		[image: Georgia Southern University Logo]

		
Lecture 11 – Conditional Statements

Objectives: To understand the concepts of conditional statements and apply them for decision-making and/or dealing with errors in programs.

The overall goal of this lecture is to give students a basic understanding of different kinds of conditional statements, i.e., if/else and switch/case. Students would be able to describe the structure the if/else and switch/case statements, evaluate programs with these statements, and use these statements in their programs to solve problems.

11.1 Why use Decision-Making/Branching?
For problems that are more complex, we will need to write programs with decision-making structures. Decision making structures allow us to skip some lines of program or repeat some lines that were executed before. They use relational and logical statements that we learned from previous lectures to control which decision or branch to execute. The two main decisions making structures in MATLAB are if/else and switch/case statements.

11.2 Structure of if/else Statements
11.2.1 Basic Structure
The if/else statement is called a conditional statement as it runs only if the condition associated with it is true. The if/else structure has the following keywords: if, elseif, else, end. The basic structure of the if statements can be classified into three categories, the simplest of which has only an if statement. Also, each if statement requires an end statement. Consider the first and the simplest of the if structure:

if (condition)
	statement1;
	statement2;
end

In this structure, if the evaluation of the condition gives a true result (a logical 1) then statement1 and statement2 will be executed. If the evaluation of the condition gives a false result (a logical 0), then the statment1 and statement2 are not evaluated, as a matter of fact, nothing happens inside the if statement as the condition was false.

The next basic structure of the if statement is as follows:

if (condition)
	statementA1;
	statementA2;
else
	statementB1;
	statementB2;
end

In this structure, if the evaluation of the condition gives a true result (a logical 1) then statementA1 and statementA2 will be executed and the program exits the if condition after evaluating statementA1 and statementA2, i.e., the else condition and its statements are not evaluated. If the evaluation of the condition gives a false result (a logical 0), then statementB1 and statementB2 will be executed.

The final structure of the if statement we will introduce is the most comprehensive structure. The comprehensive structure of the if/else is as follows:

if (condition1)
	statementA1;
	statementA2;
elseif (condition2)
	statementB1;
	statementB2;
elseif (condition3)
	statementC1;
	statementC2;

else
	statementZ1;
	statementZ2;
end
	
In this structure, if the evaluation of condition1 gives a true result (a logical 1) then statementA1 and statementA2 will be executed and the program will exit the if condition. If the evaluation of condition1 gives a false result (a logical 0), then condition2 will be evaluated, and if it gives a true result (a logical 1) then statementB1 and statementB2 will be executed, and the program exits the if condition structure. However, if condition2 also gives a false result, the next condition in the structure, condition3 will be evaluated. This process keeps on going, and if all conditions, when evaluated, gave a false result, then and only then, the else condition block will be evaluated before exiting the if statement structure.

Note: You can have as many elseif clauses as needed, but there can only be one if and one else clause. An end expression is required after the completion of the if statements. If there are no else statements (as shown in the first basic structure) and none of the conditions for if and elseif were met, then the entire if statements will be skipped.

11.2.2 Example Problem #1
Consider the following program to illustrate the comprehensive structure of the if/else statement previously covered.

Write a MATLAB program to evaluate the following function f(x, y) for any two user inputs for x and y.
[image: {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mi>f</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi></mrow></mfenced><mo>=</mo><mfenced open=\"{\" close=\"\"><mtable columnspacing=\"1.4ex\" columnalign=\"left\"><mtr><mtd><mi>x</mi><mo>+</mo><mi>y</mi></mtd><mtd><mi>x</mi><mo>≥</mo><mn>0</mn><mo> </mo><mi>a</mi><mi>n</mi><mi>d</mi><mo> </mo><mi>y</mi><mo>≥</mo><mn>0</mn></mtd></mtr><mtr><mtd><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>y</mi></mtd><mtd><mi>x</mi><mo>≥</mo><mn>0</mn><mo> </mo><mi>a</mi><mi>n</mi><mi>d</mi><mo> </mo><mi>y</mi><mo> </mo><mo><</mo><mn>0</mn></mtd></mtr><mtr><mtd><mi>x</mi><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup></mtd><mtd><mi>x</mi><mo><</mo><mn>0</mn><mo> </mo><mi>a</mi><mi>n</mi><mi>d</mi><mo> </mo><mi>y</mi><mo>≥</mo><mn>0</mn></mtd></mtr><mtr><mtd><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup></mtd><mtd><mi>x</mi><mo><</mo><mn>0</mn><mo> </mo><mi>a</mi><mi>n</mi><mi>d</mi><mo> </mo><mi>y</mi><mo><</mo><mn>0</mn></mtd></mtr></mtable></mfenced></mstyle></math>","origin":"MathType for Microsoft Add-in"}]
We can use the top-down method to solve this problem:

Step1: Clearly state the problem
Evaluate the function f(x, y) for any two user inputs for x, y.

Step 2: Define the inputs and outputs
The inputs are x and y. The output is f(x, y).

Step 3. Design the algorithm
1. Read the input values x, y from the user
2. Calculate the value of f(x, y)
3. Display f(x, y)

Pseudocode:
	Get x and y from the user
if x>=0 and y>=0
 fun = x+y
elseif x>=0 and y<0
 fun = x^2+y
elseif x<0 and y>=0
 fun = x+y^2
else
 fun = x^2+y^2
end
display fun

Step 4: Convert to MATLAB code
	x = input("Please enter a value for x: "); %Ask the user for value of X
y = input("Please enter a value for y: "); %Ask the user for value of Y

if x>=0 && y>=0 %Check if both x and y are greater or equal to 0
 fun = x+y;
elseif x>=0 && y<0 %Check if both x is greater or equal to 0 and y is less than 0
 fun = x^2+y;
elseif x<0 && y>=0 %Check if both y is greater or equal to 0 and x is less than 0
 fun = x+y^2;
else
 fun = x^2+y^2; %Check if both x and y are less than 0
end

fprintf("f(%f, %f) = %f", x, y, fun); %display the result f(x,y)

Step 5: Test the Program
f(5,2) = x + y = 7
f(5,-2) = x2 + y = 23
f(-5,2) = x+ y2 = -1
f(-5-,2) = x2+ y2 = 29

11.2.3 Example Problem #2
Suppose we want to convert a numerical grade, x, to a letter grade according to the following criteria:
	A	 90 x 100
	B	 80 x 89
	C	 70 x 79
	D	 60 x 69
	F x 60
Write a MATLAB program to convert the numerical grade to a letter grade by seeking user input to determine the numerical grade, and then apply the grading criteria to generate the letter grade.
Solution:
	x = input("Enter the numerical grade: "); %ask user to enter numerical grade

if x >=90 %check if the numerical grade is greater than 90
 grade = 'A'; %if the grade is greater than 90, then set letter grade to A
elseif x >= 80 & x <= 89 %check if the numerical grade is greater than 80
 grade = 'B'; %if the grade is greater than 80, than set letter grade to B
elseif x >= 70 & x <= 79 %check if the numerical grade is greater than 70
 grade = 'C'; %if the grade is greater than 70, then set letter grade to C
elseif x >= 60 & x <= 69 %check if the numerical grade is greater than 60
 grade = 'D'; %if the grade is greater than 60, then set letter grade to D
else %else
 grade = 'F'; %if all other condition fails, set letter grade to F
end
fprintf("The letter grade is %c.\n", grade); %print the final letter grade out

NOTE: when defining the range for x, it should be done as shown in the code. For example, for the range 80 x 89, the evaluation should be written as x>=80 & x <=80 and not as 80 <= x <= 89. In the first instance, only if both conditions are true, then and only then the statement in that if statement is evaluated. However, in the second instance, if the first condition is true only it will still evaluate the statement in the if condition which would give an incorrect result.

11.3 Structure of switch/case Statements
11.3.1 Basic Structure
	The switch/case statement is another type of conditional statement with the following keywords: switch, case, otherwise, end. The switch/cases statement is a multiple-choice selection statement which allows a decision to be made from a number of choices.

