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Abstract 

Context: Logs are often the first and only information available to software engineers to understand and debug their 
systems. Automated log-analysis techniques help software engineers gain insights into large log data. These techniques 
have several steps, among which log abstraction is the most important because it transforms raw log-data into high-
level information. Thus, log abstraction allows software engineers to perform further analyses. Existing log-abstraction 
techniques vary significantly in their designs and performances. To the best of our knowledge, there is no study that 
examines the performances of these techniques with respect to the following seven quality aspects concurrently: mode, 
coverage, delimiter independence, eÿciency, scalability, system knowledge independence, and parameter tuning e˙ort. 
Objectives: We want (1) to build a quality model for evaluating automated log-abstraction techniques and (2) to 
evaluate and recommend existing automated log-abstraction techniques using this quality model. 
Method: We perform a systematic literature review (SLR) of automated log-abstraction techniques. We review 89 
research papers out of 2,864 initial papers. 
Results: Through this SLR, we (1) identify 17 automated log-abstraction techniques, (2) build a quality model com-
posed of seven desirable aspects: coverage, delimiter independence, eÿciency, system knowledge independence, mode, 
parameter tuning e˙ort required, and scalability, and (3) make recommendations for researchers on future research 
directions. 
Conclusion: Our quality model and recommendations help researchers learn about the state-of-the-art automated log-
abstraction techniques, identify research gaps to enhance existing techniques, and develop new ones. We also support 
software engineers in understanding the advantages and limitations of existing techniques and in choosing the suitable 
technique to their unique use cases. 

Keywords: Log Abstraction Techniques, Log Analysis, Log Mining, Log Parsing, Software Analysis, Software Log, 
Systematic literature review, Systematic survey. 

1. Introduction 

Logs contain a wealth of data that can help software en-
gineers understand a software system run-time properties 
[1, 2]. However, modern systems have become so large and 
complex, especially with the emergence of the Internet of 
Things (IoT) and Cloud computing, that they produce too 
huge amounts of log data for software engineers to handle 
manually. Google systems, for example, generate hundreds 
of millions of new log entries every month, which account 
for tens of terabytes of log data daily [3, 4]. Also, logs 
come in di˙erent formats, hindering the analyses of their 
content and making their uses yet more complex [4, 3]. 

To tackle these problems, software engineers have at 
their disposable a wide range of Automated Log Abstrac-
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tion Techniques (ALATs) that they can use to reduce the 
amount of data to process. These techniques implement 
di˙erent log-abstraction algorithms, designed for various 
purposes, e.g., performance optimization, information se-
curity, anomaly detection, business reporting, resource uti-
lization, or users’ profiling [1]. 

However, there is a gap between industry and acad-
emia. First, software engineers are not aware of all exist-
ing ALATs developed in academia and the characteristics 
of their algorithms. To the best of our knowledge, there 
is no work that presents a comprehensive view on state-
of-the-art ALATs and software engineers cannot a˙ord to 
undertake the cumbersome and time-consuming task of 
searching through the large body of literature to identify 
the best suited ALAT. Second, software engineers do not 
have the time and resources to study and understand the 
characteristics of each ALAT. The gap is further spread 
because researchers focus on enhancing accuracy (defined 
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in Section 6) when proposing new ALATs whereas software 
engineers are also interested in comparing the ALATs in 
terms of other useful aspects. 

To reduce this gap, this paper helps researchers and 
software engineers as follows: 

• It provides a SLR to inform software engineers of 
existing state-of-the-art ALATs in Section 5 

• It collates and combines ALATs’ characteristics iden-
tified through the SLR into seven desirable quality 
aspects on which it builds a quality model to evalu-
ate ALATs, explained in Section 6 

• It presents a comparison of 17 ALATs according to 
our quality model, identifies research gaps, and makes 
recommendations for researchers on future research 
directions, in Section 7. 

• It helps software engineers understand the advan-
tages and limitations of existing ALATs and select 
the most suitable for their use cases, in Section 7. 

We review 89 research papers out of 2,864 initial pa-
pers, identified using a SLR, following the guidelines pro-
posed by Kitchenham et al. [5, 6]. We selected these pa-
pers after searching all the papers related to log analysis 
in the digital resource Engineering Village. Two authors 
independently read and evaluated the papers. We per-
formed backward and forward snowballing through SCO-
PUS. Based on our inclusion/exclusion criteria and quality 
assessment, we obtained 89 papers, in which we identified 
17 unique ALATs. 

We evaluated these ALATs and showed that (1) re-
searchers worked on improving the eÿciency of ALATs 
by adopting diverse algorithms, while distributed archi-
tectures seem most promising; (2) parameter tuning for 
large-scale log data is challenging and requires major ef-
fort and time from software engineers, researchers should 
consider techniques for automatic and dynamic parame-
ters tuning; (3) due to confidentiality issues, log datasets 
are rare in the community while all existing unsupervised 
ALATs depend on these datasets for training, so we rec-
ommend researchers to investigate new ALATs that do not 
rely on training data; (4) practitioners must make compro-
mises when selecting an ALAT because there is not one 
ALAT that can satisfy all quality aspects even if online 
ALATs (e.g., Spell, Drain) or ALATs based on heuristic 
clustering approaches and implementing a parallelization 
mechanism (e.g., POP, LogMine) satisfy most combina-
tions of quality aspects; (5) supervised ALATs based on 
Natural Language Processing techniques (NLP) are accu-
rate if the models are trained on large amounts of data and 
researchers should build and share their logs to benefit the 
research community. 

