		[image: Georgia Southern University Logo]

		
Lecture 10 – Introduction to Arduino Hardware using the Sparkfun Inventor’s Kit

Objectives: To introduce the Arduino hardware platform using the Sparkfun Inventor’s Kit (SIK), familiarize students with the hardware components included in the kit, teach them how to interface these components using MATLAB, and guide them in building circuits and control them through MATLAB programming.

The primary goal of this lecture is to enrich students with practice experience in interfacing components from the Sparkfun kit via MATLAB to develop real-world projects. Through this hands-on approach, students will improve critical thinking skills, stimulate creativity while broadening their understanding of circuits, electronics, and programming. The lecture will introduce the components in the Sparkfun Inventor’s Kit along, cover circuit building principles, explore communication with Arduino hardware using MATLAB and familiarize students with seeking digital and analog inputs using the Arduino microcontroller. Additionally, students will learn how to write analog and digital outputs, along with using a buzzer for playing tunes.

10.1 What is an Arduino?
An Arduino is an open-source hardware and software platform designed for creating a wide range of real-world electronic projects. It consists of a microcontroller board, which is the physical hardware, and an integrated development environment (IDE) for programming the board. For the purposes of this course, the software component is the MATLAB Support Package for Arduino Hardware. Arduino boards are equipped with input and output pins that allow you to connect a variety of sensors, actuators, and other electronic components. These boards are highly versatile and have gained popularity for their user-friendliness, making them accessible to both beginners and experienced engineers.

10.2 Why learn Arduino?
Learning to program an Arduino is an excellent introduction to the basics of microcontroller programming. By working directly with an Arduino board, students gain valuable hands-on experience and develop a deeper understanding of how their code interacts with the physical world. This practical approach enhances retention of programming principles as students can see the immediate impact of their coding efforts.

Furthermore, as Arduino's Pro line expands to include applications in various industries, students' acquired skills can seamlessly transition into real-world scenarios. This not only solidifies their understanding of engineering concepts and applications but also opens doors for professional development and acquiring experiential learning.

10.2.1 A few types of Arduino boards
Arduino Uno: Arguably the most popular Arduino board in the market, especially for entry-level microcontroller applications and students. This is the microcontroller used in this course. It is a versatile and user-friendly board with enough hardware to support a wide range of projects, from simple LED blinking to more complex robotics and automation applications. It is based on the ATmega328P microcontroller and has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a USB connection, a power jack, and a reset button.
[image: Picture of an Arduino Uno Redboard]
Figure 10.1: Arduino Uno [1]
Arduino Nano: It is a compact board, similar to Arduino UNO, with limited hardware and computational power but is suitable for projects with space constraints, such as wearable electronics, small robots, and embedded systems. It is based on the ATmega328 microcontroller and offers similar features to the Uno, including 14 digital input/output pins, 8 analog inputs, a USB connection, and a reset button.
[image: Picture of an Arduino Nano]
Figure 10.2: Arduino Nano [2]

Arduino Mega: This board is designed for projects that require more I/O and processing power than the Uno or Nano. It is suitable for large-scale projects such as home automation systems, CNC machines, 3D printers, etc. It is based on the ATmega2560 microcontroller and features 54 digital input/output pins (of which 15 can be used as PWM outputs), 16 analog inputs, a USB connection, a power jack, and a reset button.
[image: Picture of an Arduino Mega]
Figure 10.3: Arduino Mega [2]
Arduino MKR: This board, depending on the model, consists of compact and powerful boards that are designed for IoT (Internet of things) applications. They offer features like built-in Wi-Fi and Bluetooth connectivity, low power consumption, and a wide range of I/O options.
[image: Picture of an Arduino MKR1000 WiFi]
Figure 10.4: Arduino MKR1000 WiFi [2]

10.2.2 Arduino Uno Specifications in the Sparkfun Inventors Kit
In this course, the Sparkfun Inventor’s Kit is used, which is a popular Arduino-compatible board. To learn about the kit, its components, their specifications, and examples of circuits, the Sparkfun website link for the product can be referred.

