		[image: Georgia Southern University Logo]

		
Lecture 8 – Introduction to Plotting and Debugging

Objectives: To apply basic plotting functions in MATLAB to present data visually and to recognize the different types of errors and fix them at the basic level.

The goal of this lecture is to introduce the commands to draw a graph in MATLAB using the basic plot() function, and to introduce a few other functions for plotting. In addition, a brief introduction is provided to the types of errors that can happen when coding, and how to recognize them and fix them, which is called debugging.

8.1 Plotting in MATLAB
MATLAB is a powerful tool for creating high-quality plots that allow data visualization, which makes it easier to understand system behavior, do data analysis, identify trends, and present your findings. Hence plotting is an essential tool engineers use when problem-solving. The main commands/functions we will explore in this lecture are linspace(), plot(), subplot(), figure(), hold, grid, semilogx(), semiology(), loglog(), and figure customizations such as xlabel(), ylabel(), title(), and legend().

8.1.1 Introduction to MATLAB Plots
Plots in MATLAB are created by simply “connecting the dots.” This means that you have to provide the actual coordinates of the points both the x and y coordinates. It is not enough to simply say plot , you must give exactly which x values you want squared. Let's start with a simple example:

8.1.1.1 Simple xy-plots using the colon operator
Consider x is to be defined over the range, and y is as . So, define x first, then y, then use the command plot(x,y) to plot the graph.
% Create a basic plot y=x^2
x = -4:0.1:4; % use colon operator to define x with 0.1 increments
y = x.^2; % use .^ as x is a vector, to allow squaring each value
plot(x, y); % plot x vs. y data using plot() command
That is all you do for plotting a simple xy-plot

[image: image showing a graph in the figure window generated upon execution of MATLAB code without axes labeled and with no title.]
Figure 8.1: Simple xy-plot without labels and title

To add labels for the x-axis we use the xlabel() function, to label the y-axis we use the ylabel() function, and to label the title of the graph we use the title() function. Whatever the string needs to be printed at the axes or in the title, is included in the functions above within single quotations, see the example below for illustration.

% Create a basic plot y=x^2
x = -4:0.1:4; % use colon operator to define x with 0.1 increments
y = x.^2; % use .^ as x is a vector, to allow squaring each value
plot(x, y); % plot x vs. y data using plot() command
title('y=x^2') % use title() function to put title on graph
xlabel('X-axis') % use xlabel() function to put label x-axis
ylabel('Y-axis') % use ylabel() function to put label y-axis

[image: image showing a graph in the figure window generated upon execution of MATLAB code with axes labeled and with title.]
Figure 8.2: Simple xy-plot with axes labeled and with title

Important notes about plotting
1. The labels and titles are added after the plotting command is called, otherwise, if the labels and titles were created first before the plotting command is generated, it will overwrite the labels. Hence sequence is important.
2. When plotting two vectors (say x and y), both vectors should have the same number of points, otherwise it would not plot.
3. Even if the equation is defined as , when writing the equation in MATLAB, we need to remember that x values in MATLAB must start with the index 1, and can only be integers. So, use y=x.^2 instead of y(x)=x.^2.
4. If the number of points in the vector x is not enough, the plot will not look very smooth. In our example, we used increments of 0.1 to get about 81 points between -4 and 4. If the increment was 1, there would be only 9 points, and the graph would look edgy. See the illustration of this in the figure below.
[image: image showing a graph in the figure window generated upon execution of MATLAB code but with fewer points in x vector leading to edgy line instead of a smooth line.]
Figure 8.3: Simple xy-plot with insufficient points in vector x hence not smooth

8.1.1.2 Simple xy-plots using linspace() function
The values of a vector can also be defined with a function called linspace() instead of using the colon operator. The linspace() function creates a linearly spaced vector. If the command is given as linspace(x1, x2, n) it generates n number of points between x1 and x2. If the command is given as linspace(x1, x2) it will generate a row vector of 100 linearly equally spaced points between x1 and x2. Consider the example given previously with the values of x defined using linspace() instead of the colon operator.

