		[image: Georgia Southern University Logo]

		
Lecture 12 – Structured Programming - while loop

Objectives: To learn and apply the use of flowcharts and repetition controls structures, specifically while loops, to develop solutions to engineering problems.

The overall goal of this lecture is to identify the three types of control structures used in programming, learn the use of flowcharts to graphically describes the sequence of steps in a program, similar to pseudocode, and to understand the basic structure of while loop, be able to evaluate it, write basic while loops and perform simple array operations using it.

[bookmark: Aesthetics][bookmark: _bookmark83]12.1 What is structured programming and why use it?
Structured programming is an approach to coding that emphasizes breaking programs into smaller, more manageable sections. By using specific control structures like conditional statements, loops, and functions, structured programming enhances code clarity, readability, and maintainability. This method makes it easier to understand, troubleshoot, and modify code, ultimately leading to more reliable and efficient programming practices. It is beneficial for both beginners and experts alike due to its structured and organized nature. While we have been using structured programming principles thus far, let's now formally delve into its structure.

12.2 Three Types of Control Structures
All programs can be written using only three control structures. These are the sequence structure, the selection structure, and the repetition structure.

12.2.1 Sequence structure
	Sequence structure in programming implies that the instructions are executed in the order they are writing, one after the other, without branching or repetition. It follows the top to bottom approach, executing the instructions in sequence from top to bottom. Initially, the programs done in the beginning of this course were of the sequence structure.

12.2.2 Selection structure
	The Selection structure, also known as the decision-making structure, is a programming concept that allows execution of code based on specific conditions or criteria. It facilitates in decision-making and selection of appropriate actions. The selection structure typically involves conditional statements like if/else or switch/case statements, which evaluates conditions and accordingly decide which code to execute.

12.2.3 Repetition structure
	The repetition structure, also referred to as the looping or iteration structure, is a fundamental programming concept we will explore in this lecture. It enables the execution of a block of code repeatedly until a specified condition is met (true) or a certain number of iterations is reached. This structure is extremely valuable for automating repetitive tasks and efficiently processing data. Typically, repetition structures involve while loops and for loops in MATLAB programming. In this lecture, we will focus on while loops and introduce for loops in the next lecture.

12.3 Flowcharts
In programming, flowcharts provide visual representations of the sequence of steps or processes within an algorithm. They use standardized symbols and connectors to illustrate the flow of control within a program. Flowcharts serve as an important tool to establish logic prior to coding and also for communicating the processes to others in a structured manner.

12.3.1 Read flowcharts
	Reading flowcharts involves understanding the symbols and connections used to represent various elements and the flow of control within a process. The key elements used to draw flowcharts as shown in the table below:

Table 12.1: Symbols used in a flowchart
	Symbol
	Name
	Function

	
	Start/end
	An oval shape represents a start or end point of the algorithm

	
	Arrows
	A line with arrowhead is a connector that shows the flow of the process from one block to another

	
	Input/Output
	A parallelogram shape represents input or output step

	
	Process
	A rectangle shape represents a process or computation

	
	Decision
	A diamond shape indicates a decision-making operation

	
	Connector
	A circular shape used to indicate where the flow continues, usually has a letter in it

12.3.2 Flowcharts to Represent Control Structures

Table 12.2: Flowcharts to visualize Control Structures in Programming
	[image: A flowchart diagram to show the sequence control structure]
Sequence Structure
	[image: A flowchart diagram to show the selection control structure]

Selection structure
	[image: A flowchart diagram to show the repetitive control structure]
Repetitive Structure

	Statements executed one after the other. No change in sequence.
	Execution of statements depends on whether logic expression is T or F. (if/else, switch/case)
	Statements are repeated if the “while” loop expression is true. Similar structure is used for “for” loops

Flowcharts can be used to give a visual description of three control structures used in structured programming. Table 12.2 illustrates the sequence structure, the selection structure, and the repetitive structure along with brief descriptions under them.

12.4 While Loop
The while loop is part of the repetitive control structure, which means that as long as the condition evaluated at the beginning of the while statement is true, the code will keep on repeating the task that is in the while loop. An infinite loop is one in which the condition at the top of the while loop never becomes false. Sometimes it is intended, at times, it could be a mistake. It is important to check the programs once they are written to verify it accomplishes the tasks as intended.

12.4.1 Understanding Structure of while loop
A while loop has the following structure:
	while (logical_expression)
 statement 1; %
 statement 2; %statement Block
 ... %
end

	If the logical_expression is true, the Statement Block is executed. After the execution, the condition is evaluated again, if the condition is still true the statement block will be executed again. The statement will continue to be executed repeatedly until the condition becomes false. If the condition is false, the program after the loop (end) will be executed.