10.2.3 Illustration of key features of the Arduino Microcontroller board
The Sparkfun RedBoard can be powered via either USB or a barrel jack connector. The USB options allows connection to a computer or a (5V regulated) USB wall charger.
[image: Annotated image of RedBoard]
Figure 10.5 Sparkfun RedBoard (Uno) Overview [3]
Reset Button: A manual resent switch that will restart the RedBoard and your code.
LEDs: Pin 13 is connected to one of the LED on the board, and the RX and TX LEDs indicate the receiving of data and transmitting of data to the Arduino from the computer. Also, there is an LED to indicate Power to the board.
Digital Pins: The digital pins (D0-D13) on the Arduino serve as both digital inputs and outputs. These allow the board to be communicate with the components such as pushbuttons, LEDs, sensors, etc. Pins marked with a tilde (~) can also function as analog outputs, enabling tasks like dimming LEDs or controlling servo motors.
Analog Pins: There are six analog input pins (A0-A5), each equipped with an analog-to-digital converter, allowing them to read in an analog voltage between 0 and 5V. These are useful when reading the output of a potentiometer or other analog sensors. Additionally, all six analog pins can be utilized as digital inputs and outputs as well.
Power Pins: These pins are used as power sources for other pieces of hardware (like LEDs, potentiometers, and other circuits that maybe connected to the breadboard). ‘VIN’ will have the voltage that the board gets to power it, usually 5V when powered through the USB. The ‘3.3V’ and ‘5V’ pins are regulated 3.3V and 5V voltage sources. The ‘GND’ pins are the common ground, i.e., the 0V reference for those voltage supplies.

10.2.4 Arduino Shields
Arduino shields are boards or modules that are designed to be mounted on top of an Arduino microcontroller board. They extend the functionality and capabilities of an Arduino board to control different devices, acquire data from the shields, making it easier to add features or interface with external hardware. Each Arduino shield is created to serve a specific function or set of functions; hence a variety of shields are available for a wide range of applications. A few examples of the shields are presented which allow users to customize their Arduino projects.

1. Motor Control Shield: A motor control shield simplifies the task of driving and controlling motor, making it suitable for robotic applications or any project requiring motor control. It lets you drive two DC motors with the Arduino board, controlling the speed and direction of each one independently.
2. LCD Display Shield: LCD display shields come with pre-attached screens, allowing you to display information, data, or messages on the screen. They are useful for creating user interfaces in various projects.
3. Sensor Shields: There are sensor shields available that can hold multiple sensors, such as temperature, humidity, light, and motion sensors. This makes it easy to integrate sensor modules into your project without wiring them individually.
4. GPS Shield: GPS shields can be used to add location and tracking capabilities to your projects. They communicate with GPS satellites to determine your device's geographical coordinates.
5. Wi-Fi Shield: With a Wi-Fi shield, your Arduino Uno can connect to Wi-Fi networks, enabling remote control and data exchange via the internet.
6. Ethernet Shield: This shield allows your Arduino Uno to connect to the internet and communicate over a local network. It's ideal for IoT projects and web-based applications.
7. Prototyping Shield: Prototyping shields provide a grid of holes for solderless connections, allowing you to create custom circuits and integrate additional components onto your Arduino Uno.
8. Wave Shield: This is an audio shield that allows you to play and manipulate audio files, making it an excellent choice for projects involving sound and music.
9. Relay Shield: A relay shield allows you to control high-voltage and high-current devices, such as lights, appliances, or industrial equipment, making it suitable for home automation and industrial automation projects.

The Motor Control Shield and the LCD Display Shield are included in the Sparkfun kit; however, other shields can be purchased for adding more functionality to projects. The advantage of using these shields is that it provides a hands-on practical introduction to electronics and embedded system, it is easy to use, allows for rapid prototyping and experimentation, and encourages creative problem-solving and innovation.
[bookmark: Aesthetics][bookmark: _bookmark83]
10.3 Communicating with Arduino
When writing programs, it is very likely that when compiling the code is done, some errors will be generated in the command window. When this happens, it is essential to be able to troubleshoot the code, find the error, and fix it. This process of locating and eliminating the errors is called debugging, and it is essential to make sure we have a successfully running program.

