		[image: Georgia Southern University Logo]

		
Lecture 19 – Cell Arrays

Objectives: To introduce Cell Arrays and to create and use Cell Arrays in MATLAB.

The overall goal of this lecture is to introduce Cell Arrays and describe their advantages. Introduce how to define cell array, use functions to view cell arrays, and evaluate code with cell arrays to determine the result of the code.

[bookmark: Aesthetics][bookmark: _bookmark83]19.1 What are Cell Arrays?
Recall from the previous lectures, we have covered four types of data types so far. They are: Double, Character, Logical, and Symbolic. This lecture will cover a new data type called Cell Arrays.

Cell array is a data type that stores values of different types in indexed data containers called cells. Each index can be a different data type, this allows us to give one name to a set of data that belong together.

Cell arrays are extremely flexible to store data that are different type but belongs in one place. It is also heavily used internally in MATLAB.

[image: Image of the data inside a cell array]
Figure 19.1: Visualization of Cell Array

19.2 Creating Cell Arrays
There are two ways to create cell arrays, by pre-allocation using the cell() function, or by the assignment operator and using braces to define the cell arrays.

19.2.1 Pre-Allocation
One of the ways to create a cell array is by using MATLAB function cell() to pre-allocate an empty cell array.
	>> a=cell(2,3)

a =

 2×3 cell array

 {0×0 double} {0×0 double} {0×0 double}
 {0×0 double} {0×0 double} {0×0 double}

When we double click the cell array in workspace a window will pop up displaying the content of the cell array.

[image: image of cell array "a" initialized with cell() function with empty matrix initially in the cells.]
Figure 19.2: Cell Array Created with Pre-Allocation Method

19.2.2 Assignment { }
Like normal arrays, cell arrays can be created using the assignment operator, i.e., the “equal to” sign. However, instead of using parentheses, cell arrays assignment will use braces { }. Similar to normal arrays, columns are separated with commas (or spaces), and rows are separated with semicolons.

For example, the following command will create a cell array b:
	>> b={[1 2],17,[2;4];3-4i,'Hello', eye(3)}

with its content displayed in Figure 19.3.

[image: image of cell array "a" from the workspace is captured after being created using braces]
Figure 19.3: Cell Array Created with Assignment Braces

19.3 Functions to use with Cell Arrays
We will introduce two functions to visualize information inside a cell array: celldisp and cellplot

19.3.1 celldisp
The celldisp function displays cell array contents. Let us call the celldisp function using the cell array b we created in the last section.
	>> celldisp(b)

b{1,1} =

 1 2

b{2,1} =

 3.0000 - 4.0000i

b{1,2} =

 17
	b{2,2} =

Hello

b{1,3} =

 2
 4

b{2,3} =

 1 0 0
 0 1 0
 0 0 1

19.3.2 cellplot
The cellplot function will display graphical structure of cell array as colored boxes. Let us call the cellplot function with the same cell array b.
	>> cellplot(b)

[image: Image of the data inside a cell array by using the cellplot function]
Figure 19.4: Illustration of Cell Array Using cellplot Function

19.4 Evaluating Cell Arrays
When evaluating cell arrays it is important to note that cell arrays are defined using braces { } but parenthesis () can also be used, however, it has a different purpose. Let’s first explain the difference before evaluating cell arrays.

19.4.1 Difference between { } and ()
In cell arrays, {} are used for creating and displaying the contents of a cell array. For example:
	>> a{1, 1}=[1 3 7; 2 0 6; 0 5 1];

On the other hand, () will refer only to the cell index (the structure of the data) while { } will refer to the contents of the cell. For example:
	>> a(1, 1)

ans =

 1×1 cell array

 {3×3 double}
	>> a{1, 1}

ans =

 1 3 7
 2 0 6
 0 5 1

19.4.2 Evaluation of Cell Arrays by Assignment
We can use { } with index inside to assign content to a specific location in a cell array. For example:
	a{1,1}=[1 3 -7; 2 0 6; 0 5 1];
a{1,2}='This is a text string';
a{2,1}=[3+4i -5; -10i 3-4i];
a{2,2}=[];

In this example, the braces are on the left side, and will define the content into the cell arrays as mentioned using the assignment operator. Figure 19.5 illustrates the contents of the arrays that was defined in the code.

[image: image of cell array "a" captured after creating them using braces on the lef side of the definition.]
Figure 19.5: Cell Arrays Created with {} Assignment

19.4.3 MATLAB Practice Session
In this part of lecture, we will define a cell array a in the command below.
	a{1,1} = [1 2 3; 4 5 6; 7 8 9];
a(1,2) = {'Comment line'};
a{2,1} = j;
a{2,2} = a{1,1} – a{1,1}(2,2);

Then evaluate the following questions without MATLAB, then verify using MATLAB.
i. a(1,1)			
ii. a{1,1}		
iii. 2*a(1,1)		
iv. 2*a{1,1}	
v. a{2,2}			
vi. a(2,3) = {[-17; 17]}
vii. a{2,2}(2,2)	
viii. What is the content of a(2,1)?

