		[image: Georgia Southern University Logo]

		
Lecture 6 – MATLAB Basics

Objectives: To discuss variables and arrays, matrices creation and referencing, and introducing functions to seek input and display output.

The goal of this lecture is to introduce the fundamental concepts of arrays and variables, which are the foundations of how MATLAB stores its data and operates on them (i.e., programming). This would lead to the introduction of how matrices are created and referenced. Lastly, it is input to learn how to seek input from the user and display output to the user after it is processed. So, by the end of this lecture, you can write a basic program with inputs and outputs, along with basic math operations performed to do calculations and find results. Mastering these concepts will allow you to handle a variety of tasks, from data manipulation to complex numerical computations.

6.1 Variables and Their Assignment

In MATLAB, variables are used to store data such as numbers, arrays, strings (text), and even more complex structures. The advantage of using variables is that it is easy to operate on them by calling them in the code later, as needed (from the computer’s memory). The assignment “=” operator is used to assign a value to a variable, and MATLAB automatically creates and initializes the variables. Hence, creating your own variables is as simple as typing a variable assignment into the Command Window. Let’s start by understanding how to name variables and assign values to them.

6.1.1 Naming Variables
Variable names in MATLAB are case-sensitive, meaning data, DATA, and DaTa are three different variables. The rule for variable names is that they must begin with a letter, followed by a combination of letters, numbers, or underscores (“_”). If the variable name begins with a character other than a letter, it will be invalid. Similarly, if the variable name has any space, hyphen, or special characters other than an underscore, it will be considered invalid. In addition, variable names in MATLAB cannot be MATLAB keywords, which are names reserved for a specific purpose in MATLAB. MATLAB keywords can be checked by typing in the command window: iskeyword.

>>iskeyword

ans =

 20x1 cell array

 {'break' }
 {'case' }
 {'catch' }
 {'classdef' }
 {'continue' }
 {'else' }
 {'elseif' }
 {'end' }
 {'for' }
 {'function' }
 {'global' }
 {'if' }
 {'otherwise' }
 {'parfor' }
 {'persistent'}
 {'return' }
 {'spmd' }
 {'switch' }
 {'try' }
 {'while' }

Figure 6.1: List of keywords in MATLAB

A few examples of valid or legal variable names would be a2, min_test_score, circle_2_radius, etc. Examples of invalid or illegal variable names would be 3a (starts with a number), min-test-score (has hyphen), circle 2 radius (has spaces), etc.

6.1.2 MATLAB is case-sensitive
Since MATLAB is case-sensitive, it is important to note that Commands and function names are also case-sensitive. Please note that when you use the command-line help, function names are only given in upper-case letters (e.g., CLEAR) to emphasize them. Do not use upper-case letters when running functions and commands.

6.1.3 Variable Data Types and their Assignment
MATLAB supports various data types to accommodate different kinds of information; understanding them is important for effective programming. At this time, we will introduce the two most common data types in MATLAB: The numeric type, which we will introduce as class double, and the character array, which we define as class char. Anytime a number is assigned to a variable based on mathematical operations or representing quantities, MATLAB automatically assigns it to be from the class double, and if the sequence of characters, such as text, is assigned to a variable, MATLAB automatically assigns it to be from the class char. To define a variable, the variable name must always appear on the left of the equal to (=) sign. Try the following command at the prompt and then press Enter.

>> x = 3

In this example, the equal to “=” operator is called the assignment operator. Hence, the value 3 is assigned to x, which is the variable stored in memory. This variable is of type double as a number is stored in it.

[image: Workspace window showing the variable "x" with a value of 3, size of 1x1, and class "double"]
Figure 6.2: Variable with a double assignment represented in the Workspace.

In the next example, an example is illustrated where MATLAB creates a variable of type char.

>> output='It is a sunny day!'

MATLAB recognizes the variable as type char because the information is within quotes.

[image: Workspace window showing the variable "output" with a value of "It is a sunny day!", size of 1x18, and class "char"]
Figure 6.3: Variable with a char assignment represented in the Workspace.

6.1.4 How Does Assignment Operator Work?
The assignment operator (=) is not an algebraic equality. This can be confusing to new learners because, in many cases, the MATLAB expressions are identical to their algebraic counterparts. However, the following statement is perfectly valid in MATLAB syntax.