10.3.1 Tethered Approach (Physical Connection)
The tethered approach implies connecting the Arduino board to the MATLAB software using a USB cable to enable programming and data transfer. As MATLAB is an interpreted language, the USB cable has to be connected physically all the time while communicating with the Arduino board, this is the approach used in this course, and this is called the tethered approach.

[image: Computer and Arduino board connected with physical wire to illustrate a tethered approach]
Figure 10.6: Tethered Approach

10.3.2 Embedded Approach (Arduino IDE)
The embedded approach refers to a programming method where the microcontroller, once programmed, operates independently of a continuous physical connection to a computer. This method is commonly employed when using the Arduino IDE (Integrated Development Environment) but is not directly applicable when utilizing MATLAB.
[image: Computer and Arduino board connected with physical wire then remove to have a standalone operation of Arduino board.]
Figure 10.7: Embedded Approach

10.3.3 Why use MATLAB over the Arduino IDE
MATLAB presents itself as a better choice over the Arduino IDE in this course for several reasons:
1) The course introduces MATLAB programming language, without the requirement of knowing any other language, so it helps build on the MATLAB programming skills while interfacing with real-world applications.

2) MATLAB’s interactive environment allows for immediate feedback on Digital/Analog I/O instructions without the need to program, then compile, then upload, and execute each time, which helps in the rapid algorithm prototyping.

3) MATLAB code tends to be more compact and easier to understand than C programming, which uses higher-abstraction data types, vectorization, and initialization/allocation of all variables before using them. As a result, MATLAB program scales better with project complexity, and the task can be completed faster.

4) For wider-breadth projects that might include data analysis, signal processing, calculation, simulation, statistics, control design, data visualization, etc. MATLAB is better suited.

10.4 Introduction to Sparkfun Inventor’s Kit
[image: Picture of a Sparkfun Inventors Kit's components]
Figure 10.8: Sparkfun Inventor’s Kit – v4.1.2 [6]

The kit provided for the class includes components that will be used during the duration of the course and for the final project. Inside the kit, students will find the following components:
· The Redboard: a variation of the Arduino UNO (introduced earlier)
[image: Picture of Sparkfun Redboard from the Sparkfun kit]
Figure 10.9: Sparkfun RedBoard

· Breadboard: It is a circuit-building platform that allows you to connect multiple components without using a soldering iron.
[image: Picture of breadboard from the Sparkfun kit]
Figure 10.10: Breadboard

The anatomy of the breadboard can be illustrated with the figure below.
[image: Picture of the anatomy of the breadboard]
Figure 10.11: Anatomy of the breadboard

· Jumper Wires: Used to interface the components on the breadboard with the Sparkfun RedBoard
[image: Picture of jumper wires from the Sparkfun kit]
Figure 10.12 Jumper Wires

· LEDs (Light Emitting Diodes) The longer lead has a positive polarity, while shorter lead has a negative polarity. Current only flows in one direction through them, so correct orientation is important in the circuit.
[image: Picture of LEDs from the sparkfun kit, which have a positive pin (the longer lead)]
Figure 10.13: LEDs

· 10K and 330 Ohm resistors: These components restrict the flow of current, protecting sensitive components such as LEDs from excessive current.

[image: Picture of resistors from the sparkfun kit, the color band brown black orange is 10 Kohm resistor, while orange orange black is a 330 ohm resistor.]
Figure 10.14: 10KΩ and 330Ω resistors
Note: 10KΩ resistor has brown-black-orange-gold color bands, while the 330Ω resistor has orange-orange-brown-gold color bands.