Important Notes:
1) Something inside the while loop has to update the variable in the condition so the while loop will stop
2) While loop will never run if the condition begins as false
3) While loop will never end if the condition begins as true, it becomes an infinite loop
4) In case of unwanted infinite loop, use “Ctrl” and “C” keys on the keyboard together to break out of infinite loop

12.4.2 Why use while loops?
	While loop is one the most important programming structures, it allows the programmers to complete repetitive tasks easily. An example of repetitive tasks is playing a music track continuously. We can use an infinite while loop to play the track of music continuously. Another example is to move a robot forward until it is too close to the wall. We can set the conditions of the loop as the distance between the robot and the wall is greater than the threshold value.

12.4.3 Example #1 Draw flowchart & code
Consider you are developing a system in which as long as a variable, x, is less than 25, you have to evaluate the expression x = 2x-1, and you can assume the initial value of x is equal to 5. Use a flowchart to illustrate the algorithm (sequence of steps) for this problem then write a while loop to implement it.

Solution:
To create a flowchart, we can use draw.io website, making sure it has the following structure:
[image: A flowchart diagram of algorithm for Example#1
]
Figure 12.1: Flowchart for Example#1

Note the shapes used in the flowchart relate to their purpose in the code. Oval shapes are used for starting or ending the program, the rectangle shape is for process or computation, the diamond shape is for decision-making and since a while loop is intended, it should have a repetition structure in the loop, which should keep repeating as long as the condition in the diamond-shape block is true. The parallelogram shape is for input or output, and the arrows show the flow of the code.

Using the structure of the while loop and the flowchart in Figure 12.1, the program should have the following structure:
	x = 5; %initialize x as 5
while(x < 25) %Check condition x less than 25
 x = 2*x - 1; %update the value of x
 fprintf('The value of x is: %g\n', x);
end

12.4.4 Problem #1 Evaluate simple while loop
Evaluate the following simple while loop and state the result of running this code:
	k=1;
while (k <= 3)
 disp('Hello World');
end

Solution:
The variable controlling the loop’s condition is not changing inside the loop, so the loop will never end, hence an infinite loop. If the program is struck in a infinite loop, press the “Ctrl” and “C” key on the keyboard together to break out of infinite loop

Note: While drawing a flowchart is not necessary before writing a while loop, creating one, particularly for complex programs, will assist in gaining a comprehensive understanding of the tasks to be accomplished in the code before implementation and testing. This practice will prove particularly beneficial when working on the course project, serving as a planning tool and also in explaining the process of how the code works during the presentation.

12.4.5 Problem #2 Write a basic while loop
Write a program using while loop to compute the square of the first five numbers: 1,2,3,4,5 and print the results as follows using fprintf inside the while loop:
	The square of 1 is 1
The square of 2 is 4
The square of 3 is 9
The square of 4 is 16
The square of 5 is 25

Solution:
First we can draw a flowchart to visualize all the steps we need to take:

[image: A flowchart diagram of the algorithm for Problem number 2.]
Figure 12.2: Flowchart for Problem#2

After we create the flowchart we can write the MATLAB code:
	clc; clear; close all;
k=1; %initialize the first number as 1
while k<=5 %check condition the number is less than or equal to 5
 sq_k=k^2; %calculate the square of the number
 fprintf('The square of %g is %2g\n',k,sq_k);
 k=k+1; %increment the number by 1
end

Again, take note of the shapes used in the flowchart and the structure of the while loop. Anything that needs to be repeated needs to be inside the while loop. If you understand the structure of the while loop, it would not be difficult to evaluate them or write simple while loops yourself.

12.4.6 Example #2 Changing while condition using User Input
Write a program to seek the radius of a circle from the user. Once radius is entered, compute the area, (𝜋𝑟2), and circumference, (2𝜋𝑟), and display the values. This process should continue until radius is zero or less. Use while loop!

Solution:
	radius = input('Enter radius of a circle: '); %ask user for the radius
while radius > 0 %check if radius is greater than 0
 area = pi*radius^2; %calculate the area of the circle
 circumference = 2*pi*radius; %calculate the circumference of the circuit
 fprintf('The area is %.2f, circumference is %.2f\n’, area, circumference);
 radius = input('Enter radius of a circle: ');% ask user for the next radius
end

Note: In this example, the loop variable is radius, as it helps in determining if the while loop will continue running or stop. However, this variable is asked from the user, hence note that this variable appear before the loop end to determine its new value to help in deciding to continuing running the loop or to stop!