He et al. [7] provided an ad-hoc comparison of four 
ALATs using accuracy and eÿciency as quality aspects. 
Also, parallel to this work, Zhu et al. [8] measured the 
performance 13 ALATs on 16 log datasets and reported 
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Figure 1: Log Mining Pipeline 

interesting results in terms of accuracy, robustness, and ef-
ficiency. Di˙erently, we conduct a systematic literature re-
view (SLR) from which we identify, study, summarize, and 
compare 17 ALATs based on seven desirable quality as-
pects identified from the literature: mode, coverage, delim-
iter independence, eÿciency, scalability, system knowledge 
independence, and parameter tuning e˙ort.(defined in Sec-
tion 6). Furthermore, we provide practitioners with direct 
references and summarize/group the researchers’ findings, 
so practitioners benefit from their experience with ALATs. 
Our results are based on a thorough review of ALAT devel-
opment contexts and algorithmic characteristics, detailed 
in Section 5 and Table 1, and on the results of empirical 
experiments and experiences shared in the literature. Our 
results are not based on review of any source code released. 

The remainder of the paper is as follows. Section 2 pro-
vides a background on log abstraction. Section 3 motivates 
the use of ALATs by practitioners and researchers. Section 
4 describes our study design. Section 5 groups and sum-
marizes the 17 state-of-the-art ALATs identified through 
a SLR. Section 6 presents the ALATs quality model based 
on seven quality aspects identified in literature. Sections 
7 provides the results of our study and promising direc-
tions for researchers and software engineers, respectively. 
Section 8 discusses threats to the validity of our results. 
Section 9 concludes the paper with future work. 

2. Log Mining Process 

To perform log-mining tasks, such as failure diagnosis, 
performance diagnosis, security, prediction, and profiling 
[1], a typical log-mining process is composed of three steps: 
log-collection, log-abstraction, and log-analysis (Figure 1). 

The raw log data collected during the log-collection 
step contains log entries describing system states and run-
time information. Each log entry includes a message con-
taining a free-form natural-language text describing some 
event. Based on the log-mining task at hand, the log-
analysis step implements the most suitable automated log-
analysis technique (i.e., anomaly detection, model infer-
ence, etc.), which usually requires structured input-data 
that can be encoded into numerical feature vectors. As 
shown in Figure 2, during the log-abstraction step, ALATs 
transform the raw log-data into structured events lists re-
quired by the automated log-analysis techniques. Thus, 
ALATs are essential in the pre-processing step for eÿcient 
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log-mining (e.g., searching, grouping, etc.), a foremost step 
for most automatic log-analysis techniques and a useful 
step for managing logs in a log management system [9]. 

2.1. Log Format 
Logs are generated by logging statements inserted by 

software engineers in source code to record particular events 
and track run-time information. For example, in the log-
ging statement: 

logger.info("Time taken to scan block pool {} on 
{} {}", map.get("pool"), path, executionTime )} 

logger is the logging object for the system, info is the 
chosen verbosity level, Time taken to scan block pool 
and on are static messages fixed in the code, which remain 
the same at runtime, and poor, path, and executionTime 
are dynamic parameters varying each time this statement 
is executed, which can thus generate di˙erent log entries, 
such as the example in Figure 3. 

Each log entry in a raw log-file represents a specific 
event. As shown in Figure 3, a log entry is generally com-
posed of a log header and a log message containing run-
time information associated with the logged event. The 
logging-framework configuration determines the fields of 
the log-header. Usually, they include data such as a time-
stamp, a severity level, and a software component [10, 11]. 
Therefore, these fields are structured and can easily be 
parsed and abstracted. 

As illustrated in Figure 4, the log message of a log 
entry is written in a free-form text in the source code, 
typically as a concatenation of di˙erent strings and–or a 
format string, which is diÿcult to abstract because it does 
not have a “standard”, structured format. Log messages 
are composed of static fields and dynamic fields. Dynamic 

017-09-26 12:40:15, INFO impl.FsDatasetImpl - Time taken to scan block pool BP-805143380 on /home/data3/current 30ms

Timestamp Verbosity Component

Log Header Log Message

Figure 3: Log Entry Sample 

Time taken to scan block pool BP-805143380 on /home/data3/current 30ms

Log Message

Static Field Dynamic Field Dynamic Field Dynamic FieldStatic Field

Figure 4: Log Message Fields 

fields are the variables assigned at run-time. Static fields 
are text messages that do not change from one event oc-
currence to another and denote the event type of the log 
message. Log fields can be separated by any delimiter e.g., 
white-space, brackets, comma, semicolon, etc. 

