		[image: Georgia Southern University Logo]

		
Lecture 18 – User-Defined Function: Optional Arguments & Other Function Types

Objectives: To become familiar with optional arguments that can be used in user-defined functions to enhance functionality of user-defined functions, and to learn about other function types.

The overall goal of this lecture is to introduce optional arguments in user-defined function, differentiate between local and global variables, understand anonymous functions and apply Function functions.

[bookmark: Aesthetics][bookmark: _bookmark83]18.1 Optional Arguments
When we are writing a function, we can include some optional arguments to check the amount of input arguments and generate an error message if needed. Here is a list of useful optional argument functions:

Table 18.1: Optional Arguments Function and Description
	nargin
	This function returns the number of input arguments that were used when the function was invoked.

	nargout
	This function returns the number of output arguments that were used when the function was invoked.

	nargchk
	This function returns the standard error message if the function is invoked with too few or too many arguments.

	error
	This function displays an error message and terminates the function indicating that the argument errors are fatal.

	warning
	This function displays a warning message and continues function operation indicating that the argument errors are not fatal, and execution can continue.

18.1.1 Example 1: Applying nargin
To calculate distance of two cartesian points on a 2D plane, we will need 4 input variables. We can include the nargin and error command to generate an error when the input arguments are not 4.
	function d = distance(x1,y1,x2,y2)
% distance.m - This function will calculate the distance
% between two points (x1,y1) and (x2,y2)
if nargin ~= 4 % Check the if the input arguments equal 4
 msg = 'You must input two Cartesian points (x1,y1,x2,y2)';
 error(msg); % End the execution and display error message
end

d = sqrt((x1-x2).^2 + (y1-y2).^2);

If we try to call this function with input not equal to 4, the program with not execute and an error message will be displayed in command window.
	>> distance(1, 2)
Error using distance
You must input two Cartesian points (x1,y1,x2,y2)

18.1.2 Example 2: Use of nargin
Write a function that creates a matrix filled with ones. Your function should either take one argument and create a square matrix r × r or two arguments and create an r × c.
	function M = CreateOnesMatrix(r,c)
% CreateMatrix.m - This function will create a matrix with the size
% (r x c) or (r x r) if one argument was only used
if nargin == 1
 totalrow = r;
 totalcol = r;
elseif nargin == 2
 totalrow = r;
 totalcol = c;
else
 error('You must input either one or two arguments.');
end

for x=1:1:totalrow % Go through each row
 for y=1:1:totalcol % Go through each col
 M(x,y) = 1;
 end
end

18.1.3 Functions with NO Input & NO Output
Input and Output arguments are not a requirement for creating a function, a function with no input & output will have a form like “function func()”. An example will be the following function that plots a star on the polar graph.
	function DrawStar()
theta = pi/2:0.8*pi:4.8*pi;
r = ones(1,6);
polar(theta,r)

18.2 Local and Global Variable
18.2.1 Local Variable
Variables inside a function in an m-file are known as local variables. Local variables are not defined outside of the function i.e., the Workspace. For example, in the following function all the variables: a, b, c, x, val, ax2 and bx, are local variables that cannot be accessed outside of this function.
	function val = Poly2(a, b, c, x)
ax2 = a.*x.*x;
bx = b.*x;
val = ax2 + bx + c;

18.2.2 Global Variable
Global variables are available to all functions in a program. Even though global variables are useful in some instances, they should not be used generally. It is usually reserved for a constant that will not be modified.

Global variables are declared in the workspace using keyword “global” like shown in the following function:
	function d = FreeFall(t)
global g; 	% explicitly define the global variable g
d = 0.5 .* g .* t .* t;

18.3 Other Function Types
Other than the function we have learned so far, there are some types of functions in MATLAB that can be used to simplify some programs.
18.3.1 Anonymous Function
Anonymous function is a simple (one-line) user-defined function that is defined without creating a separate function file (M-file). Anonymous functions are extremely useful when functions require other functions such as inputs.