· Potentiometer: In essence, it is a variable resistor. It has three pins, and between the first two or the last two pins, the resistance can vary by turning the dial on the potentiometer.
[image: Picture of a potentiometer from the sparkfun kit]
Figure 10.15: Potentiometer

· Temperature Sensor used to measure temperature in the surroundings.
[image: Picture of temperature sensor TMP36 from the sparkfun kit]
Figure 10.16: Temperature Sensor

· Piezo Buzzer: produces sound at different frequencies.
[image: Picture of a piezo buzzer from the Sparkfun kit]
Figure 10.17: Piezo Buzzer

· Push buttons: Momentary switches, act as switches only when they are pressed.
[image: Picture of pushbutton switches from the Sparkfun Inventor's kit]
Figure 10.18: Push button (Switches)

· Switch: Can only exist in one of two states: open or closed, it stays in the position it was last left in.
[image: A flip switch from the Sparkfun kit]
Figure 10.19: Flip switch

 LCD Display – displays 16 characters of strings on each line, can display 2 lines
[image: Picture of an LCD screen from the Sparkfun kit]
Figure 10.20: LCD Screen

· Photoresistor: Resistor whose resistance decreases when exposed to light
[image: Picture of a photoresistor from the Sparkfun kit]
Figure 10.21: Photoresistor

· Ultrasonic Sensor : Measures distance using ultrasonic waves bouncing back from surfaces.
[image: Picture of an ultrasonic sensor in the Sparkfun inventor's kit]
Figure 10.22: Ultrasonic Sensor (To measure distance)

· Motorized Driver – supplies the gear motors the necessary power and signal amplification to drive the motor. Helps manage motor speed, direction, and torque.
[image: Picture of the Motor Driver from the Sparkfun kit]
Figure 10.23: Motor Driver

· Gear Motors – Typically used where precise control over motor movement is required. For robotics projects.
[image: Picture of a gear motor from the Sparkfun kit]
Figure 10.24: DC Gear Motor

· Servo Motor – has three wires, one for power, one for ground, one for signal. When the right signal is sent through the signal wire, the servo motor will move a specific angle and stay there. The signal is sent through PWM signal, rotation is over a range of 0 to 180 degrees.
[image: Picture of a servo motor from the Sparkfun kit]
Figure 10.25: Servo Motor

10.5 Connecting Arduino Microcontroller in MATLAB
Start by ensuring that you have downloaded and unzipped ALL OF THE FILES from [Arduino Support Files] onto your computer’s desktop. After which you will use the included USB cable in your kit to connect the board to the computer. Then, open the [Find_Com_Ports] file and search for the port to which the Arduino is connected, it may show [wcn or FTDI (one of the two)]; once found, keep that port in mind. Open MATLAB and enter the following command: a = Arduino(‘Port’,’’board type’), since you are using an Arduino UNO variant, you will enter UNO in the board placeholder.

10.5.1 Helpful Tip
Create a MATLAB script that clears the workspace from “a” (assuming this is your Arduino variable) and run the Arduino-Matlab connection command. Name the script something recognizable and easy to remember like ConnectArduino.m so every time you start a new project, you can easily refresh your connection and prevent future unexpected errors!

10.6 Interacting with Arduino Microcontroller
In this section we will introduce functions that allow us to seek inputs from the Arduino microcontrollers, and generate outputs.

First, let’s dive into what are signals. In the most general of cases, they are functions that carry information about a parameter’s dependence on another parameter. In this case our electrical signal is a time-dependent function, meaning its function carries the power or energy that is going through a circuit with respect to time.

In this course, you will be dealing with Digital and Analog signals, though mostly digital, and there’s a great reason why. Analog signals are continuous, meaning they carry different and defined information in infinitely small portions of time, in calculus you may know this as delta(t) or dt, these signals can represent all natural phenomena, as they are inherently analog; however these present a problem to circuits as they are generally hard to work with given how Arduino circuits, and computers as a whole, are digital. Digital Signals on the other hand are discrete, which means they are defined for specific instances of time and are non-continuous; these signals are easier to manage and require less storage, making them perfect for digital logic operations, which is what we are going to work with primarily in this course.

10.6.1 writeDigitalPin() function to write digital outputs
The student can control a signal going into the microcontroller and out one of the digital pins, which are labeled D’N’ on the RedBoard, to perform logic electric tasks, such as enabling or disabling devices at will. This is done through the writeDigitalPin() command, which has 3 inputs. The first is used to specify the device you are working on from the workspace, since we have previously defined our board as “a” while initializing it, this is the calling variable we must use. The second slot is used to specify what Digital pin the user wants to perform an operation on, and finally the third slot of the command is reserved for the intensity of the digital signal we want to input, in this case, it can be either 1 or 0 representing HIGH or LOW.