2.2. Log Abstraction 
Log-abstraction structures and reduces the amount of 

log entries in the raw log-file while keeping the provided 
information. The goal of ALATs is to separate the static 
fields from the dynamically-changing fields, to mask the 
dynamic fields (usually by an asterisk *), and to abstract 
each raw log message into a unique event type that is the 
same for all occurrences of the same event. For example, 
the log message in Figure 4 could be abstracted by the 
following event type: 

Time taken to scan block pool * on * * 
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2017-09-2611:57:25 INFOdelegation.TokenSecretManager- Creating password for identifier: 
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2017-09-2611:58:10 INFOimpl.FsDatasetImpl - Time taken to scan block pool BP-1846194586 on 

/home/ hadoop/ hadoop-hdfs/target /data1/current: 12ms

2017-09-2611:58:10 INFOimpl.FsDatasetImpl - Time taken to scan block pool BP-1846194586 on 

/home/hadoop /hadoop-hdfs/target /data2/current: 5ms

2017-09-2611:58:11 INFOdatanode.DataNode - Opened streaming server at /127.0.0.1:38510

2017-09-2611:58:13 INFOdatanode.DataNode - Opened streaming server at /127.0.0.1:41576
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Figure 5: Log-Abstraction Phases 

ALATs include two phases: discovery and matching. 
As shown in Figure 5, during the discovery phase, ALATs 
take as input a batch of training raw log entries and output 
the abstracted event types for all log entries of the same 
event. Once the event types are generated, they serve as 
a basis for matching new log entries in batch or stream 
processing. 

2.2.1. Challenges 
Abstracting logs for complex and evolving systems re-

quires ALATs to tackle several challenging issues. We now 
summarise these challenges. 

Heterogeneity of Log Data. Log messages have various for-
mats. They are produced by di˙erent software layers/com-
ponents and can be written by hundreds of developers all 
over the world [3, 9]. Therefore, practitioners may have 
limited domain knowledge and may not be aware of the 
original purpose and characteristics of the log-data [3]. 

Updating of Event Types. Log messages change frequently 
(e.g., hundreds of logging statements are added in Google 
systems each month [3]). Practitioners must update event 
types periodically via the discovery phase to ensure ab-
straction accuracy for the matching phase [12, 13]. 

Manual Parameter Tuning. During the discovery phase, 
practitioners must manually tune ALATs parameters, which 
is challenging: (1) some are not intuitive and impact the 
ALATs internal algorithms; (2) others must change accord-
ing to the systems because each system has di˙erent log-
data characteristics; and, (3) tuning ALATs parameters on 
large data is time-consuming. Usually, practitioners tune 
parameters on a small sample [14], hoping to obtain the 
same accuracy on large log-files [3]. 

Log Entries Lengths. Some ALATs, such as Drain, IPLOM, 
or POP, assume that log messages of the same event type 
have the same lengths (i.e., number of tokens in their mes-
sages). However, log messages of a same type may have 
di˙erent lengths, e.g., User John connected (length: 3) 
vs. User John David connected (length: 4) for the type 
User * connected. 

2.3. Log-Analysis 
Log-analysis is a rich research field. We give a brief 

overview of some its purposes and their influences on ALATs. 
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2.3.1. Anomaly Detection 
Anomaly Detection analyzes log data (e.g., system logs, 

security logs) to identify in a timely manner abnormal be-
haviors that deviate from typical, good behaviors to diag-
nose failures [15] or security [16] and performance issues 
[17] and, thus, mitigate their e˙ects [1, 18, 19, 20]. 

Anomaly detection typically uses machine-learning tech-
niques (supervised, such as SVM and decision tree or unsu-
pervised methods, such as PCA, clustering, and invariant 
mining), which use as input a numerical feature vector for 
each event sequence generated from the structured events 
list provided by an ALAT. Therefore, ALATs are a pre-
requisite for anomaly detection to provide the structured 
event lists needed to train the anomaly-detection model 
and to abstract log entries during the detection [21]. 

2.3.2. Model Inference 
Model inference mines systems logs (e.g., execution 

logs, transaction logs, events logs) to infer a model of the 
system behavior (e.g., finite sate machines). The model is 
then used to detect deviation from the expected behavior 
and infer the faults that produced the abnormal behaviour. 
Model inference is useful for understanding complex and 
concurrent behaviour and predict failures. For example, 
Beschastnikh et al. [22] generated finite state machines to 
provide insights into concurrent systems. Salfner et al. [23] 
generated Markov models for failure prediction. Therefore, 
ALATs are a prerequisite for model inference (1) to ab-
stract log messages into structured event lists from which 
to generate numerical feature vectors and (2) to remove log 
messages that are irrelevant and–or too frequent, keeping 
only messages useful to build a model [24, 25]. 

3. Motivation 

Organisations, regardless of their sizes, find log data to 
be invaluable. They use this data in various ways. How-
ever, the log-abstraction components o˙ered in o˙-the-
shelf automated log-analysis tools (e.g., Loggly, Prelert, 
or Splunk) and open-source automated log-analysis tools 
(e.g., GrayLog, Logstash) do not satisfy the challenges of 
modern systems, because they abstract log messages using 
domain-expert predefined regular expressions and, thus, 
depend on human knowledge and manual encoding, which 
are error-prone, non-scalable, and non-evolutive. 