Solution:
i. a(1,1)
As we learned in the previous section, () will refer to the structure of the data. So, we should expect the output to be “3x3 double”.
	>> a(1,1)

ans =

 1×1 cell array

 {3×3 double}

ii. a{1,1}
{ } refers to the contents of the cell, therefore, we should expect the output to be the 3x3 double array.
	>> a{1,1}

ans =

 1 2 3
 4 5 6
 7 8 9

iii. 2*a(1,1)
() refers to the structure of the cell, therefore, cannot be multiplied. We should expect an error.
	>> 2*a(1,1)
Operator '*' is not supported for operands of type 'cell'.

iv. 2*a{1,1}
From part ii, we know that a{1,1} is a 3x3 double array. Therefore, the result should be the two times scalar multiple of part ii.
	>> 2*a{1,1}

ans =

 2 4 6
 8 10 12
 14 16 18

v. a{2,2}
Similar to part ii, the result should be the a{1,1} - a{1,1}(2,2). Which will be the array from part ii with 5 subtracted elementwise.
	>> a{2,2}

ans =

 -4 -3 -2
 -1 0 1
 2 3 4

vi. a(2,3)={[-17;17]}
This will redefine the content of cell (2, 3) with a 2x1 double array, and since cell location a{1,3} was not previously defined, it defaults to an empty matrix.
	>> a(2,3)={[-17; 17]}

a =

 2×3 cell array

 {3×3 double } {'Comment line'} {0×0 double}
 {[0.0000 + 1.0000i]} {3×3 double } {2×1 double}

vii. a{2,2}(2,2)
We have already determined that a{2,2} is a 3x3 double array; therefore, a{2,2}(2,2) is the element at second row second column of the array, which is 0.
	>> a{2,2}(2,2)

ans =

 0

viii. What is the content of a(2,1)? Is it an alphabet or complex number.
It is complex number. Because j is reserved as a complex variable, and characters should have quotation marks around them.
	>> a(2,1)

ans =

 1×1 cell array

 {[0.0000 + 1.0000i]}

19.5 Explore Further
To further explore the concepts covered in this lecture, you can refer to Mathworks documentation for cell arrays, and also check out MATLAB Marina website to learn more about them.

19.6 Conclusion/Summary of Key Points
The overall goal of this lecture was to introduce a new data type, cell array, and learn about how to define and evaluate it correctly along with learning its advantages. The key points are captured as follows:
1) Cell array is a data type that stores values of different types in indexed data containers called cells.
2) Advantages of Cell Arrays includes keeping data in one place, flexible, used in internal MATLAB structures and in Graphical User Interface
3) There are two ways to define cells: Pre-allocate using cell() function or using assignment operator.
4) When using assignment operator, need to use braces {} on left side or right side for proper definition of Cell Arrays.
5) Look closely at what would be considered legal and illegal definitions of Cell Arrays paying attention to the proper use of braces { } when defining cell arrays and when using them to access contents inside the cells.

Last modified May 12, 2024

[image: Creative Commons License] This work by Salman Siddiqui & Rami Haddad is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 4.0 International License

1

image3.png

image4.emf
17

3-4iHello

image5.png

image6.png

image1.png

image2.png

image7.png

Lecture

1

9

–

Cell Arrays

Objectives:

To introduce Cell Arrays and to create and use Cell Arrays in MATLAB.

The overall goal of this lecture is to

introduce

Cell Arrays and describe their advantages. Introduce

how to define cell array, use functions to view cell arrays, and evaluate code with cell arrays to

determine the result of the code.

1

9

.1

What

are

Cell Arrays?

Recall from the previous lectures, we have covered four types of data types so far. They are:

Double, Character, Logical, and Symbolic. This lecture will cover a

new data type

called

Cell

Arrays

.

Cell array is a data type that stores values of different

types in indexed data containers called

cells.

Each index can be a different data typ

e, this allows us to give one name to a set of data that

belong together.

Cell arrays are extremely flexible to store data that are different type but belongs in one pla

ce. It

is also heavily used internally in MATLAB.

Figure 19.1: Visualization of Cell Array

1

9

.2

Creat

ing

Cell Arrays

Th

ere are two ways to create cell array

s, by pre

-

al

location

using the cell() function, or by the

assignment operator and using braces to

define the cell arrays.

1

9

.2.1

Pre

-

Allocation

One of the

ways

to create a cell array is by using MATLAB function

cell

()

to pre

-

allocate

a

n

empty cell array.

>> a=cell(2,3)

a =

2×3 cell array

{0×0 double} {0×0 double} {0×0 double}

{0×0 double} {0×0 double} {0×0 double}

Lecture 19 – Cell Arrays

Objectives: To introduce Cell Arrays and to create and use Cell Arrays in MATLAB.

The overall goal of this lecture is to introduce Cell Arrays and describe their advantages. Introduce

how to define cell array, use functions to view cell arrays, and evaluate code with cell arrays to

determine the result of the code.

19.1 What are Cell Arrays?

Recall from the previous lectures, we have covered four types of data types so far. They are:

Double, Character, Logical, and Symbolic. This lecture will cover a new data type called Cell

Arrays.

Cell array is a data type that stores values of different types in indexed data containers called

cells. Each index can be a different data type, this allows us to give one name to a set of data that

belong together.

Cell arrays are extremely flexible to store data that are different type but belongs in one place. It

is also heavily used internally in MATLAB.

Figure 19.1: Visualization of Cell Array

19.2 Creating Cell Arrays

There are two ways to create cell arrays, by pre-allocation using the cell() function, or by the

assignment operator and using braces to define the cell arrays.

19.2.1 Pre-Allocation

One of the ways to create a cell array is by using MATLAB function cell() to pre-allocate

an empty cell array.

>> a=cell(2,3)

a =

 2×3 cell array

 {0×0 double} {0×0 double} {0×0 double}

 {0×0 double} {0×0 double} {0×0 double}