12.4.7 Example #3 Array Operations with while
Write a MATLAB program that computes the sum of the odd-indexed numbers in a given array and displays the result. Let the following array be defined: x = [8 10 7 9 4 2 1 43]

Solution:
	x = [8 10 7 9 4 2 1 43]; %initialize the given array
disp(['The original array was: ',mat2str(x)]); %display the array

k=1; total=0; %initialize the first index as 1 and the total sum as 0
while k <= length(x) %check if the index is smaller than length of the array
 total = total + x(k); %add the odd indexed value to the sum
 k = k+2; %increment the index by 2 to keep the index odd
end
fprintf('Sum of odd-indexed numbers is: %g.\n',total);

Note: In this example, the concept of arrays is being used with while loops. However, the fundamentals of arrays was covered in lecture 6 (MATLAB Basics). Recall that to access any value in the array x, we need to know its location. In the program above, the variable k is used as the variable to access the values inside the array x by using x(k), meaning the value of x at location k. Also, since this program is doing a summation task, a variable (total in this example) should be introduced and assigned a value of zero so it can do the process of summing and updating (total = total + x(k)) the value in the while loop. In this expression, the right side of the “equal to” sign is evaluated first and then substituted in the variable on the left side of the “equal to” sign. Lastly, note how the mat2str() function is being used. It is used to convert a matrix to a string so that it can be displayed in the string setting.

12.4.8 Example #4 Array Operations using while
Write a MATLAB program that counts the number of times the value 3 occurs. Use if/else statements inside the while loop to accomplish this. Let the following array be defined:
x = [5 3 1 7 9 3 -1 -3 -5 3]
Solution:
	x = [5 3 1 7 9 3 -1 -3 -5 3]; %initialize the array
disp(['The original array was: ',mat2str(x)]); %display the array
k=1; count3=0; %initialize the index as 1 and the number of 3 as 0
while k <= length(x) %check if the index is less than length of the array
 if x(k) == 3 %check if the value in the array is 3
 count3 = count3 + 1; %increase the 3 counter by one
 end
 k = k+1; %increment the index by 1
end
fprintf('The number of 3s in the array are: %g.\n',count3);

Note: Since in this program the value of 3 needs to be found, the “==” operator is used which check if the value is equal or not. Also observe that when the if condition is true, a count would be increased, which means there should be a variable defined for it before the while loop start, and hence count3=0 is done before the while loop started.

12.4.9 Example #5
Write a MATLAB program that creates an array to hold the negative values in the array x. Use if/else statements inside while loop. Let the following array be defined:
x = [5 3 1 7 9 3 -1 -3 -5 3]
Solution:
	x = [5 3 1 7 9 3 -1 -3 -5 3]; %initialize the array x
disp(['The original array was: ',mat2str(x)]); %display array x
k=1; count=1; %initialize x index and the xneg index as 1
while k <= length(x) %check if the x index is less or equal to the length of x
 if x(k) <= 0 %check if the number in current index is negative
 xneg(count) = x(k); %add the current number to the negative array
 count = count + 1; %increment the negative array index
 end
 k = k+1; %increment the x array by 1
end
disp(['The negative values in array are: ',mat2str(xneg)]);

Note: In this program, the concept of arrays is used to create an array of negative values. The process is simple, it just requires a new variable name (xneg is used here) along with a new index to point to locations inside it (count is used here for that purpose). All other concepts were introduced previously in this lecture.

12.5 Explore Further
You can further explore MATLAB documentation for the while statements. Similarly, you can access MATLAB Marina resource for while loops.

12.6 Conclusion/Summary of Key Points
1) There are three control structures used in programming: sequence structure, selection structure, and repetition structure.
2) Flowcharts provide a visual representation of the algorithm. Oval shape is for starting/stopping code, parallelogram to show input/output, rectangle shape to show process/computation, a diamond shape for decision-making statements, and arrows for showing the flow of the code.
3) While loops are used to perform repetitive operations. Make sure to understand its structure to help you evaluate and write while loops.
4) Anything that needs to be repeated should be placed inside the while loop
5) While loop may never run if the condition begins with a false statement
6) While loops can become infinite if the condition never becomes false, to break out of an infinite loop, press the “ctrl” and “c” keys on the keyboard together.