10.6.1.1 Blinking LED Light Example
To emphasize this, we can make a small project involving the control of an LED using the microcontroller. Have at hand the breadboard with the Arduino, a 330-ohm resistor, LED, connecting wires (also known as jumper wires), and the USB cable. The objective is to use a digital pin, in this case ‘D13’ and connect it to the LED to alternate between HIGH and LOW logic signals.

1. Using the breadboard and wires, connect the ‘D13’ pin from the redboard to the positive leg of the LED.
2. On a different rail, connect the 330-ohm resistor to the negative leg of the LED, and have the other leg of the resistor connect to the negative rail of the breadboard.
3. Finally, connect the Arduino’s 5V pin to the positive rail of the board, and the ground (GND) pin to the negative rail; and connect the Arduino board to MATLAB via USB and command.
[image: Image of Arduino Circuit for blinking an LED]
Figure 10.26: Circuit 1 - Blinking LED

Now that the hardware is set up, we can go through the provided code. What this code performs, in essence, is cycle through twenty iterations of ‘i’ performing the task of sending a HIGH signal to the D13 pin, waiting half a second, returning it to LOW, and waiting another half second before restarting the loop.

10.6.2 readDigitalPin() function to seek digital input
To detect the digital signal or status of a pin, we can use the command readDigitalPin(), which has two inputs, similar to that presented in writeDigitalPin, with the only difference being that the user does not send a signal at the end, which makes sense given that we are trying to read a pin’s status.

10.6.2.1 Button detection example
We can test this command by means of this simple button gate circuit. For hardware, you will need one of the colored pushbuttons, a 10 KOhm resistor, and the rest of the essential materials for connection.
[image: Image of Arduino Circuit using push button to read digital input]
Figure 10.27: Circuit 2 – Push button Circuit

1. Using the breadboard and wires, connect the ‘D2’ from the redboard to one of the legs of the pushbutton.
2. Connect the 100 Ohm resistor on the same row as the previously connected leg to the positive rail of the breadboard.
3. Connect the Arduino’s 5V to the positive rail of the board, and the ground pin to the negative rail; and connect the Arduino board to MATLAB via USB and command.

We can test whether the button is pressed or not by entering the command readDigitalPin directed to the D2 pin. When the button is in a released state, you should receive a “1” as an output since the D2 pin is connected directly to the 5V connection of the board; when the button is pressed and the command is run, you should receive a “0” as an output since the connection to ground overrides the connection through the resistor.

10.6.3 readVoltage() function to seek analog input
Similar in format to the readDigitalPin command, we can read sampled Analog signals by means of the readVoltage() command. The only difference in format to digital pin operations is that the user will now use A’N’ string designations to the Analog pin one wishes to read. In this example for the potentiometer, also known as a variable resistor, we can read the voltage difference across the potentiometer by using its middle pin connected to an analog pin (In this case, A0). The user can test different voltages by varying the potentiometer’s value.
[image: Image of Arduino Circuit using potentiometer to read analog input]
Figure 10.28: Circuit 3 – Potentiometer Circuit

10.6.4 Temperature Sensor Example (readVoltage())
Important Notes about the Sensor: The temperature sensor can only be connected to a circuit in one direction, consider the flat side of the sensor as the front.

[image: Image of Arduino Circuit using temperature sensor to read analog input]
Figure 10.29: Circuit 4 – Temperature Sensor Circuit

We can test this command by means of this simple Temperature measurement circuit. You will need a temperature sensor which, to those familiar, is similar in shape to a transistor, and all other essential Arduino connection materials.

1. Connect the positive leg of the sensor to the positive rail of the breadboard, and the negative leg to the negative rail of the breadboard. Finally, connect the middle leg of the sensor to the ‘A0’ pin of the breadboard. Be careful with these connections as they may cause damage to the sensor or board if connected improperly.

