		[image: Georgia Southern University Logo]

		
Lecture 17 – Data Modeling 

Objectives:  To learn the importance of data modeling in various engineering applications and to apply regression and interpolation techniques in MATLAB to perform data modeling.

The overall goal of this lecture is to describe the importance of data modeling in applications. After this lecture the students should be able to apply additional plotting annotations to data graphs and understand data modeling tools such as regression and interpolation in MATLAB. 

[bookmark: Aesthetics][bookmark: _bookmark83]17.1 Data Modeling
Data modeling and curve fitting is used to capture the trend in the data by assigning a single function across the entire range. 

17.1.1 Additional Plot Annotations
In previous lectures, we learned about how to embellish plots by changing color, style, and marker types for a line. However, we can also vary the width, color of marker and the size of markers by adding the following options to the plot function: ‘MarkerFaceColor’, ‘MarkerEdgeColor’, ‘MarkerSize’, ‘LineWidth’. 
	plot(x, y, 'o','MarkerFaceColor', 'b')% Change the Maker face color to blue
plot(x, y, 'o','MarkerEdgeColor', 'r')% Change the Maker edge color to blue
plot(x, y, 'o','MarkerSize', 5) % Change the Maker size to 5
plot(x, y, 'k-','LineWidth', 2) % Change the line width to 2


Here is an example of using those additional plotting annotations to plot a graph:
	x=0:pi/10:4*pi;
y=exp(-cos(x));
plot(x,y,'bo-','LineWidth',2,'Markersize',5,'MarkerEdgeColor',...
    'r','MarkerFaceColor','g')


[image: MATLAB plot with thicker line and additional plotting annotations]
Figure 17.1: MATLAB Plot with Additional Annotation
17.1.2 Data Modeling/Curve Fitting 
There are two kinds of Data Modeling Methods we are going to talk about: Regression and Interpolation. But which one should we use when we encounter a problem? If we wish to estimate the future trend, we will use Regression. If we wish to find a value that is within the range of our dataset and can be reproduced exactly then we want an to use Interpolation to calculate it.

17.2 Regression 
Linear Regression technique uses an approach called the least squares fit to find the best-fit line of a set of measurement data. The simplest way to model a set of data is with a straight line in the form of y = mx+b. 

An  order regression is a polynomial with n+1 terms in the form of .

17.2.1 Linear & Polynomial Regression in MATLAB
To find the regression of a set of data, we will need to find the coefficient of the regression function with the polyfit(x, y, n) function, and find the new y with coefficient and the new x with the polyval(coeffs, xnew). 

[image: Block diagram illustration of how MATLAB functions ployfit and polyval work together to perform regression.]
Figure 17.2: MATLAB Regression Flowchart

Table 17.1: Regression Function & Description
	Command
	Description

	coeffs=polyfit(x, y, n)
	Finds linear, least-squares coefficients (coeffs) for polynomial equation of degree n that is best fit to the (𝑥,𝑦) data set.
n=1 ⇒ linear or first-order Regression
n=2 ⇒ second-order Regression

	ynew=polyval(coeffs, xnew)
	Evaluates the polynomial using coeffs and the values of xnew, to determine ynew. 
Best-fit data: (𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤)



17.2.2 Example: Linear Regression 
Given the following program that plots the temperature with respect to time, find and plot the linear regression line of the set of data. 
	% Describing temperature data using Linear Regression
clc; clear all; close all;
X = [0,3,6,9,12,15];
Y = [55.5, 52.4 55.7, 75.6, 77.7, 70.5];
xlabel('Time’); ylabel('Temperature Readings (Fahrenheit)');
title('Plotting temperature data');