% Create a basic plot y=x^2
x = linspace(-4,4,200); % use linspace to plot 200 points between -4 and 4
y = x.^2; % use .^ as x is a vector, to allow squaring each value
plot(x, y); % plot x vs. y data using plot() command
title('y=x^2') % use title() function to put title on graph
xlabel('X-axis') % use xlabel() function to put label x-axis
ylabel('Y-axis') % use ylabel() function to put label y-axis

The result is the same, however, x has 200 points in this example, while in the previous example it was 81 points. The more points, the smoother the graph will be plotted.
[image: image showing a graph in the figure window generated upon execution of MATLAB code with sufficient points in x vector leading to a smooth curve.]
Figure 8.4: Simple xy-plot with 200 points in vector x (smooth line)

8.1.2 Multiple plots in the same figure with one plot() command
At times, you may need to create multiple xy-plots on the same graph to see the difference between the data. In MATLAB, you can do that using the plot() function. Assume you have x in the range: , and , plot with respect to and with respect to .

% Creating Multiple Plots
x = linspace(0,2*pi,100);
y1 = 2*sin(x);
y2 = cos(2*x);
plot(x, y1, 'r--', x,y2, 'b:')
xlabel('X-axis'); ylabel('Y-axis');
title('Multiple Plot Example');
legend('y1 = 2sin(x)', 'y2=cos(2x)')

Note the graph generated by this code as follows.

[image: image showing a graph in the figure window generated upon execution of MATLAB code which shows two curves plotting the same figure window.]
Figure 8.5: Multiple plots in same figure, using one plot() command, and with legend() function to label the plots

A few things to note from this example:
1. We use pi for the math variable

2. In the first line, we have to write 2*pi (with the asterisk to indicate multiplication), if it is not written, MATLAB will generate an error for an invalid expression.
In the third line to define , note that the multiplication operator has been added between 2 and sin(x) as shown: y1 = 2*sin(x);
In the fourth line to define , there is a multiplication operator added inside the cosine function as shown: y2 = cos(2*x);

3. In the line using the plot() function, note the structure of the command, it plots x with respect to y1 and uses the red color with dash-dash style line, then it plots x with respect to y2 and uses the blue color with dotted line style line. This is how multiple plots can be created using the plot() function and the line style and color help in differentiating the two different lines.

The last line uses the legend() function which allows the annotation of the two graphs with labels, such as legend('y1 = 2sin(x)', 'y2=cos(2x)'). Here, the first text in the single quotes (‘y1=2sin(x)’) is linked with the first set of plot done by the plot() function, which in this case is plot of x with respect to y1, and the second text in the single quotes (‘y2=cose(2x)’)is lined with the second set of plot done by the plot() function, which is the plot of x with respect to y2.

4. If a grid needs to be added to the plot then the command grid on can be given, or if the grid needs to be removed, the command grid off can be given. If the command grid on is given after the plot() command, the code and figure looks as follows.

% Creating Multiple Plots
x = linspace(0,2*pi,100);
y1 = 2*sin(x);
y2 = cos(2*x);
plot(x, y1, 'r--', x,y2, 'b:');
grid on;
xlabel('X-axis'); ylabel('Y-axis');
title('Multiple Plot Example');
legend('y1 = 2sin(x)', 'y2=cos(2x)')

[image: image showing a graph in the figure window generated upon execution of MATLAB code which shows two curves plotting the same figure window along with grid lines to help in reading values of the graph.]
Figure 8.6: Multiple plots in same figure, same as previous figure, but with grid on

Table 8.1 illustrates all the different marker types, colors, and line styles that can be used with the plot() function to enhance the figure and make them easy to read.

