		[image: Georgia Southern University Logo]

		
Lecture 13 – Structured Programming - for loop

Objectives: To learn and apply the concept and applications of for loops to develop optimized solutions to engineering problems using the repetitive control structure.

At the end of this lecture, students will be able to understand the structure of the for loop, perform evaluation of simple for loops, write basic for loops, perform evaluation of a nested for loops, and write for loops to perform array operations effectively.

13.1 For loop
The for loop also falls under the repetitive control structure, i.e., it can be used to do a task repeatedly. It can help automate tasks that needs to be repeated, however, there is a distinction between the for loop and the while loop, covered in the previous lecture. The difference between these two loops is while loop will repeat until a specified criteria is met (i.e., it can run indefinitely if needed). The for loop will repeat a certain number of times that is specified before the loop starts (i.e., definite).

13.1.1 The for loop Structure
	The basic structure of a for loop can ne illustrated with the following flowchart:

[image: A flowchart diagram showing the operation of a "for" loop]
Figure 13.1: Flowchart visualization of the for loop structure

Note: Observe that the arrows in the flowchart illustrate the way the for loop is structured. The first time the for loop runs, it initializes the loop variable, and then checks if it has met the stopping condition, if not, it will run the statement block and modify the loop variable and then check the condition and keep repeating this process until the stopping condition is reached.
	
	In MATLAB a for loop should have the following syntax:
	for k=start:increment:stop
 Statement 1;
 Statement 2;
 ...
end

	
[bookmark: _Hlk166403930]A for loop must start with for k=start:increment:stop and finish with end, where k is the loop variable which is defined as a vector with the notation start:increment:stop. Therefore, k=start:increment:stop part determines how many times the loop runs. The statement block between for expression and end will run repeatedly based on the determination of how many times the loop should run.

13.1.2 Basic Operation of the for loop
At the beginning of the loop, MATLAB creates an array by evaluating the control expression (k=start:increment:stop). On the first iteration, k will be assigned the value of the first column in the expression and the program executes the body of the loop. After the iteration ends, k will be assigned the value of the next column of the expression and executes the body of the loop again. MATLAB will continue to reassign k with the value of the next column until the last element in the array has been assigned and the body of the loop executed.

For example, if the for loop looks like this:
	for x=1:2:10
 fprintf('Hello World!\n');
end

Before the loop starts MATLAB will create an array from the control expression: [1 3 5 7 9]. On the first iteration, x will be assigned the value 1 and the body of loop will be executed, print “Hello World!”. On the second iteration, x will be assigned will value 3 and the body of the loop will be executed again, print “Hello World!” again. Then the loop will keep repeating until x is 9 and the last “Hello World!” is printed. On the command window we should get the following result:
	Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

Important Note: In a for loop, you should never modify the value of the control variable within the body of the loop, as it is already automated when the loop variable is intialized!

13.1.3 Determining number of loops
	 To determine the number of times a for loop is going to be executed, we can use the following equation:

Let us use the same example from the previous part, where we can determine the finalvalue is 10, initalvalue is 1 and the increment is 2. Using the above formula, we get 5 loops which matches our result from the previous part.

13.1.4 Problem 1 Evaluate simple for loop
	Evaluate the following simple for loop and state the result of running this code:
	for k = 1:1:3
 disp('Hello World');
end

Solution:
To approach this question, we can first analyze how many times this loop will be executed with formula from part 13.1.3. The final value is 3, the initial value is 1 and the increment is 1. Plug those numbers into the formula we will get 3.

	Now we know how many times the loop will run, let’s look at the loop body. The body is a simple disp() function that will print “Hello World” in the command window. Therefore, we can determine the result of this program will print “Hello World” three times.

13.1.5 Problem 2 Write a basic for loop
Write a program using for loop to compute the square of the first five numbers: 1,2,3,4,5 and print the results as follows using fprintf() inside the for loop:
	The square of 1 is 1
The square of 2 is 4
The square of 3 is 9
The square of 4 is 16
The square of 5 is 25

Solution:
	We know we need to execute the body of the loop 5 times and have the loop index go from 1 to 5. Therefore, we can write the control expression as: k=1:1:5. To print the sentences showed in the question, we can use fprintf() function with the given structure and place holder for variables. The result should be similar to the following:
	clc; clear; close all;
for k=1:1:5 %initialize the for loop and make k go from 1 to 5
 fprintf("The square of %d is %2d\n", k, k^2);
end

13.1.6 Example 1 Summation
Use MATLAB to implement the following mathematical equation using a for loop:

Solution:
	We know summation’s starting value is given at the bottom of the summation mark, and the end value is given at the top of the summation mark and the increment is always 1. And the expression after the summation mark is used to calculate the sum.

	From that information we can determine the initial and final value of the control expression and use the expression to calculate the sum. The result should be similar to the following:
	clc; clear; close all;
sum = 0; %initialize the sum as 0
for k=0:1:3 %initialize the for loop and make i go from 0 to 3
 sum = sum + 2^k;
end
fprintf("The sum is %f\n", sum);

13.1.7 Example 2 Factorial
	 Write a MATLAB program using a for loop, to evaluate the factorial of a number entered by the user.