In organisations adopting Cloud technology, practition-
ers have logs coming from logic-tiered servers, multiple 
Web servers, and database servers. They also have logs 
generated by Docker containers and other virtual machines. 
They must treat all these logs as a whole and aggregate 
them via a log shipper (e.g., Logstash or Apache Flume) to 
a centralized server where an ALAT and a log-analysis tool 
are installed. Practitioners managing centralized logs need 
an ALAT with a strong focus on eÿciency, heterogeneity, 

scalability, and independence from the servers. Further-
more, in organisations adopting continuous software de-
livery (e.g., Facebook pushes tens to hundreds of commits 
every few hours), practitioners face streams of log state-
ments being continuously added and updated (e.g., Google 
systems introduce tens of thousands of new logging state-
ments every month, independent of the development stage 
[26]). Therefore, they require an ALAT updating its pa-
rameters automatically without the need to retrain/retest. 

There is a wide range of ALATs among which to choose 
in the literature. Practitioners should select the ALAT 
with quality aspects that best suite their unique use cases 
and–or address the prerequisites of their log-analysis tech-
niques. For example, for anomaly detection, an ALAT 
must have a high coverage and abstract rare events to 
avoid false positive [16]. The ALAT should handle the 
evolving nature of logs and discover/refine event types 
dynamically without interrupting the anomaly detection 
process by an o˜ine discovery phase [16, 9]. In contrast, 
for model inference, an ALAT must allow practitioners to 
perform a pre-processing step to remove irregular/irrele-
vant log messages to make their analysis more e˙ective 
[25, 1, 27]. Furthermore, predictions depend on whether 
the log granularity used to create the model matches the 
decision-making granularity and the ALAT must allow 
practitioners to change it as they see fit [1, 27]. 

4. Study Design 

We follow the guidelines by Kitchenham et al. [5, 6] 
for an SLR. We divide our research method into five main 
steps: (1) research questions (RQs), (2) search strategy, 
(3) selection procedure and quality assessment, (4) report-
ing of the results and answers to the RQs in Section 5 and 
Section 6, and (5) comparing ALATs to guide software 
engineers in Section 7. 

4.1. Research Questions 
We want to answer the following RQs to understand 

the current state of automated log-abstraction techniques 
along with the existing challenges. We use the answers to 
these questions to propose a quality model for evaluating 
existing techniques and tools. 

• RQ1. What are the state-of-the-art automated tech-
niques for log abstraction analysis? 

• RQ2. What are these techniques’ quality aspects in 
addition to accuracy? 

4.2. Search Strategy 
We used papers from conferences and journals, writ-

ten in English, and published between 20001 to 2018. We 

1We chose to start at the year 2000 because the ALAT SLCT 
proposed by Vaarandi et al. in 2003 represents one of the first log 
data clustering algorithms [28]. We decided upon a tolerance of 3 
years before 2003 
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conducted the literature search through the digital meta-
library Engineering Village2 that o˙ers access to 12 engi-
neering literature and patent databases and provides cov-
erage from a wide range of engineering sources including: 
ACM library; EI Compendex; IEEE library; Inspec-IET; 
and, Springer. 

We conducted the snowballing using Scopus, the largest 
database of abstracts and citations of peer-reviewed liter-
ature3 . We used Scopus to cover a larger range of pa-
pers, combining seed papers from Engineering Village and 
snowballing papers from Scopus. We searched in the titles, 
abstracts, and keywords of the papers with the following 
queries4: 

(("log analysis") WN ALL) 
and: 

(("log parsing" OR (log AND "message type") 
OR (log AND "message formats") OR "log message" 
OR ("signature extraction" AND logs) 
OR ("log format") OR "log template" 
OR "log event type") WN ALL). 

4.3. Literature Selection Procedure 
We passed the papers through three stages of screening. 

The filtering steps are (1) general criteria (language, pa-
per type, time frame, domain category), (2) inclusion and 
exclusion criteria, and (3) overall quality of the papers. 

Inclusion criteria are: 

• Paper must be in conference proceeding or journal. 
• Paper must be published between 2000 and 2018. 
• Paper must be written in English. 
• Paper must be on log analysis, log abstraction, log 

mining, or log parsing. 
• Paper must pertain to software engineering. 
• Paper must propose, explain, or implement an auto-

mated log-analysis technique. 

Exclusion criteria are: 

• Papers with identical or similar contributions (du-
plicates). 

• Papers not publicly available. 
• Papers focusing on end-user experience. 
• Papers focusing on logging practices (i.e., how to 

write logs). 
• Papers using o˙-the-shelf tools (e.g., ElasticSearch, 

Logstash, Kibana stack (ELK)). 
• Papers focusing on log-analysis component architec-

ture (i.e., logging pipeline-architecture). 
• Papers requiring access to source code of the system. 

Quality assessment answers the following questions: 

• Is the paper based on research? 

2https://blog.engineeringvillage.com/about 
3https://www.elsevier.com/solutions/scopus 
4The full queries are available in the replication package at http: 

//www.ptidej.net/downloads/replications/ist19a/. 

• Is the research method clear enough? 
• Is there a description of the context in which the 

research was carried out? 
• Does the proposed method address the objectives set 

by the researchers? 
• Is there an evaluation of the proposed method? 

Figure 6 shows our search and selection process, which 
we detail in the following. 