Table 8.1 – Marker types, Colors, and Line Styles to use with plotting commands

	Symbol
	Marker Type
	Symbol
	Color
	Symbol
	Line Style

	.
	point
	r
	red
	-
	Solid Line, also default

	o
	circle
	k
	black
	:
	Dotted Line

	x
	x-mark
	b
	blue
	-.
	Dash-Dot Line

	+
	plus
	g
	green
	--
	Dashed Line

	*
	Asterisk
	y
	yellow
	
	

	s
	square
	m
	magenta
	
	

	d
	diamond
	w
	white
	
	

	v
	triangle (down)
	c
	cyan
	
	

	^
	triangle (up)
	
	
	
	

	<
	triangle (left)
	
	
	
	

	>
	triangle (right)
	
	
	
	

	p
	pentagram
	
	
	
	

	h
	hexagram
	
	
	
	

8.1.3 Multiple plots in the same figure using hold on command.
At times, you may want to use one plot() command to plot vectors x with respect to y1, and another plot() command to plot x with respect to y2. If the objective is to still plot both of the results on the same figure, the hold on command can be given, so MATLAB draws the second graph on top of the first graph, this way both will appear in the figure. As an illustration of the previous example, observe the following with the hold on command.

% Creating Multiple Plots
x = linspace(0,2*pi,100);
y1 = 2*sin(x);
y2 = cos(2*x);
plot(x, y1, 'r--');
hold on;
plot(x,y2, 'b:');
hold off;
xlabel('X-axis'); ylabel('Y-axis');
title('Multiple Plot Example');
legend('y1 = 2sin(x)', 'y2=cos(2x)')

[image: image showing a graph in the figure window generated upon execution of MATLAB code with two plot() commands but "hold on" command to avoid overwriting the first graph]
Figure 8.7: Multiple plots in same figure, using separate plot() commands along with hold on command

Note: In this program, the plot commands are separated, with a hold on command after the first plotting command, and the hold off command given after all plots are completed.

8.1.4 Multiple plots in different figures
There is also an option to plot the data in multiple figures using the figure() function in the same script file. Consider the example given below.

% Creating Multiple Plots
x = linspace(0,2*pi,100);
y1 = 2*sin(x);
y2 = cos(2*x);
figure(1);
plot(x, y1, 'r--');
xlabel('X-axis'); ylabel('Y-axis');
title('Figure 1: y1=2*sin(x)');
figure(2);
plot(x,y2, 'b:');
xlabel('X-axis'); ylabel('Y-axis');
title('Figure 2: y2=cos(2x)');

The result of executing the code generates the two figures shown below.

	[image: image showing a graph generated using the figure(1) command to open a figure window and then plotting in it.]
	[image: image showing a graph generated using the figure(2) command to open a figure window and then plotting in it.]

Figure 8.8: Illustrates two figure windows (Figure 1 and Figure 2) generated using the figure(1) and figure(2) commands.

As observed in Figure 8.8, the first figure (Figure 1) has the plot of y1=2sin(x) as shown in red color with dash-dash line, while the second figure (Figure 2) has the plot of y2=cos(2x) as shown in blue color with dotted line style.

8.1.5 Multiple plots using subplot() function
Here we look at the subplot() command as well as stem() graph, bar() graph, stairs() graph, histogram(), and pie() charts to create multiple graphs on the same figure. As all the plots will be integrated in the same script using the subplot() function, a brief explanation is provided of the function and then the result of using it is given via an example.

subplot(No_of_rows, No_of_cols, location_of_plot) function has generally 3 input arguments. The first indicates the number of rows in a figure, the second indicates the number of columns in the figure, and the third one stores the location in which the plot will be displayed. For the third input, the location starts from the 1st row, 1st column but then goes through the first row before starting the second row. Consider the example below for illustration.

x = [1,2,4,5,8]; % Define a row vector 1x5

subplot(2,3,1); plot(x);
xlabel('x'); ylabel('y'); title('Plot Example')

subplot(2,3,2); stem(x);
xlabel('x'); ylabel('y'); title('Stem plot of X')

subplot(2,3,3); bar(x);
xlabel('x'); ylabel('y'); title('Bar Graph of X')

subplot(2,3,4); stairs(x);
xlabel('x'); ylabel('y'); title('Stairs Plot of X')

subplot(2,3,5); histogram(x);
xlabel('x'); ylabel('y'); title('Histogram Graph of X')

subplot(2,3,6); pie(x);
xlabel('x'); ylabel('y'); title('Pie chart of X')

[image: image showing six graphs in one figure window illustrating the variety of plotting options in MATLAB. Examples of simple plot, stem plot, bar graph, stairs plot, histogram and pie chart are illustrated.]
Figure 8.9: Illustration of subplot() command execution, showing 2 Rows, 3 columns, and how the subplot() command activates each window before plotting in it. Also, shows multiple plotting commands and gives their visual representation – plot(), stem(), bar(), stairs(), histogram(), and pie()

Few important notes:
1. The subplot() command is given first, and then the plotting command comes, followed by labeling the axes and title.