Solution:
	clc; clear; close all;
fact = 1; %initialize the factorial as 1
n = input("Enter a whole number: "); %ask user for input
if n >= 1
 for k=1:1:n %initialize the for loop and make k go from 1 to n
 fact = fact*k;
 end
end
fprintf("The factorial of %d is %d\n", n, fact);

	

13.1.8 Evaluation of loops Exercise
Evaluate the value of ires and the number of iteration for both programs?
	ires=0;
for index=1:5
 ires=ires+1;
end
	ires=0;
for index=3:5
 ires=ires+index;
end

Solution:
	Let’s start with the program to the left. We can use the formula from section 13.1.3 to find that the loop with run 5 times. We can create a table to make our life easier to find the final value of ires.
	index
	ires=0

	1
	0+1=1

	2
	1+1=2

	3
	2+1=3

	4
	3+1=4

	5
	4+1=5

	Let’s use the same method for the second part of the question. We use the same formula to find the loop with run 3 times, we can create a table to find the final value of ires.
	index
	ires=0

	3
	0+3=3

	4
	3+4=7

	5
	7+5=12

13.1.9 Problem 3 Array Operation using for loops
	Write a MATLAB program that computes the sum of the odd-indexed numbers in a given array and display result. Let the following array be defined:
x = [8 10 3 9 4 2 1 43]

Solution:
	x = [8 10 3 9 4 2 1 43]; %initialize array
disp(['The original array was: ',mat2str(x)]); %display array
sum = 0; %initialize sum as 0
for k=1:2:length(x) %start the index from 1 to the end of the array with
%increment of 2
 sum = sum + x(k); %add odd indexed array to sum
end
fprintf('The sum of odd indexed numbers of the array is %d\n', sum);

13.1.10 Example 3
Write a MATLAB program that finds the smallest value in the array x given. Use if/else statements inside for loop.
x = [5 3 1 7 9 3 -1 -3 -5 3]

Solution:

	x = [5 3 1 7 9 3 -1 -3 -5 3]; %initialize array
disp(['The original array was: ',mat2str(x)]); %display array
smallest=x(1); %set the first value in the array as the temporary
 %smallest value
for k=1:1:length(x) %start the index from 1 to the end of the array
if x(k) < smallest %check if the current value is smaller than
 %temporary smallest value
 smallest = x(k); %set the new smallest value
 end
end
fprintf('Smallest value in the array is: %g.\n',smallest);

13.1.11 Nested for loops
	For loops can occur within other for loops as shown in the examples below. Note that indenting loops is not required, it helps to make them more readable.

	for loopVar1 = loopVector1
 Command 1
 for loopVar2 = loopVector2
 Command A1
 Command A2
 ...
 Command An
 end
 Command 2
 ...
 Command n
end

We can use nested for loops to print a pattern or perform operations on matrix elements and even in searching and sorting algorithms. Consider the following example for creating a pattern:

	for x = 1:5
 for y = 1:x
 fprintf('*');
 end
 fprintf('\n');
end
	Result:
*
**

Note: fprintf() does not automatically start a newline, while disp() command does.

13.2 Control Flow
13.2.1 Break Command
In order to exit a for (or any) loop early, we can use break command to interrupt the execution of for loops. If a break command is executed inside of a loop, that rest of the command in the loop and other iterations will be omitted and the statements after the loop will be executed. In nested loops, break exits from the innermost loop only in which it occurs.
[image: Image of a MATLAB code with a for loop and a break statement with an arrow to indicate how the break command will stop execution of the loop.]
Figure 13.2 – break Command Visual Demonstration

13.2.2 Continue Command
Similar to the break command, continue command is used to interrupt the execution of a loop. However, instead of ending the loop execution, the continue command skips to the next iteration of the same loop.

[image: Image of a MATLAB code with a for loop and a continue statement with an arrow to indicate how the continue command will alter the execution of the loop.]
Figure 13.3 – continue Command Visual Demonstration

13.2.3 Evaluating Understanding of break command
Question: Determine the value of ires at the end of the program.
	ires = 0;
for index1 = 10:-2:6
 for index2 = 2:2:index1
 if index2 == 4
 break
 end
 ires = ires + 2;
 end
end

Solution:
To evaluate a use analysis the loop by iteration with a table like the following:

	Index 1
	Index 2
	ires=0

	10
	2
	0 + 2 = 2

	
	4
	Break

	
	6
	

	
	8
	

	
	10
	

	8
	2
	2 + 2 = 4

	
	4
	Break

	
	6
	

	
	8
	

	6
	2
	4 + 2 = 6

	
	4
	Break

	
	6
	

After we complete analyzing the program with the table we can fill in the answer to this question.
	No. of times index 1 ran
	3

	No. of times index 2 ran
	6

	Final value of ires
	6

13.2.4 Evaluating Understanding continue command
Question: Determine the value of ires at the end of the program.
	ires = 0;
for index1 = 10:-2:6
 for index2 = 2:2:index1
 if index2 == 4
 continue
 end
 ires = ires + 2;
 end
end