It can be constructed in the form of name of the anonymous function, an equal to sign, followed by a “@” symbol, a list of input arguments in parentheses, followed by the mathematical expression, like as follows:
	name = @(arglist) expr

18.3.2 Example: Function with one variable
Define the following function as an anonymous function for x, with its name FA

Solution:
	FA = @ (x) exp(x^2)/sqrt(x^2+5)

To solve the equation for x=2, we will call the function like how we would in math:
	>> res=FA(2)

res =

 18.1994

18.3.3 Example: Function with more variables
Define the following function as an anonymous function for x and y, with its name HA.

Solution:
	HA = @ (x,y) 2*x^2 - 4*x*y + y^2

Solve the equation for x=2 and y=3
	>> res=HA(2, 3)

res =

 -7

18.3.4 Subfunction
Complex functions can be implemented by grouping smaller functions together in a single file. These auxiliary functions are referred to as subfunctions. One of the examples of subfunctions is store Average3 and Add3 in a file named Average3.m, where the main function is Average3 while Add4 is a helper function inside the Average3.m file.
	function avg = Average3(x, y, z)
avg = Add3(x,y,z)/3;

function s = Add3(x, y, z)	%subfunction (helper function)
s = x + y + z;

18.3.5 Function functions
Function functions are defined as a functions that uses other functions as its argument. Here is a list of MATLAB built-in functions that takes user-defined function as input arguments:

Table 18.2: Common MATLAB Function Functions
	Function Name
	Description

	fzero
	Finds zero of a single-variable function

	integral
	Numerically integrates a function

	fplot
	Plots a function

18.3.6 fzero Function
As mentioned in the above table, fzero function finds zero of a single-variable function. It follows the following syntax: x=fzero(@functionName, range)

	As practice, let us find the zeros of the following function:

	To start let us create a function with respect to the expression:
	function [y] = fun(x)
y = x + exp(-x) - 2;

Before we begin to verify the zeros of the function, let us plot the function to estimate where the zeros should be.
[image: MATLAB plot of fzero function]
Figure 18.1: Plot of fzero Practice

Notice the given function should have two solutions near x=-1 and x=2. Now, let us call the fzero function in the command window to find the exact value.
	>> x1=fzero(@fun, -5)

x1 =

 -1.1462

>> x2=fzero(@fun, 5)

x2 =

 1.8414

18.3.7 fplot Function
The fplot function plots a function within set limits. It follows the following syntax: fplot(@functionName, limits).

As an example, let us plot the two following functions between -20 and 20.
 and
As usual, we start with creating a function that follows the given expressions:
	function [y] = fun(x)
y(1) = 200*sin(x)./x;
y(2) = x.^2;

After that we will call the fplot function in the command window and add title, label and legend to the graph:
	>>fplot(@fun4,[-20,20]);
>>title('Plotting 200*(sin(x))/x and x^2 in the range [-20,20]');
>> xlabel('X-Axis'); ylabel('Y-Axis'); legend('200*sinx/x','x^2');

[image: Matlab plot of two functions called as input to the fplot() function]
Figure 18.3: Plotting with fplot function

18.3.8 integral Function
The integral function will numerically integrate the input function with the input limits. It follows the following syntax: x=integral(@functionName, lowerLimit, higherLimit).

As a practice, let us find the answer for the following definite integral:

Again, we start with creating a function with respect to the expressions:
	function [y] = fun(x)
y = 1./(x.^3-2*x-5);

After that we will call the integral function in the command window with the given limits to find the result.
	>> y = integral(@fun,0,2)

y =

 -0.4605

18.3.9 Problem 1
Find the integral of using Function functions. Name your function as prob1. Then illustrate the call to this function in the command window.

Solution:
Function:
	function [y] = prob1(x)
y = x.*exp(-x.^0.8)+0.2;

Command Window:
	>> q = integral(@prob1,0,8)

q =

 3.1604

18.4 Explore Further
To further explore the concepts covered in this lecture, you can refer to Mathworks documentation for nargin, nargout, anonymous functions, and try them in solving problems.