Solution:
	clc; clear all; close all;
X = [0,3,6,9,12,15]; 
Y = [55.5, 52.4 55.7, 75.6, 77.7, 70.5];
plot(X, Y, 'o', 'MarkerFaceColor','b'); % plots the original data with o marker
coeffs=polyfit(X,Y,1);  % Find the coefficient of the regression
xnew=0:0.2:15;    % Create new x
ynew=polyval(coeffs,xnew); % Create ynew with respect to the coefficient
hold on;
plot(xnew, ynew, 'b--'); hold off;
xlabel('Time');
ylabel('Temperature Readings (Fahrenheit)');
title('Plotting temperature data');
legend('Measured Data','Linear Regression Points')


[image: MATLAB plot with data points drawn with blue color 'o' markers and a linear regression line to capture the trend.]
Figure 17.3: Linear Regression of the Temperature

17.2.3 3rd Order Regression  
Use the same sets of data to find and plot the 3rd order regression. 

Solution: 
	clc; clear all; close all;
X = [0,3,6,9,12,15]; 
Y = [55.5, 52.4 55.7, 75.6, 77.7, 70.5];
plot(X, Y, 'o', 'MarkerFaceColor','b'); % plots the original data with o marker
coeffs=polyfit(X,Y,3);  % Find the coefficient of the regression
xnew=0:0.2:15;    % Create new x
ynew=polyval(coeffs,xnew); % Create ynew with respect to the coefficient
hold on;
plot(xnew, ynew, 'b--'); hold off;
xlabel('Time');
ylabel('Temperature Readings (Fahrenheit)');
title('Plotting temperature data');
legend('Measured Data','Linear Regression Points')



[image: MATLAB plot with data points drawn with blue color 'o' markers and a 3rd order regression line to capture the trend.]
Figure 17.4: 3rd Order Regression of the Temperature

17.2.4 1st and 3rd Order Regression  
Let’s plot the 1st and 3rd order regression in same graph and compare them. 
	X = [0,3,6,9,12,15];
Y = [55.5, 52.4 55.7, 75.6, 77.7, 70.5];
xnew=0:0.2:15;
coeffs1=polyfit(X,Y,1);
ynew1=polyval(coeffs1,xnew);
coeffs3=polyfit(X,Y,3);
ynew3=polyval(coeffs3,xnew);
plot(X, Y, 'o','MarkerFaceColor','b');
hold on;
plot(xnew,ynew1,'r--','LineWidth',2);
plot(xnew,ynew3,'k-'); hold off;
xlabel('Time'); ylabel('Temperature Readings (Fahrenheit)');
title('Plotting temperature data using 1st and 3rd Order Regression');
legend('Measured Data','1st Order','3rd Order');


[image: MATLAB plot with data points drawn with blue color 'o' markers and a linear regression line and 3rd order regression both capturing the relevant trend.]
Figure 17.5: 1st and 3rd Order Regression of the Temperature

17.3 Interpolation 
Interpolation uses exact data. It is a process of estimating values between the available data points. 

17.3.1 Interpolation Techniques in MATLAB
To find the interpolation of a set of data, we use interp1(x, y, xnew, ‘method’) function. 

Table 17.2: Interpolation Methods & Description
	Command
	Description

	ynew=interp1(x,y,xnew,'linear')
	1-D Linear interpolation ('linear' is default)
x,y: Data points
xnew: Value(s) of x of interest (can be a vector)
ynew: New interpolated data calculated

	ynew=interp1(x,y,xnew,'spline')
	1-D spline interpolation (3rd degree polynomial)



17.3.2 Example: Linear Interpolation   
Given the following data, plot the data points and the linear interpolation of the data. 
	X 
	0 
	1 
	2
	3
	4
	5

	Y 
	15
	10
	9
	6
	2
	0



Solution: 
	% Plotting data points on a graph
% Linear Interpolation
clc; clear all; close all;
x = [0,1,2,3,4,5];
y = [15,10,9,6,2,0];
xnew = 0:0.2:5;
ynew = interp1(x,y,xnew,'linear');
hold on;
plot(x,y,'o','MarkerFaceColor','g');
plot(xnew,ynew, 'b-d');
hold off;
xlabel('x-axis'); ylabel('y-axis');
title('Measured and Interpolated Data');
legend('Measured Data','Interpolated Data');



[image: MATLAB plot with data points drawn with green color 'o' markers and linear interpolation line.]
Figure 17.6: Plot of Data Points and Linear Interpolation

17.3.3 Example: Spline Interpolation  
Use the same set of data from the previous part and plot the spline interpolation of the data. 

