: The product of a and b will have the highest hierarchical order. After the product, the comparison is performed.
MATLAB Verification:
	>> r = a*b>c

r =

 2×2 logical array

 1 0
 0 1

S: Before the exclusive or of the two arrays were calculated, the two arrays were converted to a logical array. Then the element wise xor was performed.
MATLAB Verification:
	>> s = xor(b,c)

s =

 2×2 logical array

 1 0
 1 1

T: mod function will find the remainder, 11/3 will have a quotient of 3 and remainder of 2.
MATLAB Verification:
	>> t = mod(11,3)

t =

 2

Problem 6
	Given: a=2; b=3; c=10; d=0;
	Evaluate the following expressions:
1) a*b^2 > a*c
2) d || b > a
3) (d | b) > a

Solution:
1) 18 > 20 = 0
2) 0 || 1 = 1
3) 1 > 2 = 0

Problem 7
	Given the following program, evaluate the final result:
	a = [1 2; 3 4];
b = [0 3; -3 2];

(a > b) & (-a < -b)

	Solution:
	ans =

 2×2 logical array

 1 0
 1 1

Problem 8
If the variable x represents the ENGR 1731 student test grades, the instructor wants to know how many students got a grade between 80 and 90. By using MATLAB, write a command that will produce a decision to help the instructor solve this problem.
	x=[70 75 78 83 85 89 94 95 99 100]

Solution:
	x=[70 75 78 83 85 89 94 95 99 100];

grades80_90 = (x > 80) & (x < 90);
n = sum(grades80_90); % count the amount of students
fprintf("There is %d student got a grade between 80 and 90\n", n);

9.5 Logical Functions
Logical functions are built-in MATLAB functions that operate on logical arrays or return logical values based on the input. A few logical functions and how they operate are presented in the table below.

Table 9.4: MATLAB Built-in Logical Functions
	Function
	Purpose

	ischar(a)
	Returns true if a is a character array and false otherwise

	isempty(a)
	Returns true if a is an empty array and false otherwise

	isinf(a)
	Returns true if the value of a is infinite (Inf) and false otherwise

	isnan(a)
	Returns true if the value of a is NaN (not a number) and false otherwise

	isnumeric(a)
	Returns true if a is a numeric array and false otherwise

	logical(a)
	Converts numerical values to logical values: if a value is non-zero, it is converted to true, if it is zero, it is converted to false.

Problem 9
	Given: a=20; b=-2; c=0; d=‘Test’;
Evaluate the following expressions:
1) isinf(a/b)
2) isinf(a/c)
3) a > b && ischar(d)
4) isempty(c)
5) (~a) & b
6) (~a) + b

Solution:
1) 0
2) 1
3) 1
4) 0
5) 0
6) -2

9.6 Explore Further
To further explore logical data types, experiment with logical operations in the MATLAB environment and refer to the MATLAB documentation for logical Operations. Additionally, you may refer to the MATLAB Marina resource on logic expressions.

9.7 Conclusion/Summary of Key Points
The overall goal of this lecture was to introduce the logical data type, emphasize its significance in decision-making and controlling the flow of the program, and providing examples of how they are initialized and operate.
1) Logical data types represent Boolean values: true (logical 1) or false (logical 0).
2) Logical values are important for decision-making and controlling program flow and will be essential when learning future lectures.
3) Relational operators (<, <=, >, >=, ==, ~=) when evaluated result in a logical value of true (logical 1) or false (logical 0). Both operands can be scalar OR arrays of the same size, or an operand could be a scalar and another be an array for the evaluation to be legal operation.
4) Logic Operators (&, |, ~, xor) when evaluated also result in a logical value. Operational legality is same as relational operators.
5) Hierarchy of operators is important to know to evaluate expressions correctly.
6) Built-in logical functions in MATLAB (ischar(), isempty(), isinf(), isnan(), isnumeric(), logical()) should be properly evaluated and will also yield logical values.

Last modified May 12, 2024

[image: Creative Commons License] This work by Salman Siddiqui & Rami Haddad is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 4.0 International License

1

image1.png

image2.png

Lecture 9

–

Logical Data Types

Objectives:

To identify, describe, and apply basic

logical data type

operations (relational

operators, logical operators, and logical function) and evaluate these operations given via

MATLAB statements.

The goal of this lecture is to explore the concept of logical data types via examples, illustrate

their importance and

the number of operators that give logical data types as a result, how they

affect the operational hierarchy of operators, and introduce a few functions that operate with

logical data types. Understanding these concepts are essential

when making decisions i

n your

program and controlling the flow of your code in future lectures using if/else conditions,

switch/case conditions, while loops, for loops, functions, etc.

9.1 Logical Data Type

9.1.1 What is the Logical Data Type?

Recall from previous lectures we have studied two types of data types so far:

double

and

char

.

Double

is the default data type in MATLAB whenever a variable is defined with a

numeric value or numeric computation, and

char

is a data type which represents a

character

array, which can be defined by enclosing the characters within single quotes.

Logical

data

type is a new type of data we will be covering in this lecture.

The

logical

data type can take on one of two values: true (a logical 1) or false (a logica

l 0).

The operations of many decision

-

making branches in MATLAB are controlled by logical

variables or expressions.

9.1.2 How to Create a Logical Data Type

To create a logical variable, just assign a TRUE or FALSE value to it using the

assignment stateme

nt. For example:

>> my_var = true

My_var =

logical

1

>> whos

Name Size Bytes Class Attributes

my_var 1x1 1 logical

Note: In the above example, when you assign a TRUE value to a variable, MATLAB

interprets that value as a logical 1. After executing the

whos

command, observe the class

type is a logical array. Similarly, when you assign a FALSE value to a variable, MATLAB

interprets that value as a logical 0.

Similarly, a logical variable can be also be defined by using the logical function.

>> my_var = true

my_var =

Lecture 9 – Logical Data Types

Objectives: To identify, describe, and apply basic logical data type operations (relational

operators, logical operators, and logical function) and evaluate these operations given via

MATLAB statements.

The goal of this lecture is to explore the concept of logical data types via examples, illustrate

their importance and the number of operators that give logical data types as a result, how they

affect the operational hierarchy of operators, and introduce a few functions that operate with

logical data types. Understanding these concepts are essential when making decisions in your

program and controlling the flow of your code in future lectures using if/else conditions,

switch/case conditions, while loops, for loops, functions, etc.

9.1 Logical Data Type

9.1.1 What is the Logical Data Type?

Recall from previous lectures we have studied two types of data types so far: double and

char. Double is the default data type in MATLAB whenever a variable is defined with a

numeric value or numeric computation, and char is a data type which represents a character

array, which can be defined by enclosing the characters within single quotes. Logical data

type is a new type of data we will be covering in this lecture.

The logical data type can take on one of two values: true (a logical 1) or false (a logical 0).

The operations of many decision-making branches in MATLAB are controlled by logical

variables or expressions.

9.1.2 How to Create a Logical Data Type

To create a logical variable, just assign a TRUE or FALSE value to it using the

assignment statement. For example:

>> my_var = true

My_var =

 logical

 1

>> whos

 Name Size Bytes Class Attributes

 my_var 1x1 1 logical

Note: In the above example, when you assign a TRUE value to a variable, MATLAB

interprets that value as a logical 1. After executing the whos command, observe the class

type is a logical array. Similarly, when you assign a FALSE value to a variable, MATLAB

interprets that value as a logical 0.

Similarly, a logical variable can be also be defined by using the logical function.

>> my_var = true

my_var =