Solution:
Similar to what we did for the break command practice, we start the analysis with a table:
	Index 1
	Index 2
	ires=0

	10
	2
	0 + 2 = 2

	
	4
	Continue

	
	6
	2 + 2 = 4

	
	8
	4 + 2 = 6

	
	10
	6 + 2 = 8

	8
	2
	8 + 2 = 10

	
	4
	Continue

	
	6
	10 + 2 = 12

	
	8
	12 + 2 = 14

	6
	2
	14 + 2 = 16

	
	4
	Continue

	
	6
	16 + 2 = 18

After we complete analyzing the program with the table we can fill in the answer to this question.
	No. of times index 1 ran
	3

	No. of times index 2 ran
	12

	Final value of ires
	18

13.3 Explore Further
You can further explore MATLAB documentation for the for statements. Similarly, you can access MATLAB Marina resource for further learning about the for loops.

13.4 Conclusion/Summary of Key Points
1) For loop is part of the repetitive control structure
2) For the for loop to start execution, it should know how many times the loop will run before it starts, as the for loop cannot run indefinite number of times. If the loop variable has infinite values, the for loop will not run at all.
3) When evaluating a for loop, evaluate the first line which expresses the loop variable to determine how many times the loop will run.
4) Nested for loops can be understood by breaking down the loop structure in a form of a table, with the outer loop, inner loop, and elements changing in the loop.
5) Understand the operation of the break and continue statements, they are very helpful when working with repetitive structures and maybe helpful in your Arduino project.

Last modified May 12, 2024

[image: Creative Commons License] This work by Salman Siddiqui & Rami Haddad is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 4.0 International License

1

image3.png
No upbh wnNBRE

for 1 = 1:5
‘ ifi==3
continue;

end

fprintf("i = %d\n", i);
end
disp('End of the loop!');

image4.png

image1.png
v

Tnifialize Joop_| .
vanahle oo pion

oy Toop_|

"\ variahle

Statement Block

image2.png
Noupbh wnNBRE

for i = 1:5
ifi==3
break;

end
fprintf("i = %d\n", i);

end

disp('End of the loop!');

image5.png
“| GEORGIA SOUTHERN

. UNIVERSITY

Lecture 1

3

–

Structured Programming

-

for

loop

Objectives:

To learn and apply the concept and applications of

for

loops to develop optimized

solutions to engineering problems using the repetitive control structure.

At the end of this lecture, students will be able to understand the structure of the

for

loop, perform

evaluation of simple

for

loops, write basic

for

lo

ops, perform evaluation of a nested

for

loops, and

write

for

loops to perform array operations effectively.

13.1

For

loop

The

for

loop also falls under the repetitive control structure, i.e., it can be used to do a task

repeatedly. It can help automate t

asks that needs to be repeated, however, there is a distinction

between the

for

loop and the

while

loop, covered in the previous lecture. The difference between

these two loops is

while

loop will repeat until a specified criteria is met (i.e., it can run

i

ndefinitely if needed). The

for

loop will repeat a certain number of times that is specified before

the loop starts (i.e., definite).

13.1.1 The

for

loop Structure

The basic structure of a

for

loop can ne illustrated with the following flowchart:

Figure 13.1

:

Flowchart visualization of the

for

loop structure

Note: Observe that the arrows in the flowchart illustrate the way the

for

loop is

structured. The first time the

for

loop runs, it in

itializes the loop variable, and then checks

if it has met the stopping condition, if not, it will run the statement block and modify the

loop variable and then check the condition and keep repeating this process until the

stopping condition is reached.

In MATLAB a

for

loop should have the following syntax:

for

k=start:increment:stop

Statement

1

;

Statement

2

;

...

end

 Lecture 1 3 – Structured Programming - for loop Objectives: To learn and apply the concept and applications of for loops to develop optimized solutions to engineering problems using the repetitive control structure. At the end of this lecture, students will be able to understand the structure of the for loop, perform evaluation of simple for loops, write basic for lo ops, perform evaluation of a nested for loops, and write for loops to perform array operations effectively. 13.1 For loop The for loop also falls under the repetitive control structure, i.e., it can be used to do a task repeatedly. It can help automate t asks that needs to be repeated, however, there is a distinction between the for loop and the while loop, covered in the previous lecture. The difference between these two loops is while loop will repeat until a specified criteria is met (i.e., it can run i ndefinitely if needed). The for loop will repeat a certain number of times that is specified before the loop starts (i.e., definite). 13.1.1 The for loop Structure The basic structure of a for loop can ne illustrated with the following flowchart: Figure 13.1 : Flowchart visualization of the for loop structure Note: Observe that the arrows in the flowchart illustrate the way the for loop is structured. The first time the for loop runs, it in itializes the loop variable, and then checks if it has met the stopping condition, if not, it will run the statement block and modify the loop variable and then check the condition and keep repeating this process until the stopping condition is reached. In MATLAB a for loop should have the following syntax:

for k=start:increment:stop Statement 1 ; Statement 2 ; ... end