Seed papers. We first performed an automatic search by 
running our search queries through Engineering Village. 
The initial search returned 2,864 papers. After filtering 
these papers based on the inclusion and exclusion criteria, 
we obtained 121 papers. Then, two of the authors reviewed 
the titles and abstracts of these papers independently and 
classified each paper as “include” or “exclude”. We collated 
the results: any papers in disagreement was discussed with 
all the authors until an agreement was reached. We ob-
tained 31 seed papers. 

Candidate papers. We then obtained a set of 738 papers by 
merging the sets of paper obtained (1) by running the sec-
ond search string in Engineering Village and (2) by search-
ing in SCOPUS for all papers referencing the 31 seed pa-
pers (forward snowballing) and all references in the seed 
papers (backward snowballing). Two of the authors re-
viewed independently the titles and abstracts of each of 
the 738 papers and kept 106 papers. Finally, we grouped 
these 106 papers and the 31 seed papers into the set of 137 
candidate papers. 

Selected papers. Independently, two authors read in de-
tails the 137 candidate papers. They evaluated each paper 
based on our inclusion/exclusion criteria and our quality 
assessment. Again, we collated both authors’ decisions 
and obtained the set of 89 selected papers. 

4.4. Data Extraction and Synthesis 

Data extraction. Independently, two authors reviewed in 
detail the 89 selected papers and extracted data regarding: 

• State-of-the-art ALATs approaches, algorithms, and 
techniques. 

• Desired ALATs’ characteristics/quality aspects, their 
definitions and classification criteria. 

First, the authors compared the data and resolved dis-
agreements by consensus. Then, they collated the data 
extracted on ALATs characteristics/quality aspects, which 
they consolidated into seven industry desired quality as-
pects (i.e., unified the naming, typical question, definition, 
and classification criteria) to compose our quality model. 
They also extracted the main results and evaluations of 
the ALATs in terms of the identified quality aspects. 
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Figure 6: Papers Selection Process 

Data Synthesis. We summarized and collated the extracted 
data. We did not identify inconsistencies within the data. 
We present the data synthesis and our findings in Section 2 
with a catalogue of state-of-the-art ALATs, in Section 6 for 
their quality aspects, and in Section 7 for their evaluations 
in terms of the identified quality aspects. 

Study Scope. We considered open- and closed-source ALATs 
used in industry and prototype techniques and tools re-
leased by researchers. Only three articles briefly described 
the matching phase of their proposed ALATs. Therefore, 
we focused on the discovery phase. Finally, we do not 
check the source code of the tools to assess the correctness 
of their implementations, which would require access to 
all of their source code and extensive resources out of the 
scope of this paper. 

5. Automated Log Abstraction Tools 

We now discuss the 17 ALATs that we identified through 
our SLR explained in Section 4.4. We group these tech-
niques according to the approaches and the algorithms 
that they adopt for abstracting raw log messages. Fig-
ure 7 categorizes the 17 ALATs and Table 1 summarizes 
key characteristics of their algorithms. 

5.1. Online ALATs 
Online ALATs abstract raw log entries one after an-

other from streams of entries without any requirement of 
doing o˜ine processing first [9]. This approach is particu-
larly important for Web services management and system 
on-line monitoring and processing [4], for which the vol-
umes of logs increase constantly and model training is time 
consuming using some existing logs [4]. 

Drain [4] abstracts log messages into event types us-
ing a fixed depth parse-tree to guide the log event analy-
sis process, which avoids constructing a profound and un-
balanced tree and encodes specially-designed parsing rules 
in the parse tree nodes. Drain algorithm consists of five 
steps. During the first step, Drain pre-processes raw log 
messages using user-defined regular expressions based on 
domain knowledge to identify and remove trivial dynamic 
fields (e.g., IP addresses, numbers, and memory). In a sec-
ond step, Drain assumes that logs with the same event type 
have the same length (number of tokens) and selects the 
node corresponding to the log length. For example, with 
the pre-processed log message User John connected, Drain 
selects a path to a first layer node length: 3. In the third 
step, Drain assumes that tokens in the beginning positions 
of a log message are more likely to be static fields. It selects 
the leaf node linked to the second layer node User. Dur-
ing the fourth step, Drain calculates the similarity between 
the log message and the event type of each log group in 
the leaf node and adds the logID of the log message to the 
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most suitable log group. Finally, Drain updates the parse-
tree by scanning the tokens in the same position of the log 
message and the event type. He et al. enhanced Drain 
[13] with a new algorithm based on a Directed Acyclic 
Graph (DAG) to guide the log event analysis process. The 
DAG also encodes specially-designed heuristic rules and its 
depth is also fixed to accelerate the parsing process. An-
other enhancement is the implementation of an automated 
parameter-tuning mechanism. Drain-DAG can initialize 
and update its parameters automatically and dynamically 
according to the incoming log messages. Drain provides 
an optional mechanism to merge similar log event types 
in a post-processing step to address the “variable log en-
try length” cases (detailed in section 2.2) that invalidate 
the event-size-heuristic assumed in step(2). The time com-
plexity of Drain for the event type search process is O(n) 
where n is the number of log messages. Its complexity 
for calculating the similarity between a log message and a 
candidate event type is O(m1 + m2) where m1 and m2 are 
their respective numbers of tokens. 