>> x=2*x
[bookmark: _Hlk166489094]Obviously, the only way this could be algebraically correct is if the value of x is zero. MATLAB doesn’t care because the right and left sides of the assignment operator never directly interact. In this case, MATLAB will first evaluate the expression on the right of the assignment operator. As long as the variable x is in the Workspace, then MATLAB will multiply that value by 2. Once that quantity is calculated, MATLAB will assign that value to the name on the left. The fact that these names are the same does not matter because these processes occur in two distinct steps.
[image: Command window screenshot showing x=3 defined, and then an operation on variable x=2*x, to show the result in x = 6.]
Figure 6.4: Variable value reassignment using a mathematical expression.

6.1.5 Use Descriptive Names
Choosing variable names that correspond to algebraic variable names is good programming practice. For instance, if writing the equation F=ma, using variable names that correspond to algebraic variables is better. Also, it is better to use descriptive names so it is easy to recall and find errors (debugging) in the program. For example, instead of writing the equation of area for a triangle as:

a=(1/2)*b*h;

it will be better to write:

area_triangle=(1/2)*base*height;

6.1.6 Predefined variables in MATLAB
A few commonly used predefined variables in MATLAB are listed in Table 6.1

Table 6.1: A list of commonly used predefined values and variables in MATLAB
	Variable
	Explanation

	ans
	MATLAB uses this special variable to temporarily store the result of an expression when a variable is not assigned to hold the value.

	pi
	Reserved for the number up to 15 significant digits

	i, j
	Reserved for complex number

	clock
	Contains current date and time in the form of a 5-element row vector: year, month, day, hour, minute, second.

	date
	Contains a string representing today’s date

	inf
	Represents mathematical infinity, for example, due to a division by 0.

	NaN
	Implies Not-A-Number, generated by MATLAB when it encounters an undefined mathematical operation, such as 0/0 (zero divided by zero)

	eps
	Stands for Epsilon. It represents the smallest number that can be represented by MATLAB software on the computer.

6.1.7 Vector and Matrix Variables
The fundamental unit of data in MATLAB is an array, which is a collection of data values organized into rows and columns. It is known by a specific name, which we call the variable. An array can be further classified as either vectors or matrices. A vector is an array with only one row (a “row vector”) or one column (a “column vector”). A matrix is an array with two or more dimensions. A scalar, or a number, is stored as a matrix with exactly one row and column (i.e., a 1 × 1 matrix). The size of an array is denoted by the number of rows and the number of columns. For example, the side of array P is 2 x 3, which means P has two rows and three columns. The number of rows is always designated first, followed by the number of columns. We use the array’s name, parenthesis, and location to address individual elements in an array. For instance, if we wanted to access the first row, the second column of array P, we would type P(1,2).
[image: 2x3 array called P shown with row 1, column 2 shaded to show how to address it by writing P(1,2)]
Figure 6.5: Illustration of an array row and column structure.

6.1.7.1 Scalar Variable
As used in linear algebra, the term scalar refers to a real number. Assignment of scalars in MATLAB is easy; type in the variable name followed by the “=” symbol and a number:

[image: Image of defining variable a = 3]
Figure 6.6: Assignment of a scalar quantity.

NOTE: To define row vectors, column vectors, or matrices, the numbers must be defined within square ([]) brackets. See examples illustrated under Row Vector Variable and Column Vector Variable.

6.1.7.2 Row Vector Variable
Elements of a row vector are separated with blanks (spaces) or commas; they must be defined within square brackets [].

[image: Image of variable b defined as a row vector with equal to sign and [1,2,3]]
Figure 6.7: Assignment of a row vector quantity.

6.1.7.3 Column Vector Variable
Elements of a column vector end with a semicolon; all elements must be defined within square brackets [].
[image: Image of an assignment of a variable c as vector, v=[4;5;6]]
Figure 6.8: Assignment of a column vector quantity.

6.1.7.4 Size of Matrix
The size of a matrix is specified by the number of rows and the number of columns in the array, with the number of rows mentioned first. The total number of elements in the array can be calculated as the product of the number of rows and the number of columns.

6.2 The Colon Operator (:)
The colon is a very useful operator in MATLAB. It can be used to create vectors and subscript arrays and specify iterations for loops. It is useful when creating a vector with predefined vector values. The general form of a colon operator is:

begin:increment:end

where begin represents the starting value of the range, end represents the ending value of the range, and increment represents the stepping increment between values. For example, we can create a row vector x using the colon operator:

[image: image of variable x defined as a vector using the colon operator, x=5:5:30]
Figure 6.9: Example using the Colon operator with a predefined increment to assign a vector.