2. Note that the figure has 2 rows and 3 columns, where the plot() example is in 1st row, 1 column and is the first location in the subplot() command. The second location is illustrated by the stem() plot which is in the 1st row, 2nd column, the third location is taken by the bar() plot and is in the 1st row, 3rd location. Then the stairs() function is shown in the fourth location in the subplot() function which is in the 2nd row, 1st column. The histogram() and the pie() functions are illustrated in the fifth and sixth position respectively.

8.1.6 Other plotting functions
In this section, we will illustrate the logarithmic plotting options available in MATLAB. We will introduce three MATLAB commands for plotting logarithmic data: semilogx() function in which the x-axis is logarithmic and y axis is linear, semiology() function in which x-axis is linear and y-axis is logarithmic, and loglog() function in which both x and y axes are logarithmic.

Example:
If is defined over the range: , and , illustrate the plot(), semilogx(), semiology(), and the loglog() functions using the subplot() function with a grid size of 2 rows, and 2 columns, where the plot() function is placed in the first location, semilogx() graph is in the second location, and so on.

Solution
x=linspace(-2,2,100);
y=x.^2;
subplot(2,2,1);
plot(x,y);grid on;
title('Linear plot of y=x^2');
xlabel('x'); ylabel('y');

subplot(2,2,2);
semilogx(x,y); grid on;
title('Semilog X Plot of y=x^2');
xlabel('x'); ylabel('y');

subplot(2,2,3);
semilogy(x,y); grid on;
title('Semilog Y Plot y=x^2');
xlabel('x'); ylabel('y');

subplot(2,2,4);
loglog(x,y); grid on;
title('loglog plot y=x^2');
xlabel('x'); ylabel('y');

[image: image showing a graph generated using the subplot() function with 4 different windows in 2x2 grid configuration showing a linear plot, semilogx plot, semilogy plot and loglog plot.]
Figure 8.10: Illustration of subplot() command execution, and illustration of plotting commands: plot(), semilogx(), semiology(), and loglog()

[bookmark: Special_Characters][bookmark: _bookmark81]In the results seen in the figure, notice that the first location shows the execution of the plot() command, where both the x and y axis are in linear scale. The second location shows a semilogx() command implemented and notice that the x-axis is in a logarithmic scale, while the y-axis is a linear scale. In the third location is the output from semiology() function in which the x-axis is a linear scale, while the y-axis is a logarithmic scale, while in the last location, the output from loglog() shows both axes in logarithmic scale.

8.1.7 Mistakes to avoid

A few important points to remember to have a successfully running script are as follows:
1. When naming script files make sure to follow the variable naming rules: start with a letter, have other letters or numbers, or underscores only.

2. Do not name your MATLAB script with a name used by a function in MATLAB. Try to use underscores to differentiate your functions with MATLAB library functions.

3. When plotting, make sure that the vector has enough points, this is especially important when using the colon operator.
4. If there is a function f, which is a function of time f(t), when defining in MATLAB, define it as f = instead of f(t) =, as the t in parenthesis can only be an integer and it starts with a value of one (1).

5. When plotting with subplot() function, it is important to use the proper sequence. First the subplot() command, then the command for plotting, then the labels and titles. If subplot() is written first, and then the labels and titles, and then the plotting function, you will observe that the plotting function will overwrite the labels.