2. Finish these connections by connecting the 5V pin to the positive rail of the breadboard, and the GND pin to the negative rail of the breadboard.

Now that the hardware is fully connected, create the following script named tempReadings.m. The script initializes the x matrix and numReadings variable, which is the number of samples the code will pick up from the temperature sensor through the A0 pin. Then, a loop is started performing the operation, and within the loop, the voltage of the sensor is read, it is then converted to Celsius and consequently to Fahrenheit, and finally, the reading is displayed along with a plot of the temperature readings.

10.6.5 writePWMVoltage() function to simulate analog uutput
Since there is no function available to write analog output, we use the digital pin with pulse width modulation (PWM) to generate a fast-switching digital signal with the average voltage specified, so it seems like it is representing an analog output. Consider that only some digital pins have PWM capabilities, and they are the ones with a ~ labeled before their pin number. Use the command writePWMVoltage, which is similar to writeDigitalPin in format, however, the last value is reserved for the voltage value you want to output, typically between the range of 0 and 5 V.

[image: Image of Arduino Circuit using LED on the PWM pin to simulate analog output]
Figure 10.30: Circuit 5 – PWM Signal Circuit

10.6.6 playTone() function (Buzzer Application)
The playtone function is a function that allows us to play tones and consequently, music via the buzzer module included in the kits. The inputs for the command are the board ID on your workspace, the output pin (which has to be PWM), the frequency, and the duration of the tone in said frequency. In the slide, there's a table for the fourth-octave notes in standard music and an example of how to apply the code to the buzzer with the note A for two seconds.
[image: Image of Arduino Circuit using piezo buzzer to play tones]
Figure 10.31: Circuit 6 – Piezo Buzzer Circuit

The following activity applies the buzzer to play a melody. This melody represented by the string “tune”, consists of the musical notes in the ‘notes’ array, each with its corresponding frequency in the freqs array, mapped using the strcmp command. The duration of each note is derived from the ‘beats’ array, followed by a pause of the same duration.

10.7 Explore Further
You can further explore Sparkfun website or the guide that came with the kit to learn more about the components in the kit and how they work. Explore Arduino projects online and try some of the projects on your own.

10.8 Conclusion/Summary of Key Points
The goal of this lecture is to provide a hands-on demonstration of the Arduino Sparkfun kit and its components, and interfacing with them as a tutorial. Students are introduced to the Arduino Microcontroller in SIK, Signal Basics, explore components, and interface with MATLAB with the basics of reading and writing of signals on Arduino pins. (readDigitalpin, writeDigitalpin, writePWMVoltage, readVoltage, playTone).

References (images)
[1] https://www.sparkfun.com/products/13975
[2] https://www.arduino.cc/en/hardware#kits
[3] https://learn.sparkfun.com/tutorials/redboard-hookup-guide/all
[4] https://store-usa.arduino.cc/products/arduino-motor-shield-rev3
[5] https://www.sparkfun.com/products/709
[6] https://www.sparkfun.com/products/21301

Last modified May 12, 2024

[image: Creative Commons License] This work by Salman Siddiqui & Rami Haddad is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 4.0 International License

1

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image1.png

image2.png

image33.png

Lecture

10

–

Introduction to

Arduino Hardware

using the

Sparkfun Inventor

’

s Kit

Objectives:

To introduce the Arduino

hardware platform using the

Sparkfun Inventor

’

s Kit

(SIK),

familiarize students

with

the

hardware components

included

in

the kit, teach them how to

interface

these components using MATLAB

,

and guide them in building

circuit

s and control

them through MATLAB programming.

The

primary

goal of this lecture is to

enrich students with practice experience in interfacing

components from the Sparkfun kit via MATLAB to develop real

-

world projects. Through this

hands

-

on approach, students will improve

critical thinking

skills

,

stimulate

creativ

ity

while

broadening

their

understanding of circuits, electronics,

and

programming

.

Th

e

lecture will

introduce the components in the Sparkfun Inventor

’

s Kit along

,

cover

circuit building

principles

,

explore

communicat

ion

with Arduino hardware using MATLAB and familiariz

e students with

seeking

digital and analog inputs using the Arduino microcontroller

.