Note: if an increment is not pre-defined, MATLAB default increment is 1.

[image: image of variable y defined using colon operator, 5=5:10]
Figure 6.10: Example using the Colon operator without a predefined increment to assign a vector.

Similarly, a decrement (or a negative value) can be assigned if the objective is to decrease value within a range.

[image: image of variable x defined as z=30:-.2:20]
Figure 6.11: Example using the Colon operator with a predefined decrement to assign a vector.

6.3 The Transpose Operator (')
In general, MATLAB creates row vectors by default, as illustrated in previous examples for x, y, and z. However, if the objective is to create a column vector, you can add the transpose operator (') at the end of the vector or the variable name. In other words, the transpose operator changes all row vectors to corresponding column vectors, even if it is a matrix.

[image: image of illustration of d=z' (where z is transposed from a row vector to a column vector)] [image: Image of variable e defined as e=[5:5:30]', showing conversion to a column vector.]
Figure 6.12: Examples using the Transpose operator.

6.4 Creating and Working with Arrays (Matrices)
MATLAB is very effective in computing arrays, which are very useful when working with multiple values simultaneously and essential for tasks like data analysis and manipulation. Arrays/matrices can be created directly or using built-in functions. Let’s look at some examples of how arrays are entered in MATLAB. Each array/matrix is enclosed in the square brackets “[]”, where each comma (or space) separates entries on the same row of the matrix/array, and each semicolon indicates a new row in the matrix/array.

[image: image of matrix A defined as A=[1 2 3;4 5 6] using spaced between number to illustrate another column.]
Figure 6.13: Example assigning a 2x3 matrix using spaces and semicolons.

In matrix A, rows 1 and 2 entries are defined using spaces and a semicolon for a new row.
[image: image of matrix B defined as A=[1,2,3;4,5,6] defining columns in the matrix using commas.]
Figure 6.14: Example assigning a 2x3 matrix using commas and semicolons.

In matrix B, rows 1 and 2 entries are defined using commas and a semicolon for a new row.

[image: image of C=[1;3;6]]
Figure 6.15: Example assigning a 3x1 matrix using semicolons.

Since there is only one column in matrix C, all new rows are defined with semicolons.

Another way to define values in a matrix is to define specific locations in the matrix. For instance, if the following command is written in the command window:

[image: image of G(2,3)=7 illustrating a 2x3 matrix with all elements 0 except row 2, column 3 with a value of 7.]
Figure 6.16: Example generating a matrix by defining specific location value.

It can be observed that the location in the second row and third column of Matrix G has the value seven (7) assigned to it, but all other elements that were not assigned are automatically assigned a value of zero (0).

It is important to note that MATLAB uses 1-based indexing, meaning the first element is at index 1, not index 0.

We can use several built-in functions in MATLAB to create vectors or matrices. Table 6.2 illustrates a few built-in functions and their descriptions, followed by examples from MATLAB.

Table 6.2: Built-in MATLAB functions for initializing variables or arrays.
	Function
	Description

	zeros(n)
	Creates an n x n matrix of zeros

	zeros(m,n)
	Creates an m x n matrix of zeros

	ones(n)
	Creates an n x n matrix of ones

	ones(m,n)
	Creates an m x n matrix of ones

	eye(n)
	Creates an n x n identity matrix (diagonal values are 1, all other elements 0)

	eye(m,n)
	Creates an m x n identity matrix

	size(x)
	Returns the size of array x as two values, one for # of rows, one for # of columns

	length(x)
	Returns the length of vector x or the longest dimension in a 2D matrix

Table 6.3: Examples of Built-in MATLAB shown in Table 6.2
	zeros()
	ones()
	eye()
	size() and length ()

	[image: image of definition a1=zeros(3) showing a 3x3 matrix of zeros.]
	[image: image of definition b1=ones(2) showing a 2x2 matrix of ones.]
	[image: image of definition c1=eye(2) showing a 2x2 matrix of ones on the diagonal, zeros everywhere else.]
	[image: image of definition d1=zeros(size(a2)) showing a 1x3 matrix of zeros.]