Spell (Streaming Parser for Event Logs using an LCS) 

[9] is an online streaming ALAT, which convert log mes-
sages into event types and parameters. It uses an approach 
based on the longest common subsequence (LCS). Spell 
view the output of the logging print statements in the 
source code as a sequence containing a majority of static 
fields, and assumes that when two sequences are produced 
by the same logging print statement, their longest com-
mon sequence represents their event type. Therefore, the 
LCS of the two sequences is likely to be static fields rep-
resenting an event type. Thus, Spell starts with an empty 
LCSMap and transforms each incoming log message into 
a “token” sequence using user-defined delimiters. Then, 
Spell compares the new token sequence with the LCSseq 
of all LCSObjects in the LCSMap and adds its ID to the 
corresponding LCSObjects or creates a new LCSObject 
if it cannot find a suitable LCSObject. Spell uses a pre-
filtering step, with a prefix tree to find if the event type 
already exists and to prune away candidates. The time 
complexity of Spell is O(n) where n is the number of raw 
log messages [13]. 

SHISO (Scalable Handler for Incremental System log) 
[12] performs online classification and incremental mining 
of event types and their parameters. The algorithm builds 
on the fly a structured tree with a user-defined number of 
children. First, SHISO splits the new log message into a 
word list W using common delimiters (e.g., blank charac-
ters, “=”, “;”, etc.) without separating Web addresses and 
file paths. Second, SHISO creates a new node that has the 
word list W and puts it in a tree structure. During the 
third step, SHISO searches for a log format for W. Finally, 
SHISO adjusts and refines existing formats continuously in 
real-time. SHISO conducts the search phase for each log 
entry. It conducts the adjustment phase when it creates a 
new format or updates an existing format. The time com-
plexity of SHISO is O(n) where n is the number of raw log 
messages [13]. However, SHISO algorithm only limits the 
number of children for each node and, thus, might build 
a very deep and unbalanced tree, which might increase its 
running time and impact its ability to handle system logs 
with lots of event types [13]. 
5.2. O˜ine ALATs - Discovery Phase 

The following o˜ine ALATs use batch processing and 
need all the log data to be available during discovery [9]. 

5.2.1. Clone Detection 
AEL (Abstracting Execution Logs) [29] assumes that 

log messages generated by a same event have textual simi-
larities. Thus, abstracting log messages consists of detect-
ing and grouping similar log messages. To abstract log 
messages, AEL uses clone detection based on a similarity 
measure. AEL divides in four steps. The anonymization 
step uses hard-coded heuristics based on system knowl-
edge to identify dynamic fields in the log messages (e.g., 
IP addresses, numbers, memory) and replaces them with 
a generic token ($V). Then, the tokenization step divides 
the anonymized log message into di˙erent bins according 
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to their numbers of words and estimated parameters. For 
example, the log message creating password, user is 
John, masterKeyid=2 and the heuristics word=value and 
is-are-was-were value lead AEL to transform the log 
message into: 

creating password, user is $V, masterKeyid=$V 

and to put it in the bin (7, 2). Next, the categorization 
step compares log messages in each bin and abstracts them 
into execution event. The anonymization step may miss 
some dynamic fields because it relies on heuristics, e.g., 
creating password for user John. The reconciliation 
step mitigates these cases by re-examining the event types 
and merging similar ones. AEL does not require any user-
given parameters but uses a heuristic to merge event types, 
which users may have to re-define for di˙erent logs. The 
time complexity of the AEL algorithm is O(n) where n in 
the number of raw log messages. However, in the catego-
rization step, the algorithm compares each log message in 
a bin with all the existing execution events in the same 
bin. Therefore, its running time depends on the format of 
the log dataset, which might generate a large bin size. 

5.2.2. Evolutionary Search-based 
MolFi (Multi-objective Log message Format Identi-

fication) [3] is based on the observation that any ALAT 
should meet two conflicting objectives: (1) abstract event 
types that match as many log messages as possible (high 
frequency in matching log messages) and (2) abstract event 
types that correspond to particular events types (high speci-
ficity). These objectives conflict: event types may be too 
generic or match only a few log messages. Therefore, 
MolFi uses multi-objective optimization, with frequency 
and specificity as its objectives. MolFI includes a pre-
processing step to filter duplicated log messages, identify 
trivial dynamic fields using regular expressions (as Drain), 
tokenize the log messages, and group messages of same 
lengths. Then, MoLFi generates log event types that meet 
the two objectives based on the evolutionary search-based 
approach NSGA-II and a trade-o˙ analysis. MolFi does 
not require any parameters tuning. The time complexity 
of Molfi evolutionary search-based algorithm NSGA-II is 
O(mn2) where m is the number of objectives and n is the 
number of raw log messages. 