Additionally,

students will

learn how to write analo

g and digital outputs,

along with using a buzzer

for

play

ing

tunes.

10

.1

What is

an

Arduino?

An Arduino is an open

-

source hardware and softwa

re platform designed for creating a wide

range of

real

-

world

electronic projects. It consists of a microcontroller board, which is the

physical hardware, and an integrated development environment (IDE) for programming the

board.

For the purposes of this co

urse, the software component is the MATLAB Support

Package for Arduino Hardware.

Arduino boards are equipped with input and output pins that

allow you to connect a variety of sensors, actuators, and other electronic components. These

boards are highly vers

atile and have gained popularity for their user

-

friendliness, making them

accessible to both beginners and experienced engineers.

10.2 Why learn Arduino?

L

earning to program an Arduino is an excellent introduction to the basics of

microcontroller

programming. By working directly with an Arduino board, students gain valuable hands

-

on

experience and develop a deeper understanding of how their code interacts with the physical

world. This practical approach enhances retention of program

ming principles as students can see

the immediate impact of their coding efforts.

Furthermore, as Arduino's Pro line expands to include applications in various industries,

students' acquired skills can seamlessly transition into real

-

world scenarios. This not only

solidifies their understanding

of engineering concepts and applications

b

ut also opens doors for

professional development and

acquiring experiential learning.

10

.

2

.1

A few types of Arduino boards

Arduino U

no

: Arguably the most popular Arduino board in the market, especially for

entry

-

level microcontroller applications and stu

dents.

This is the microcontroller used in

this course.

It is a versatile and user

-

friendly board with enough hardware to support

a

wide range of projects, from simple LED blinking to more complex robotics and

Lecture 10 – Introduction to Arduino Hardware using the

Sparkfun Inventor’s Kit

Objectives: To introduce the Arduino hardware platform using the Sparkfun Inventor’s Kit

(SIK), familiarize students with the hardware components included in the kit, teach them how to

interface these components using MATLAB, and guide them in building circuits and control

them through MATLAB programming.

The primary goal of this lecture is to enrich students with practice experience in interfacing

components from the Sparkfun kit via MATLAB to develop real-world projects. Through this

hands-on approach, students will improve critical thinking skills, stimulate creativity while

broadening their understanding of circuits, electronics, and programming. The lecture will

introduce the components in the Sparkfun Inventor’s Kit along, cover circuit building principles,

explore communication with Arduino hardware using MATLAB and familiarize students with

seeking digital and analog inputs using the Arduino microcontroller. Additionally, students will

learn how to write analog and digital outputs, along with using a buzzer for playing tunes.

10.1 What is an Arduino?

An Arduino is an open-source hardware and software platform designed for creating a wide

range of real-world electronic projects. It consists of a microcontroller board, which is the

physical hardware, and an integrated development environment (IDE) for programming the

board. For the purposes of this course, the software component is the MATLAB Support

Package for Arduino Hardware. Arduino boards are equipped with input and output pins that

allow you to connect a variety of sensors, actuators, and other electronic components. These

boards are highly versatile and have gained popularity for their user-friendliness, making them

accessible to both beginners and experienced engineers.

10.2 Why learn Arduino?

Learning to program an Arduino is an excellent introduction to the basics of microcontroller

programming. By working directly with an Arduino board, students gain valuable hands-on

experience and develop a deeper understanding of how their code interacts with the physical

world. This practical approach enhances retention of programming principles as students can see

the immediate impact of their coding efforts.

Furthermore, as Arduino's Pro line expands to include applications in various industries,

students' acquired skills can seamlessly transition into real-world scenarios. This not only

solidifies their understanding of engineering concepts and applications but also opens doors for

professional development and acquiring experiential learning.

10.2.1 A few types of Arduino boards

Arduino Uno: Arguably the most popular Arduino board in the market, especially for

entry-level microcontroller applications and students. This is the microcontroller used in

this course. It is a versatile and user-friendly board with enough hardware to support a

wide range of projects, from simple LED blinking to more complex robotics and