[bookmark: Aesthetics][bookmark: _bookmark83]8.2 Debugging in MATLAB
When writing programs, it is very likely that when compiling the code is done, some errors will be generated in the command window. When this happens, it is essential to be able to troubleshoot the code, find the error, and fix it. This process of locating and eliminating the errors is called debugging, and it is essential to make sure we have a successfully running program.

8.2.1 Types of Errors
There are three types of errors in MATLAB. It is important to recognize these errors, so they can be corrected effectively.

1. Syntax Errors: These are errors generated when the MATLAB commands are typed incorrectly. These are caught by the MATLAB compiler when the MATLAB commands are executed in the command window (or the script file is compiled). These are the most common type of errors, and usually, MATLAB indicates in which line of code the errors occurs. Whenever MATLAB generates a list of errors, it is best to start from the very first error and then go down sequentially.
Example:
fprint('Value of pi is %.2f\n',pi)
Unrecognized function or variable 'fprint'.
In this example, the function name is fprintf() not fprint(), so MATLAB mentions it is unrecognized.

2. Run-time Errors: These errors are generated when an illegal mathematical operation is executed in MATLAB during the compilation of the code. These errors generate results such as Inf (which stands for infinity) or NaN (which stands for Not-a-Number). In the first instance, when a number is divided by a zero, MATLAB will give the result as Inf. In the second instance, when a zero is divided by a zero, MATLAB will give the result as NaN. These errors generally occur when the program is executed, and it is possible that these errors are generated due to the input data provided to the program. It is helpful to check the input data to see if they are defined correctly (check the array is defined with the correct size, check if a comma was placed instead of a semi-colon, etc.)
Example:
	Define x and y
	Divide a number by zero
	Divide zero by zero

	x=5; y=0;

	>> x/y
ans = Inf

	 >> y/y
 ans = NaN

3. Logical Errors: These errors happen when the code compiles and runs successfully, yet the answer is incorrect. These errors may take some time to find. It is always best to have an example to check your code to see the results are coming as expected, and where they don’t match, it will be easy to find the issue. An example of logical errors is illustrated below:

	Define a
	Define b
	c=a.*b
	c=a*b

	>> a=[1,2;3,4]

a =

 1 2
 3 4
	>> b=[1,0;0,1]

b =

 1 0
 0 1

	>> c=a.*b

c =

 1 0
 0 4

	>> c=a*b

c =

 1 2
 3 4

In this example, arrays a and b are defined as 2x2 matrices. The objective was to do matrix multiplication c=a*b, but if the operation is done as an element-by-element operation, i.e., c=a.*b, then the result will be incorrect even though the program will generate a result. Here is it helpful to know what the result should look like so it can be observed where the error is being generated from so that it can be fixed.

8.2.2 MATLAB Debugger

MATLAB Editor has the option to divide code into sections and run different sections at one time to check which portions of the code are running correctly. Similarly, MATLAB allows the user to check the code by selecting which lines to execute, to see how far the code works without any errors. To do this, highlight the code you want to execute, right-click on the code, and select “Evaluate selection in Command Window”

8.3 Explore Further
Remember, practice makes perfect. Explore MATLAB documentation, online tutorials, and forums as resources for further exploration of MATLAB's plotting capabilities and debugging techniques. One option for exploring further is to visit MATLAB Marina Plotting and MATLAB Marina Debugging websites.

8.4 Conclusion/Summary of Key Points
1) When using the colon operator to define vectors, make sure to have enough points in the vector. Use linspace() function as it defines the number of points.
2) Colon operator uses starting_value : increment : Ending_value format, while the linspace(starting_value, Ending_value, No_of_points) function uses commas to separates its input argument.
3) When writing programs, make sure that if the variable is going to be used, it should be defined before it is called.
4) Practice the plot() command with the different data markers, colors, and line styles, and understand the use of hold and grid commands.
5) Always label your axes and title in a graph
6) When plotting multiple lines on the same graph, make sure to use the legend() function to identify the lines and use different line styles.
7) The subplot() command defines the location of the plots in horizontal rows, rather than columns (which is what we were using when reading matrices given a single value in the array).
8) Review the plotting functions: plot(), subplot(), semilogx(), semiology(), loglog(), and the helping functions during plots: xlabel(), ylabel(), title(), legend(), hold on, grid on.
9) Three kinds of errors to debug: Syntax errors, run-time errors, and logical errors.