5.2.3. Classification - Frequent Itemsets Mining 
LogHound [30, 31] considers event logs as transac-

tion databases and views each log message as a transac-
tion that consists of items. For example, it views the log 
message Password created for User John as a trans-
action with the items (Password,1), (for,2), (User,3), 
(John,4), (created,5). Then, it recasts the task of iden-
tifying event types as a task of mining frequent itemsets. It 
implements a breadth-first algorithm similar to the Apri-
ori algorithm, with heuristics to control memory usage and 
itemsets sizes. First, it identifies frequent items (words) in 

the log file based on a user-given “support threshold”. Sec-
ond, it considers rare items as dynamic fields. It keeps an 
itemset containing only frequent items from each transac-
tion. For example, the itemset above is (Password,1), 
(for,2), (User,3), (created,5). Third, it stores the 
frequent itemsets in a cache trie using a “cache trie sup-
port”. Fourth, it builds a reduced itemset trie using corre-
lations among frequent items. Finally, it abstracts event 
types from the frequent itemsets in the itemset-trie node. 
The example above corresponds to the event type Password 
created for * John. It is lightweight and requires little 
resource. 

5.2.4. Classification - Clustering 
LKE (Log Key Extraction) [32] assumes that log mes-

sages printed by the same logging statements in the source 
code tend to be very similar to one another, while log 
messages printed by di˙erent statements are often quite 
di˙erent. Therefore, it uses clustering techniques to group 
log messages from the same statements and considers their 
common part as event types. Similar to AEL, LKE is a 
mixture of heuristic rules-based approach and hierarchical 
clustering. Furthermore, LKE algorithm is designed to al-
low for easy implementation in parallel mode. It consists 
of four steps. The first step is to mitigate the problem of 
having clusters of log messages based on similar dynamic 
fields, it erases trivial dynamic parameters (e.g., URL, IP 
addresses, etc.) from raw log messages according to pre-
defined empirical rules and obtains raw log key. The sec-
ond step is to cluster similar raw log key according to a 
weighted edit-distance, giving more weight to words at the 
beginning of raw log key and using space as word delim-
iters. The third step is to repeatedly split the clusters 
until each raw log key in the same cluster belongs to the 
same log key. Finally, LKE extracts the common parts of 
the raw log key from each cluster to generate event types. 
The time complexity of LKE algorithm in O(n2) where n 
is the number of raw log messages [14]. 

SLCT (Simple Logfile Clustering Tool) [30, 33] views 
each log message as a data point with words as categor-
ical attributes. It formulates the log-abstraction task as 
a data clustering task and. It processes log datasets at 
the word level abd it clusters log data with common fre-
quent words. It does not use a traditional distance-based 
clustering approach (e.g., LKE) but a density-based clus-
tering algorithm. It di˙ers from LogHound by considering 
only one word when creating frequent itemsets. SLCT is 
a three-step process and makes two passes over the data. 
It makes the first pass over the log file and builds a word 
vocabulary. It considers the words positions in the log mes-
sages and uses user-given threshold s, ”support threshold”. 
It then makes a second pass over the log file and, with 
every log message containing frequent words, it builds a 
cluster candidate. For example, if the log message is Pass-
word for User John created and the words (Password) (for) 
(User) (created) are frequent, then the cluster candidate 
is Password for User * created . If the cluster candidate 

9 



already exists, then it increments its ”support”. In a last 
step, SLCT selects the cluster candidates containing more 
log messages than s and abstracts them as event types. 
Log messages outside clusters are outliers reported dur-
ing an optional data pass. SLCT requires the user-given 
parameter s. It is prone to overfitting with low ”support 
threshold” values. The time complexity of SLCT is O(n) 
where n is the number of raw log messages [12, 14]. 

LFA (Log File Abstraction) [34] is built on the obser-
vation that SLCT does not report the event types of all 
the log messages in the data but report the event types of 
frequently occurring log messages. The SLCT algorithm 
discovers dynamic parts in log messages by relying on word 
frequency across all log lines in the log file, whereas LFA 
finds clusters within log lines. Hence, LFA can find all 
event types, not just the ones that occur more than the 
supported thresholds required by SLCT. LFA also makes 
two passes over the data. In the first pass, it builds a 
frequency table that has the number of times a particular 
word occurs in a particular position in the log line and, 
in the second pass, it extracts the frequency of each word 
at each position. Then, LFA determines the frequency 
threshold and consider constant words in a log message if 
their frequency is not less than this frequency threshold. 
The time complexity of LFA algorithm is O(n) where n is 
the number of words when considering all log messages in 
the log dataset [34]. 

LogCluster [15] is a new version of the SLCT algo-
rithm. It addresses two shortcomings of SLCT. First, the 
SLCT algorithm cannot detect dynamic variables after the 
last word in an event type. For example, if we have the log 
message password for user John authenticated and pass-
word for user Sam rejected with a support threshold set 
to 2. Then SLCT would report the cluster (password,1), 
(for,2), (user,3) as the event type password for user al-
though users might prefer password for user * *. Second, 
SLCT is sensitive to word position and delimiter noise. For 
example, if we have the log message User John Micheal 
authenticated SLCT reports the event type User * * au-
thenticated, although users would prefer to have the event 
type User * authenticated. Similar to SLCT, LogClus-
ter makes the first pass over the data to identify frequent 
words based on user-given support threshold s. However, 
it does not consider the word position in the log message 
in the first pass. During the second pass, LogCluster ex-
tracts all frequent words from the log message and arranges 
them into a tuple then splits the log file into clusters that 
contain at least s log messages. Now, all log messages 
in the same cluster match the same pattern of frequent 
words and wildcards. Each wildcard has the form *m,n 
and matches at least m and at most n words. For example, 
if we have the log messages User John authenticated and 
User John Micheal authenticated with a support threshold 
of 2. Then, LogCluster will create the cluster candidate 
(User, authenticated) and report the event type User * 
1,2 authenticated. Similar to SLCT, log messages without 
a cluster are regarded outliers and reported during an op-

tional data pass. Both SLCT and LogCluster make two 
passes over the data and their time complexity is O(n) 
where n is the number of raw log messages. However, 
Logcluster is slower than SLCT due to the simpler cluster 
candidate generation procedure of SLCT [15]. 