Solution:
	clc; clear all; close all;
x = [0,1,2,3,4,5];
y = [15,10,9,6,2,0];
xnew = 0:0.2:5;
ynew = interp1(x,y,xnew,'spline');
hold on;
plot(x,y,'o','MarkerFaceColor','g');
plot(xnew,ynew, 'b-d');
hold off;
xlabel('x-axis'); ylabel('y-axis');
title('Measured and Interpolated Data');
legend('Measured Data','Spline Interpolated Data');


[image: MATLAB plot with data points drawn with green color 'o' markers and spline interpolation line.]
Figure 17.7: Plot of Data Points and Spline Interpolation

17.3.4 1st and 3rd Order Interpolation Example  
Now plot both Linear and Spline Interpolation data on same graph and compare them. 

Solution:
	clc; clear all; close all;
x = [0,1,2,3,4,5];
y = [15,10,9,6,2,0];
xnew = 0:0.2:5;
ynew1=interp1(x,y,xnew,'linear');
ynew2=interp1(x,y,xnew,'spline');
hold on;
plot(x,y,'o','MarkerFaceColor','g');
plot(xnew,ynew1,'Linewidth',2);
plot(xnew,ynew2,'b-s');
hold off; xlabel('x-axis'); ylabel('y-axis'); 
title('Cubic Spline Interpolation');
legend('Measured Data','Linear Interpolation','Cubic Interpolation');


[image: MATLAB plot with data points drawn with green color 'o' markers and a linear and spline interpolation lines.]
Figure 17.8: Plot of Linear and Spline Interpolation


17.4 Explore Further
To further explore the concepts covered in this lecture, you can refer to Mathworks documentation for Labels and Annotations, regression, interpolation, and MATLAB Marina resources for regression and interpolation.

17.5 Conclusion/Summary of Key Points
The overall goal of this lecture was to learn about data modeling via regression (also known as curve fitting) and interpolation. In the process of representing the graphs we learned about additional annotations when plotting. The key points are captured as follows:
1) Regression or Curve-fitting is used to capture trend in data that is not-exact (cannot be reproduced) 
2) Interpolation is used on data that is exact (reproducible) 
3) In MATLAB, regression uses the polyfit( ) and the polyval( ) functions, while interpolation uses the inerp1( ) function (which has the number “1” in it, and not the letter “L”)
4) Regression data does not pass through all the data points, while interpolation data passes through all the data points.
5) Regression coefficients are always one more than the order of the regression.
6) ‘LineWidth’ property is used to change the width of the plotting line when using the plot function. 

Last modified May 12, 2024

[image: Creative Commons License] This work by Salman Siddiqui & Rami Haddad is licensed under a  Creative Commons Attribution-Noncommercial-ShareAlike 4.0 International License




1

image3.png
80

Plotting temperature data

6

60

Temperature Readings (Fahreneit)

50

Measured Data
Linear Regression Points

Time

10

15




image4.png
80

Temperature Readings (Fahreneit)
2 2

50

Plotting temperature data

® Measured Data

3rd Order Regression Pints

Time




image5.png
6

60

Temperature Readings (Fahreneit)

50

Plotting temperature data using 1st and 3rd Order Regression

Time




image6.png
y-axis

15/

10

Measured and Interpolated Data

® Measured Data
|—6—Interpolated Data

x-axis




image7.png
y-axis

15/

10

Measured and Interpolated Data

® Measured Data
|—6— Spine Interpolated Data

x-axis




image8.png
y-axis

154

10

Cubic Spline Interpolation

® Measured Data
| ——— Linear Interpolation
| —&—Cubic Interpolation

x-axis




image9.png




image1.png
25

15

05

10

12

14




image2.png
polyfitx, v, n)

coefis

polyval(coefis, xnew;

vnew

plotnew, ynew)





image10.png
“| GEORGIA SOUTHERN

. UNIVERSITY





 


 


 


 


 


Lecture 


1


7


 


–


 


Data Modeling 


 


 


Objectives:  


To learn the importance of data modeling in various engineering applications and to 


apply regression and interpolation 


techniques


 


in MATLAB to perform data modeling.