Last modified May 12, 2024

[image: Creative Commons License] This work by Salman Siddiqui & Rami Haddad is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 4.0 International License

1

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image1.png

image2.png

image13.png

Lecture 8

–

Introduction to Plotting and Debugging

Objectives:

To apply basic

plotting

functions in MATLAB to present data visually and to

recognize

the different types of errors and

fix

them at the basic level.

The goal of this lecture is to introduce the commands to draw a graph in MATLAB using the basic

plot

() function, and to introduce a few other functions for plotting. In addition, a brief introduction

is provided to the types of

errors that can happen when coding, and how to recognize them and fix

them, which is called debugging.

8.1 Plotting in MATLAB

MATLAB is a powerful tool for creating high

-

quality plots that allow data visualization, which

makes it easier to

understand system behavior, do data analysis, identify trends, and present your

findings. Hence plotting is an essential tool engineers use when problem

-

solving. The main

command

s/

functions we will explore in this lecture are

linspace

(),

plot

(),

subplot

(

),

figure

(),

hold, grid,

semilogx

(),

semiology

(),

loglog

(), and figure customizations such as

xlabel

(),

ylabel

(),

title

(), and

legend

().

8.1.1 Introduction to MATLAB Plots

Plots in MATLAB are created by simply “connecting the dots.” This means th

at you have to

provide the actual coordinates of the points both the

x

and

y

coordinates. It is not enough to

simply say plot

??

=

??

2

, you must give exactly which

x

values you want squared. Let's start with

a simple example:

8.1.1.1 Simple xy

-

plots using the colon operator

Consider x is to be defined over the range

-

??

=

??

=

??

, and y is as

??

=

??

??

. So, define

x

first,

then

y

, then use the command

plot

(x,y) to plot the

graph.

% Create a basic plot y=x^2

x =

-

4:0.1:4;

% use colon operator to define x with 0.1 increments

y = x.^2;

% use .^ as x is a vector, to allow squaring each value

plot(x, y);

% plot x vs. y data using plot() command

That is all you do for plott

ing a simple

xy

-

plot

Figure 8.1: Simple

xy

-

plot without labels and title

Lecture 8 – Introduction to Plotting and Debugging

Objectives: To apply basic plotting functions in MATLAB to present data visually and to

recognize the different types of errors and fix them at the basic level.

The goal of this lecture is to introduce the commands to draw a graph in MATLAB using the basic

plot() function, and to introduce a few other functions for plotting. In addition, a brief introduction

is provided to the types of errors that can happen when coding, and how to recognize them and fix

them, which is called debugging.

8.1 Plotting in MATLAB

MATLAB is a powerful tool for creating high-quality plots that allow data visualization, which

makes it easier to understand system behavior, do data analysis, identify trends, and present your

findings. Hence plotting is an essential tool engineers use when problem-solving. The main

commands/functions we will explore in this lecture are linspace(), plot(), subplot(), figure(),

hold, grid, semilogx(), semiology(), loglog(), and figure customizations such as xlabel(),

ylabel(), title(), and legend().

8.1.1 Introduction to MATLAB Plots

Plots in MATLAB are created by simply “connecting the dots.” This means that you have to

provide the actual coordinates of the points both the x and y coordinates. It is not enough to

simply say plot ??=??

2

, you must give exactly which x values you want squared. Let's start with

a simple example:

8.1.1.1 Simple xy-plots using the colon operator

Consider x is to be defined over the range-??=??=??, and y is as ??=??

??

. So, define x first,

then y, then use the command plot(x,y) to plot the graph.

% Create a basic plot y=x^2

x = -4:0.1:4; % use colon operator to define x with 0.1 increments

y = x.^2; % use .^ as x is a vector, to allow squaring each value

plot(x, y); % plot x vs. y data using plot() command

That is all you do for plotting a simple xy-plot

Figure 8.1: Simple xy-plot without labels and title

