		[image: Georgia Southern University Logo]

		
Lecture 15 – Numerical Techniques

Objectives: To introduce and implement several numerical techniques in MATLAB useful in engineering applications.

The overall goal of this lecture is to give students a basic understanding of how to use different numerical techniques in MATLAB such as: generate uniform probability distribution, solve linear system of equations using matrix method and the symbolic toolbox method , and use the symbolic toolbox to solve algebraic functions, derivates, integrals, etc.

[bookmark: Aesthetics][bookmark: _bookmark83]15.1 Random Number
Random numbers are an important part of engineering, there is a lot of practical use of random number generation. For example, random number can be used to create noise that simulate real world disturbances. Another use of random number generation is to create a noise map for a generative convolutional neural network to manipulate and create desired images. A good engineering algorithm must take the noises into account and design a solution to minimize imperfections in the system.

15.1.1 Random Number Generation
These are many different functions in MATLAB for random numbers generation, some of the examples are: rand(), randn(), randi().
Even though those functions are called random number generation functions, the numbers they generate are not truly random. They only appear to be random, however, if the random number algorithm has several layers of complexity, then the number it generates will be random enough to use in the simulations.

15.1.2 rand() Function
The MATLAB function rand() can generate a random number between 0 and 1 with uniform probabilities. Some examples can be found in the table below:
	>> x = rand()
x =
 0.8147
	>> x = rand()
x =
 0.9058
	>> x = rand()
x =
 0.1270

We can also give the function a parameter n for an n x n array of random numbers:
	>> x = rand(3)
x =
 0.9134 0.2785 0.9649
 0.6324 0.5469 0.1576
 0.0975 0.9575 0.9706

We can also give the function two parameters m and n for an m x n array of random numbers:
	>> x = rand(2, 3)
x =
 0.9572 0.8003 0.4218
 0.4854 0.1419 0.9157

15.1.3 Practice: Random Number Generation
How can you create a vector x having 100 uniformly distributed random numbers between 0 and 1?
Solution:
	x = rand(1, 100)

 Notice this will generate a row vector x, with 1 row and 100 columns.

15.1.4 Uniform Probability Distribution
To generate a uniform probability distribution between range [a, b] use the following mathematical form:

where x is a random number generated by rand() between 0 and 1.

15.1.5 Example: Uniform Probability Distribution
Generate a sequence of 1000 uniform distributed random numbers in the range [2, 10]
Solution:
	a=2;
b=10;
x = (b-a)*rand(1, 1000)+a;

To validate our result, we can use min(), max(), and mean() functions to check if the results make sense:
	>> min(x)
ans =
 2.0042
	>> max(x)
ans =
 9.9959
	>> mean(x)
ans =
 5.8940

This is very close to what we expect to see, the minimum and maximum is close to a and b, respectively, and the average is close to average of a and b.

We can also plot the result in a histogram to help visualize the uniform distribution:
[image: Histogram diagram of the uniformly distributed random number in the range of 2 and 10.]
Figure 15.1: Histogram of the Uniform Random Number Distribution rand()

15.1.6 Practice: Uniform Probability Distribution
Generate a sample of 10000 student grades. Assume uniform distribution between the scores of 30 to 80 (Nobody got less than 30 on the exam.) Use rand function.

Then convert the results as integers (whole numbers).
Visualize the data using hist(y)
Solution:
	a=30;
b=80;
y = (b-a)*rand(1, 10000)+a;
y = round(y);
hist(y);
xlabel('Exam Score');
ylabel("No. of Student");
title('Histogram of Uniform Distribution of Exam Grade');

[image: Histogram diagram of the uniformly distributed random number showing student grade distribution]
Figure 15.2: Histogram of the Student Grade Distribution

15.2 System of Equations using Matrix Method
Before we get started with symbolic toolbox let us explore how to solve linear system of equations with matrix method. This is an important skill to master, as this is heavily utilized in circuit analysis course when using techniques such as nodal and mesh analysis.
	
For example, we have the following systems of linear equations, and we want to find x1, x2, x3.