 


 


The overall goal of this lecture is to 


describe the importance of data modeling in applications. 


After this lecture the students should be able to apply additional plotting annotations to data 


graphs and understand 


d


ata 


m


odeling 


t


ools such as 


r


egression an


d 


i


nterpolation in MATLAB. 


 


 


1


7


.1 


Data Modeling


 


Data 


m


odeling and 


c


urve fitting is used to 


c


apture the trend in the data by assigning a single 


function across the entire range. 


 


 


1


7


.1.1


 


Additional Plot Annotations


 


In previous lectures, we learned about how to 


embellish 


plots by changing color, style, 


and marker types for a line.


 


However, 


we can also vary the width, color of marker and 


the size of markers by adding the following options to the plot function:


 


‘MarkerF


aceColor’, ‘MarkerEdgeColor’, ‘MarkerSize’, ‘LineWidth’. 


 


plot(x, y, 


'o'


,


'MarkerFaceColor'


, 


'b'


)


% Change the Maker face color to blue


 


plot(x, y, 


'o'


,


'MarkerEdgeColor'


, 


'r'


)


% Change the Maker edge color to blue


 


plot(x, y, 


'o'


,


'MarkerSize'


, 5) 


% Change 


the Maker size to 5


 


plot(x, y, 


'k


-


'


,


'LineWidth'


, 2) 


% Change the line width to 2


 


Here is an example of using those additional plotting annotations to plot a graph:


 


x=0:pi/10:4*pi;


 


y=exp(


-


cos(x));


 


plot(x,y,


'bo


-


'


,


'LineWidth'


,2,


'Markersize'


,5,


'MarkerEdgeColo


r'


,


...


 


    


'r'


,


'MarkerFaceColor'


,


'g'


)


 


 


Figure 17.1: MATLAB Plot with Additional Annotation


 




          Lecture  1 7   –   Data Modeling      Objectives:   To learn the importance of data modeling in various engineering applications and to  apply regression and interpolation  techniques   in MATLAB to perform data modeling.     The overall goal of this lecture is to  describe the importance of data modeling in applications.  After this lecture the students should be able to apply additional plotting annotations to data  graphs and understand  d ata  m odeling  t ools such as  r egression an d  i nterpolation in MATLAB.      1 7 .1  Data Modeling   Data  m odeling and  c urve fitting is used to  c apture the trend in the data by assigning a single  function across the entire range.      1 7 .1.1   Additional Plot Annotations   In previous lectures, we learned about how to  embellish  plots by changing color, style,  and marker types for a line.   However,  we can also vary the width, color of marker and  the size of markers by adding the following options to the plot function:   ‘MarkerF aceColor’, ‘MarkerEdgeColor’, ‘MarkerSize’, ‘LineWidth’.   

plot(x, y,  'o' , 'MarkerFaceColor' ,  'b' ) % Change the Maker face color to blue   plot(x, y,  'o' , 'MarkerEdgeColor' ,  'r' ) % Change the Maker edge color to blue   plot(x, y,  'o' , 'MarkerSize' , 5)  % Change  the Maker size to 5   plot(x, y,  'k - ' , 'LineWidth' , 2)  % Change the line width to 2  

Here is an example of using those additional plotting annotations to plot a graph:  

x=0:pi/10:4*pi;   y=exp( - cos(x));   plot(x,y, 'bo - ' , 'LineWidth' ,2, 'Markersize' ,5, 'MarkerEdgeColo r' , ...        'r' , 'MarkerFaceColor' , 'g' )  

  Figure 17.1: MATLAB Plot with Additional Annotation  