The syntax for the basic switch/case structure is as follows:

	switch (switch_expression)
	case (case_expression1)
		statements
	case (case_expression2)
		statements
case {case_expression3, case_expression4}
		statements
	...
	otherwise
		statements
end

The way the switch/case structure operates is that it checks the switch_expression with the first case expression (case_expression1), if the two match, the statements associated with he first case are executed and the program exits the switch/case structure. If the switch_expression does not match with case_expression1, then it goes and checks the second case to evaluate if the switch_expression matches case_expression2. If it matches, the statements for the second case statement are executed and the program exits the switch/case statement. If there is still no match, the switch_experssion is matched with case expressions in the third case statement. Note that in the third statement, there are two expressions that can be evaluated, and to add multiple expressions, the braces { } are used. If no matches are found, the statements under the otherwise keyword are executed before the program exits the switch/case structure.

11.3.2 Difference between if/else and switch/case
In switch/case statement, case_expression cannot be a relational or logical operation. However, the conditional statement in the if/else can be relational or logical operation. Also, in the if/else structure, the else statement covers conditions if all the previous conditions were false. In the switch/case structure, the otherwise statement covers conditions if all the previous conditions were false.

11.3.3 Example Problem #3
Write a MATLAB program to get an input from the user from integer values 1 to 10. Then using switch/case statements determine whether it is an even or odd number and display the result.

Solution:
	n = input("Enter a number between 1 and 10");

switch n
 case {1, 3, 5, 7, 9}
 disp("Odd Number");
 case {2, 4, 6, 8, 10}
 disp("Even Number");
 otherwise
 disp("Not a number between 1 and 10");
end

11.3.4 Example Problem #4
Write a MATLAB program using switch/case statements to determine whether the input character is either a vowel or a consonant.

Solution:
	clear all; clc; close all;
value = input ('Enter a lower-case character: ', 's');
switch(value)
 case {'a','e','i','o','u'}
 fprintf('The character %c is a vowel\n',value);
 case {'b','c','d','f','g','h','j','k','l','m','n','p','q','r','s','t',
 'v','w','x','y','z'}
 fprintf('The character %c is a consonant\n',value);
 otherwise
 disp('The value entered is not a lower-case character or a character')
end

11.4 Communication with Arduino Microcontroller
	When communicating with the Arduino Microcontroller, it is important to understand how the microcontroller is getting information through its input pins, and how it is sending information out through its output pins.

11.4.1 Inputs to the Microcontroller
It is important to know the devices through which we can seek inputs to the microcontroller. For instance, to get input through the digital pins, the readDigitalPin() command is used. It reads a zero or a one from the devices connected to the digital pins such as switch, push buttons, etc.). It can also use the analog pins to get a value between 0 and 5V through the readVoltage() command from devices such as photoresistor, temperature sensor, ultrasonic sensor, etc.).

11.4.2 Output from the Microcontroller
Once the microcontroller needs to send information to the devices or components, it needs to be known to which pins are the devices or components connected to. If it is connected to the digital pins, and the output is supposed to be a digital output, then we use the writeDigitalPin() function, however, if the output is connected to the digital pin, but it needs to be an analog output, then it need to be connected to the PWM digital pins, and the command needs to be used to simulate analog output is the writePWMVoltage() command. If output needs to be sent to a piezo buzzer then a playTone() command can be used, etc.

11.4.3 Applications of Conditional Statements
Once an input is received to the Microcontroller, the programmer can read the variable which collected the input data and use conditional statements to make decisions. For example, if the variable has a digital value of 0 or 1, those values can be used to make decision to turn motor ON or OFF, or play a sound on the piezo buzzer, or turn a light ON or OFF, or when the ultrasonic sensor indicates the robot is too close to the wall the motor moving the wheels would need to be stopped.

11.5 Explore Further
You can further explore MATLAB documentation for the if/else statements and the switch/case statements. Similarly, you can access MATLAB Marina resource for if/else and switch/case examples. Lastly, explore the applications of the Arduino on the web and start making connections of how you can seek values from the components, use the conditional statements and make decisions effectively.