	[image: image of definition a2=zeros(1,3) showing a 1x3 matrix of zeros.]
	[image: image of definition b2=ones(2,3) showing a 2x3 matrix of ones.]
	[image: image of definition c2=eye(2,3) showing a 2x3 matrix of ones on the diagonal, zeros everywhere else.]
	[image: image of definition d2=length(c2) showing a scalar value of 3]

6.5 Creating Subarrays
In MATLAB, if arrays are defined, subarrays can be selected from inside them using the colon operator. For example, suppose Matrix “a” is defined as

[image: image of definition a=[2,4,6;3,6,9;4,8,12] showing a 3x3 matrix that will be used to create subarrays]

If the objective is to create a subarray of “a” with only the second column present in it, then the following command can be given to create the subarray:

	Original Matrix “a”
	Creation of Subarray

	[image: image of original definition of a shown as [2,4,6;3,6,9;4,8,12] showing a 3x3 matrix]
	[image: image of extraction of all rows of column 2 of matrix a by writing A_sub1=a(:,2)]

The way to read the right side of the assignment operator (of the creation of the subarray) is to note that “a” is the original matrix, from which we want to extract “:” which is in the rows section, and “2” is in the columns section. “:” in subarrays implies “all”. So it reads as such: Extract all rows from column 2 of the matrix “a” and put it in the variable a_sub1.

Consider the following command:
	Original Matrix “a”
	Creation of Subarray

	[image: image of original definition of a shown as [2,4,6;3,6,9;4,8,12] showing a 3x3 matrix]
	[image: image of extraction of second and third rows and all of their columns by typing a_sub2=a(2:3,:)]

The way to read the right side of the assignment operator (of the creation of the subarray) is to note that “a” is the original matrix, from which we want to extract “2:3” which is in the rows section, and “:” is in the columns section. “2:3” in the rows section implies starting with Row 2, going till Row 3 (default increment of 1), and “:” is in the columns section so it implies “all” columns. So, it reads as such: Extract rows 2 and 3 of matrix “a” with all their columns.

Consider one more example for practicing the creation of a subarray:

	Original Matrix “a”
	Creation of Subarray

	[image: image of original definition of a shown as [2,4,6;3,6,9;4,8,12] showing a 3x3 matrix]
	[image: image of extraction of third row and then first row, and columns two and three by typing a_sub3=a(3:-2:1,2:3)]

The way to read the right side of the assignment operator (of the creation of the subarray) is to note that “a” is the original matrix, from which we want to extract “3:-2:1” which is in the rows section, and “2:3” is in the columns section. “3:-2:1” in the rows section implies starting with Row 3, going back two rows till you reach Row 1, and “2:3” is in the columns section, so it implies extracting columns 2 and 3 of the interested rows. So, it reads as such: Extract Rows 3 and 1 of the matrix “a” with Columns 2 and 3.

The function end can be used with subarray definition by selecting the last element in the array (row or column wherever the function appears). For instance,

	Original Matrix “a”
	Creation of Subarray

	[image: image of original definition of a shown as [2,4,6;3,6,9;4,8,12] showing a 3x3 matrix]
	[image: image of extraction of first and second rows and the last column of array a by typing a_sub4=a(1:2,end)]

The way to read the right side of the assignment operator (of the creation of the subarray) is to note that “a” is the original matrix, from which we want to extract “1:2” which is in the rows section, and “end” is in the columns section. “1:2” in the rows section implies starting with Row 1, going till you reach Row 2 (with default increment of 1), and “end” is in the columns section so it implies extracting the last column of “a” (meaning the third column) with the first two rows.

If a vector is given, and the objective is to extract a specific pattern, the end function can also be used with it, if appropriate. Consider that vecX is defined as

	Original Matrix “vecX”
	Creation of Subarray

	[image: image of defining vector: vecX=[9,7,8,4,-3,5]]
	[image: image of extraction of a vecX_sub from vecX from 1st row, column 2, with increments of 2 till the last element using the command: vecX_sub=vecX(1,2:2:end)]

In this example, vecX is defined as a 1x6 vector from which we are extracting from row 1, columns “2:2:end” meaning start from column 2, taking every second column till the last column is reached.

6.6 Reading Matrices with only one element
Consider matrix “a” that was previously defined:

[image: image of original definition of a shown as [2,4,6;3,6,9;4,8,12] showing a 3x3 matrix]

If you are asked to find “a(6)” from a matrix that has 3 rows and 3 columns, the process is to start counting the first column, then the second column till the 5th element is reach in the matrix “a”. In this case, that value will be 8.

[image: image of command: result=a(6) showing extraction of the 6th element from the matrix a by counting down vertically in the original 3x3 matrix a.]