We can rewrite this system of linear equations as matrices:

					A C B
Let’s name the matrices A, C, B with respect to their order. The variables in matrix C will be the inverse of A times B.

We can input this in MATLAB and find the values of the variables:
	Code:
A = [1, 1, -3; 1, -1, 2; 2, 1, -1];
B = [-10;3;-6];
C = inv(A)*B;
disp(C);
	Result:
 -2.0000
 1.0000
 3.0000

15.3 Symbolic Toolbox
The symbolic toolbox is an addon package users can install and use to simplify some numerical operations by changing computations with symbols instead of values. Symbolic toolbox will be useful in future courses such as Introduction to Signal Processing where it will make finding the Fourier transform of a function much easier.

15.2.1 Declare Symbolic Expressions
Symbolic toolbox allow us to use symbols during computation and substitute the symbols with value with values after the computation. An Example of how to create the symbolic object S with the expression x3+2y2+3a in MATLAB is shown below:
	syms x y a
S = x^3 - 2*y^2 + 3*a;

Important Note: Do not separate the symbols after keyword syms with commas, and do not use dot operations like .* to declare a symbolic expression.

15.2.2 Symbolic Functions
Table 15.1 lists some useful functions that we can use in the symbolic toolbox. (Assume S is a pre-defined symbolic object)
Table 15.1: Useful functions in the Symbolic Toolbox
	Symbolic Toolbox Functions
	Explanation of function

	collect(S)
	Collects coefficients of S

	collect(S, ‘x’)
	Collects coefficients of S with respect to x

	expand(S)
	Performs an expression of S

	factor(S)
	Returns the factorization of S

	simplify(S)
	Simplifies S using Maple’s simplification rules

	solve(S)
	Solves symbolic equation S for its symbolic variable.

	diff(S)
	Returns the derivative of the expression S with respect to the default variable.

	diff(S, ‘t’)
	Returns derivative of S with respect to variable t

	diff(S, n)
	Returns the nth derivative of the expression S with respect to default variable.

	int(S)
	Returns the integral of expression S with respect to default variable

	int(S, a, b)
	Return integral of expression S with respect to default variable evaluated over interval [a,b], where a and b are numeric values.

15.2.3 System of Equations using solve() function
	Define the following equation using symbolic toolbox and solve for x and y.
	Eq2: 2x+y=1
	Eq3: -3x+2y=0

	syms x y 	 % Define x and y as symbols
eq1 = 2*x+y == 1; % Define eq1 as a symbol with equation
eq2 = -3*x+2*y == 0; % Define eq2 as a symbol with equation
[x, y]=solve(eq1, eq2); % Use solve function to solve for x and y
fprintf('x=%g, y=%g\n', x, y);

	
15.2.5 Practice: solve Function to Solve Linear System of Equations
	Eq1: x + y - 3z = -10
	Eq2: x – y + 2z = 3
	Eq3: 2x + y – z = -6

	Solution:
	syms x y z 	 % Define x y z as symbols
eq1 = x+y-3*z == -10 % Define eq1 as a symbol with equation
eq2 = x-y+2*z == 3; % Define eq2 as a symbol with equation
eq3 = 2*x+y-z == -6; % Define eq3 as a symbol with equation
[x, y, z]=solve(eq1, eq2, eq3); % Use solve function to solve for x, y, z
fprintf('x=%g\ny=%g\nz=%g\n', x, y, z);

15.3 Explore Further
You can further explore MATLAB documentation of the random number generators (rand, randn, randi) and the symbolic toolbox. A self-paced online course on Introduction to Symbolic Math with MATLAB is also accessible through mathworks.com.