11.6 Conclusion/Summary of Key Points
The overall goal of this lecture was to introduce the structure of the if/else and switch/case conditional statements. Upon learning the structure, students should be able to evaluate a given code or write basic code to solve problems and understand/describe the key differences between the two conditional statements. Lastly, to connect the use of the conditional statements with hardware components while connected via the Arduino microcontroller.
1) Conditional statements are important to help make decisions.
2) The if/else structure should have an if statement and end statement, the elseif and else are optional. Hence, for each if statement, there should be an end statement.
3) The if/else can evaluate expressions that have logical operators, numbers, or characters.
4) The switch/case structure should have the switch, case, and end statements. The otherwise statement is optional.
5) Switch/case is like a multiple-choice selection, matching the switch_expression to the case_expressions.
6) The switch/case statements can only work with numerical value matching or strings matching, but no logical operations.
7) Both the if/else and switch/case expression operate in such a way that the conditions are evaluated from top to bottom, and whenever a first true condition is evaluated, it is executed and the program exits the structure.
8) It is important to know when communicating with Arduino hardware to understand which devices can be used to get input, which devices can be sent output from the microcontroller, and based on that use the conditional statements after seeking input and making decision to control output devices.

Last modified May 12, 2024

[image: Creative Commons License] This work by Salman Siddiqui & Rami Haddad is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 4.0 International License

1

image2.png

image1.png

image3.png

Lecture 11

–

Conditional Statements

Objectives:

To understand the concepts of conditional statements and apply them for decision

-

making and/or dealing with errors in programs.

The overall goal of this lecture is to give students a basic understanding of different kinds of

conditional statements, i.e.,

if/else

and

switch/case

. Students would be able to describe the

structure the

if/else

and

switch/case

statements, evaluate progra

ms with these statements, and use

these statements in their programs to solve problems.

11.1 Why use Decision

-

Making/Branching?

For problems that are more complex, we will need to write programs with decision

-

making

structures. Decision making structures

allow us to skip some lines of program or repeat some lines

that were executed before. They use relational and logical statements that we learned from previous

lectures to control which decision or branch to execute. The two main decisions making structur

es

in MATLAB are

if/else

and

switch/case

statements.

11.2 Structure of

if/else

Statements

11.2.1 Basic Structure

The

if/else

statement is called a conditional statement as it runs only if the condition associated

with it is true. The

if/else

structure has the following keywords:

if

,

elseif

,

else, end

. The basic

structure of the

if

statements can be classified into three categor

ies, the simplest of which has

only an

if

statement. Also, each

if

statement requires an

end

statement. Consider the first and the

simplest of the

if

structure:

if

(

condition

)

statement1;

statement2;

end

In this structure, if the evaluation of the

condition

gives a true result (a logical 1) then

statement1

and

statement2

will be executed. If the evaluation of the

condition

gives a false result (a logical

0), then the

statment1

and

statement2

are not evalua

ted, as a matter of fact, nothing happens

inside the

if

statement as the

condition

was false.

The next basic structure of the if statement is as follows:

if

(

condition

)

statementA1;

statementA2;

else

statementB1;

statementB2;

end

Lecture 11 – Conditional Statements

Objectives: To understand the concepts of conditional statements and apply them for decision-

making and/or dealing with errors in programs.

The overall goal of this lecture is to give students a basic understanding of different kinds of

conditional statements, i.e., if/else and switch/case. Students would be able to describe the

structure the if/else and switch/case statements, evaluate programs with these statements, and use

these statements in their programs to solve problems.

11.1 Why use Decision-Making/Branching?

For problems that are more complex, we will need to write programs with decision-making

structures. Decision making structures allow us to skip some lines of program or repeat some lines

that were executed before. They use relational and logical statements that we learned from previous

lectures to control which decision or branch to execute. The two main decisions making structures

in MATLAB are if/else and switch/case statements.

11.2 Structure of if/else Statements

11.2.1 Basic Structure

The if/else statement is called a conditional statement as it runs only if the condition associated

with it is true. The if/else structure has the following keywords: if, elseif, else, end. The basic

structure of the if statements can be classified into three categories, the simplest of which has

only an if statement. Also, each if statement requires an end statement. Consider the first and the

simplest of the if structure:

if (condition)

 statement1;

 statement2;

end

In this structure, if the evaluation of the condition gives a true result (a logical 1) then statement1

and statement2 will be executed. If the evaluation of the condition gives a false result (a logical

0), then the statment1 and statement2 are not evaluated, as a matter of fact, nothing happens

inside the if statement as the condition was false.

The next basic structure of the if statement is as follows:

if (condition)

 statementA1;

 statementA2;

else

 statementB1;

 statementB2;

end