6.7 The input() Function
The input() command or function allows the program to interact with the user, for instance, through the keyboard. The inputs that the user may want to enter could be numbers or strings. Remember, if numbers are entered, the variable is classified as double, and if strings (a bunch of characters) are entered, the variable is classified as char. However, when using the input() function, the program is either expecting a number as an input or a string as an input. In each circumstance, the prompt will look a little different.

6.7.1 User Input as a Number
First, consider that input is needed from the user. In this case, whatever the prompt is inside, the quotations will be presented to the user in the command window to seek their response. For example:

>> radius=input('Enter radius of circle: ')

When the above command is run, it asks the user to enter the radius of the circle; whatever the user enters will go into the variable “radius”; this is illustrated below:

[image: image of the command window asking user input for radius. The user enters "4", and the variable radius shows the value "4".]

Once the variable “radius” has a value, it can be used to compute other parameters such as the area of the circle.

6.7.2 User Input as a String
Next, consider a prompt that requests students to input their college major. Since the major (such as “Electrical Engineering” is a string, when seeking the input, there is a ‘s’ indicated in the prompt to illustrate that the input coming in is a string. For example:

>> major=input('Enter your major in College: ','s')

When the above command is run, it will ask the user to enter their major in college, whatever input the user enters, it will go in the variable “major”. See illustration below:

[image: image of the command window asking user input for major. The user enters "Electrical Engineering", and the variable major shows the value "Electrical Engineering".]

6.8 The disp() Function
The disp() function or command will display the value of a variable in the Command Window, but not the variable name. If the variable is a character string, then it will display the character string. Try the following commands.
>> x=5;
>> disp('This is the value of x!')

Note: first the value of x is defined as 5. When the disp command is executed first, it will display a string as it is in quotations: 'This is the value of x!' See the result below:

[image: image of the command windowshowing the disp command and the result showing the sentence: "This is the value of x!"]

If the following commands are executed:
>> x=5;
>> disp(x)

Note: The value of x is still 5, but inside the disp() function is the variable x, so it should show the value of x, as illustrated below.

[image: image of the command windows with x=5l and disp(x) to show the value of 5 in x.]

The above illustrations show how to display a number by itself and a string by itself. What if the string and the number needed to be displayed in the same prompt?

6.8.1 num2str() function
The num2str() function allows a number to be converted to a string. Once all the results that need to be displayed are in a string, they can be displayed at one time. For instance, consider the following example:

output=['This is the value of x: ',num2str(x)']

[image: image of the variable output defined as an array using square brackets and joining a string (within single quotes), a comma, and a number converted to string using num2str command.]

Next, we can use the disp() function to display the variable “output”.

[image: image of the command to show what is in the variable output, by typing disp(output)]

6.9 Special Characters Summary

Table 6.4: Summary of Special characters
	Character
	Meaning

	=
	Assignment operator

	()
	Prioritize operations in parenthesis

	[]
	Construct array (vector or matrix)

	:
	Colon operator to specify range of array elements

	,
	Row element separator in an array

	;
	Column element separator in an array

6.10 Explore Further
Practice the problems posted on Folio to check your understanding of this lecture. Make sure you can work out the problems by hand and test the results through MATLAB. The only way to master these concepts is to practice them. Furthermore, create your own examples and validate your understanding of the creation of arrays, subarrays, and the proper use of input() and disp() functions.

6.11 Conclusion/Summary of Key Points
1) MATLAB can store values in variables. Variables are case-sensitive, and some variables are reserved by MATLAB (e.g., pi stores 3.1416)
2) Legal variable names start with a letter and can have other letters, numbers, and underscore.
3) In arrays, rows are addressed first, then the columns.
4) Understand why the equal to sign “=” is called the assignment operator, as it evaluates the right side of the equation and puts the result in the variable on the left side (assigning a value to it).
5) Colon operator operation is key in matrices to read them, to create subarrays, etc.
6) Practice input() function with inputs as numbers and strings.
7) Practice the disp() function with variables as numbers only, strings only, or both. When displaying both, use the num2str() function to make sure everything is in a string before displaying it.

References
[bookmark: _Hlk164946802]Portions of this lecture have been adapted and modified from Beyenir, Serhat. “A Brief Introduction to Engineering Computation with MATLAB”. OER Commons. Rice University. 26 Nov. 2019. Web. 01 Sep. 2023. < https://oercommons.org/courses/a-brief-introduction-to-engineering-computation-with-matlab> licensed under CC BY 4.0.

Last modified May 12, 2024

[image: Creative Commons License] This work by Salman Siddiqui & Rami Haddad is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 4.0 International License

1

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