Last modified May 12, 2024

[image: Creative Commons License] This work by Salman Siddiqui & Rami Haddad is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 4.0 International License

1

image3.png

image4.png

image5.png

image6.png

image1.png

image2.png

image7.png

Lecture 1

2

–

Structured Programming

-

while

loop

Objectives:

To learn and apply the use of flowcharts and repetition controls structures,

specifically

while

loops, to de

velop solutions to engineering problems.

The overall goal of this lecture is to identify the three types of control structures used in

programming, learn the use of flowcharts to graphically describes the sequence of steps in a

program, similar to pseudocode, and to understand the basic structure

of

while

loop, be able to

evaluate it, write basic

while

loops and perform simple array operations using it.

12.1 What is structured programming and why use it?

Structured programming is an approach to coding that emphasizes breaking programs into

small

er, more manageable sections. By using specific control structures like conditional

statements, loops, and functions, structured programming enhances code clarity, readability, and

maintainability. This method makes it easier to understand, troubleshoot, a

nd modify code,

ultimately leading to more reliable and efficient programming practices. It is beneficial for both

beginners and experts alike due to its structured and organized nature. While we have been using

structured programming principles thus far,

let's now formally delve into its structure.

12.2 Three Types of Control Structures

All programs can be written using only three control structures. These are the sequence structure,

the selection structure, and the repetition structure.

12.2.1 Sequence structure

Sequence structure in programming implies that the instructions are execu

ted in the order

they are writing, one after the other, without branching or repetition. It follows the top to bottom

approach, executing the instructions in sequence from top to bottom. Initially, the programs done

in the beginning of this course were of

the sequence structure.

12.2.2 Selection structure

The Selection structure, also known as the decision

-

making structure, is a programming

concept that allows execution of code based on specific conditions or criteria. It facilitates in

decision

-

making an

d selection of appropriate actions. The selection structure typically involves

conditional statements like

if/else

or

switch/case

statements, which evaluates conditions and

accordingly decide which code to execute.

12.2.3 Repetition structure

The repetition structure, also referred to as the looping or iteration structure, is a

fundamental programming concept we will explore in th

is lecture. It enables the execution of a

block of code repeatedly until a specified condition is met (true) or a certain number of iterations

is reached. This structure is extremely valuable for automating repetitive tasks and efficiently

processing data.

Typically, repetition structures involve

while

loops and

for

loops in MATLAB

programming. In this lecture, we will focus on

while

loops and introduce

for

loops in the next

lecture.

Lecture 12 – Structured Programming - while loop

Objectives: To learn and apply the use of flowcharts and repetition controls structures,

specifically while loops, to develop solutions to engineering problems.

The overall goal of this lecture is to identify the three types of control structures used in

programming, learn the use of flowcharts to graphically describes the sequence of steps in a

program, similar to pseudocode, and to understand the basic structure of while loop, be able to

evaluate it, write basic while loops and perform simple array operations using it.

12.1 What is structured programming and why use it?

Structured programming is an approach to coding that emphasizes breaking programs into

smaller, more manageable sections. By using specific control structures like conditional

statements, loops, and functions, structured programming enhances code clarity, readability, and

maintainability. This method makes it easier to understand, troubleshoot, and modify code,

ultimately leading to more reliable and efficient programming practices. It is beneficial for both

beginners and experts alike due to its structured and organized nature. While we have been using

structured programming principles thus far, let's now formally delve into its structure.

12.2 Three Types of Control Structures

All programs can be written using only three control structures. These are the sequence structure,

the selection structure, and the repetition structure.

12.2.1 Sequence structure

 Sequence structure in programming implies that the instructions are executed in the order

they are writing, one after the other, without branching or repetition. It follows the top to bottom

approach, executing the instructions in sequence from top to bottom. Initially, the programs done

in the beginning of this course were of the sequence structure.

12.2.2 Selection structure

 The Selection structure, also known as the decision-making structure, is a programming

concept that allows execution of code based on specific conditions or criteria. It facilitates in

decision-making and selection of appropriate actions. The selection structure typically involves

conditional statements like if/else or switch/case statements, which evaluates conditions and

accordingly decide which code to execute.

12.2.3 Repetition structure

 The repetition structure, also referred to as the looping or iteration structure, is a

fundamental programming concept we will explore in this lecture. It enables the execution of a

block of code repeatedly until a specified condition is met (true) or a certain number of iterations

is reached. This structure is extremely valuable for automating repetitive tasks and efficiently

processing data. Typically, repetition structures involve while loops and for loops in MATLAB

programming. In this lecture, we will focus on while loops and introduce for loops in the next

lecture.