15.4 Conclusion/Summary of Key Points
The overall goal of this lecture was to explore numerical techniques that are useful in engineering applications. Techniques focused in this lecture were on generating data that has uniform probability distribution and visualizing it, solving linear system of equations using the matrix method and exploring the symbolic toolbox method to not only solve the linear systems of equations but also to manipulate equations algebraically, doing derivatives, integrals, etc. A few key points are captured below for review:
1) Random numbers in MATLAB are not truly random.
2) Uniformly distributed random numbers generated by rand() function are in the range of [0, 1].
3) To generate uniformly distributed data in a different range, use equation: , where x is uniformly generated random number, b is upper end of the range, and a is the lower end of the range.
4) Solve linear system of equations using the Matrix Method.
5) Solve linear system of equations with Symbolic Toolbox
6) Evaluate other math equations (derivatives, integrals, algebra) with Symbolic Toolbox.

Last modified May 12, 2024

[image: Creative Commons License] This work by Salman Siddiqui & Rami Haddad is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 4.0 International License

1

image3.png

image1.png

image2.png

image4.png

Lecture 15

–

Numerical Techniques

Objectives:

To introduce and implement several numerical techniques

in MATLAB

useful in

engineering applications.

The overall goal of this lecture is to give students a basic understanding of how to use different

numerical techniques

in MATLAB

such as: generate uniform probability distribution, solve linear

system of

equations

using

matrix method and

the s

ymbolic

t

ool

box method

, and use the symbolic

toolbox to solve algebraic functions, derivates, integrals, etc.

15.1 Random Number

Random numbers are an important part of engineering, there is a lot of practical use of random

number generation. For example, random number can be used to create noise that simulate real

world disturbances. Another use of random number generation is to cr

eate a noise map for a

generative convolutional neural network to manipulate and create desired images. A good

engineering algorithm must take the noises into account and design a solution to minimize

imperfections in the system.

15.1.1 Random

Number Generation

These are many different functions in MATLAB for random numbers generation, some of

the examples are:

rand

(

),

randn

(

),

randi

(

).

Even

though

those functions are called random number generation functions, the numbers

they generate are n

ot truly random. They only appear to be random, however, if the random

number algorithm has several layers of complexity, then the number it generates will be

random enough to use in the simulations.

15.1.2 rand(

) Function

The MATLAB function

rand

(

) ca

n generate a random number between 0 and 1 with

uniform probabilities. Some

examples

can be found in the table below:

>> x = rand()

x =

0.8147

>> x = rand()

x =

0.9058

>> x = rand()

x =

0.1270

We can also give the function a parameter

n

for a

n

n x n

array of random numbers:

>> x = rand(3)

x =

0.9134 0.2785 0.9649

0.6324 0.5469 0.1576

0.0975 0.9575 0.9706

Lecture 15 – Numerical Techniques

Objectives: To introduce and implement several numerical techniques in MATLAB useful in

engineering applications.

The overall goal of this lecture is to give students a basic understanding of how to use different

numerical techniques in MATLAB such as: generate uniform probability distribution, solve linear

system of equations using matrix method and the symbolic toolbox method , and use the symbolic

toolbox to solve algebraic functions, derivates, integrals, etc.

15.1 Random Number

Random numbers are an important part of engineering, there is a lot of practical use of random

number generation. For example, random number can be used to create noise that simulate real

world disturbances. Another use of random number generation is to create a noise map for a

generative convolutional neural network to manipulate and create desired images. A good

engineering algorithm must take the noises into account and design a solution to minimize

imperfections in the system.

15.1.1 Random Number Generation

These are many different functions in MATLAB for random numbers generation, some of

the examples are: rand(), randn(), randi().

Even though those functions are called random number generation functions, the numbers

they generate are not truly random. They only appear to be random, however, if the random

number algorithm has several layers of complexity, then the number it generates will be

random enough to use in the simulations.

15.1.2 rand() Function

The MATLAB function rand() can generate a random number between 0 and 1 with

uniform probabilities. Some examples can be found in the table below:

>> x = rand()

x =

 0.8147

>> x = rand()

x =

 0.9058

>> x = rand()

x =

 0.1270

We can also give the function a parameter n for an n x n array of random numbers:

>> x = rand(3)

x =

 0.9134 0.2785 0.9649

 0.6324 0.5469 0.1576

 0.0975 0.9575 0.9706