18.5 Conclusion/Summary of Key Points
The overall goal of this lecture was to introduce the optional arguments available when defining user-defined functions, understanding that functions have their own workspace, so its variables are local variables, and that there are other function types as well such as anonymous functions, subfunctions, and function functions. The key points are captured as follows:
1) nargin commands inside the function come right after the function definition line
2) All function workspace is local and not shared by other functions or command window. Hence, local variable are defined and exist only inside the function. Global variables are used to define constants and can be called inside the function.
3) Anonymous functions are one line functions
4) Subfunctions are helper function inside another function
5) Function functions are functions that use other user-defined functions as its input. Examples of function functions covered are: fzero, fplot, and integral.

Last modified May 12, 2024

[image: Creative Commons License] This work by Salman Siddiqui & Rami Haddad is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 4.0 International License

1

image3.png

image1.png

image2.png

image4.png

Lecture

1

8

–

User

-

Defined Function: Optional Arguments & Other

Function Types

Objectives:

To become familiar with optional arguments that can be used in user

-

defined

functions to enhance functionality of user

-

defined functions, and to learn about other function

types.

The overall goal of this lecture is to

introduce optional arguments in use

r

-

defined function,

differentiate

betwe

en

local and global variables, understand anonymous function

s

and apply

Function functions.

1

8

.1

Optional Arguments

When we are writing a function, we can include some optional arguments to check the amount of

input

arguments

an

d gene

rate

an error

message

if needed. Here is a list of useful optional

argument functions:

Table 18.1:

Optional Arguments Function and Description

nargin

This function returns the number of input arguments that were used when the

function was

invoked.

nargout

This function returns the number of output arguments that were used when the

function was invoked.

nargchk

This function returns the standard error message if the function is invoked with

too few or too many arguments.

error

This functi

on displays an error message and terminates the function indicating

that the argument errors are fatal.

warning

This function displays a warning message and continues function operation

indicating that the argument errors are not fatal, and execution can

continue.

1

8

.1.1

Example 1: Applying nargin

To calculate distance of two cartesian points on a 2D plane, we will need 4 input

variables. We can include the

nargin

and

error

command to

generate

an error when the

input arguments are not 4.

function

d = distance(x1,y1,x2,y2)

% distance.m

-

This function will calculate the distance

% between two points (x1,y1) and (x2,y2)

if

nargin ~= 4

% Check the if the input arguments equal 4

msg =

'You must input two Cartesian points (x1,y1,x2,y2)'

;

error(msg);

% End the

execution and display error message

end

d = sqrt((x1

-

x2).^2 + (y1

-

y2).^2);

If we

try to call this function with input not equal to 4, the program with not execute and

an error message will be displayed in command window.

Lecture 18 – User-Defined Function: Optional Arguments & Other

Function Types

Objectives: To become familiar with optional arguments that can be used in user-defined

functions to enhance functionality of user-defined functions, and to learn about other function

types.

The overall goal of this lecture is to introduce optional arguments in user-defined function,

differentiate between local and global variables, understand anonymous functions and apply

Function functions.

18.1 Optional Arguments

When we are writing a function, we can include some optional arguments to check the amount of

input arguments and generate an error message if needed. Here is a list of useful optional

argument functions:

Table 18.1: Optional Arguments Function and Description

nargin This function returns the number of input arguments that were used when the

function was invoked.

nargout This function returns the number of output arguments that were used when the

function was invoked.

nargchk This function returns the standard error message if the function is invoked with

too few or too many arguments.

error This function displays an error message and terminates the function indicating

that the argument errors are fatal.

warning This function displays a warning message and continues function operation

indicating that the argument errors are not fatal, and execution can continue.

18.1.1 Example 1: Applying nargin

To calculate distance of two cartesian points on a 2D plane, we will need 4 input

variables. We can include the nargin and error command to generate an error when the

input arguments are not 4.

function d = distance(x1,y1,x2,y2)

% distance.m - This function will calculate the distance

% between two points (x1,y1) and (x2,y2)

if nargin ~= 4 % Check the if the input arguments equal 4

 msg = 'You must input two Cartesian points (x1,y1,x2,y2)';

 error(msg); % End the execution and display error message

end

d = sqrt((x1-x2).^2 + (y1-y2).^2);

If we try to call this function with input not equal to 4, the program with not execute and

an error message will be displayed in command window.