IPLOM (Iterative Partitioning Log Mining) [31, 35] 
finds all event types in the log file, not only the frequent 
ones and it clusters log messages as an entity starting with 
the entire log data as a single partition. It employs a 
heuristic-based hierarchical clustering algorithm and dis-
covers event types using a 4-steps iterative partitioning; 
First, IPLOM assumes that all log messages correspond-
ing to the same event have the same length and then par-
titions all log messages using an event-size heuristics. Sec-
ond, it splits each partition using a token position with 
the highest number of similar words. Third, it uses a bi-
jective relationship considering strong correlation between 
two tokens at the same position. Finally, it considers the 
leaf nodes of the hierarchical partitioning as clusters and 
event type. Finally, IPLOM partitioning of the database is 
practically a decomposition of the log abstraction problem, 
which makes IPLOM a good candidate for using parallel 
processing. The time complexity of IPLOM is O(n) where 
n is the number of raw log messages [4]. 

LogSig [36] assumes that the words present in a log-
ging statement are fixed in the source code and do not 
change. It considers them as signatures of event types. 
It also assumes that the positions of the fixed words can 
change because the length of dynamic parameters may 
vary for a same event (see Section 2.2). LogSig uses a 
message signature-based algorithm to identify event types 
using a set of message signatures. LogSig has three steps 
and requires a number of clusters k. First, it converts log 
messages into pairs of terms while preserving the order of 
terms. For example, logSig converts User John authen-
ticated to the pairs (User, John), (User, authenticated), 
(John, authenticated). Second, it creates k random log-
message clusters. Then, it iterates and moves log messages 
among clusters using a local search-strategy. It stops when 
no log message is moved. Third, it scans every log message 
in each of the k clusters and selects the terms appearing in 
more than half of all the log messages in a cluster. Finally, 
it builds the event types using the most frequent common 
term pairs. LogSig has an optional domain-specific pre-
processing step to improve its performance. LogSig scales 
linearly with the number of raw log messages O(n). How-
ever, its running time also increases linearly with the num-
ber of events, which can lead to relatively longer parsing 
time [7]. Although the time complexity of LogSig is O(n), 
it must convert each log message into a set of term pairs, 
which can be time consuming. 

HLAer (Heterogeneous Log Analyzer) [28] HLAer as-
sists log abstraction based on a hierarchical clustering ap-
proach and pattern recognition. HLAer does not require 
any specific knowledge about the analyzed system, it does 
not make any assumption on the word delimiter used in 
the log entry, and it does not require users to specify these 
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delimiters. Instead, HLAer tokenizes all the words and 
special symbols in the log entry by adding the space as 
the delimiter between them. For example, HLAer tok-
enizes the log message Password created, user=john to 
Password created , user = john. Then, it performs a hier-
archical clustering of heterogeneous logs messages based on 
a pair-wise similarity using the density-based clustering al-
gorithm OPTICS [37]. After finding all the clusters, it per-
forms a bottom-up log pattern recognition within the hier-
archical structure to find a pattern that represents the log 
messages in each cluster. HLAer uses Smith–Waterman 
algorithm for pattern generation from pairs and the UP-
GMA [38] to generate a pattern from a set of patterns, thus 
the event types. HLAer has a O(n2) memory requirement 
because it implements OPTICS, an expensive clustering 
algorithm for large datasets, which calculates the MinPts-
nearest neighbors for each object, requiring O(n2) pair-
wise distance calculations for n raw log messages. Also, 
with HLAer, the time complexity of running UPGMA is 
0(n2×l2) where n is the number of log messages and l is the 
average number of fields in each log message [39]. Ning et 
al. indicate that HLAer might be a good candidate for par-
allel processing because the OPTICS algorithm can easily 
be made parallel and the alignment task for each cluster 
is fully decoupled and thus can run in parallel. 

LogMine [39] overcomes some limitations of HLAer. 
Hamooni et al. found HLAer robust to heterogeneity but 
not eÿcient enough when abstracting large log files, due 
to its memory requirement and communication overhead. 
LogMine uses MapReduce and does not require user input 
and does not assume any property of the log messages. 
Similar to HLAer, LogMine can abstract heterogeneous 
log messages generated from various systems and its algo-
rithm also consists of a hierarchical clustering module and 
pattern recognition module with one pass over log mes-
sages. First, LogMine is similar to HLAer: it tokenizes 
every word and symbols by adding spaces (or a given de-
limiter). Then, it applies an optional (yet recommended) 
pre-processing step to improve eÿciency. It uses regular 
expressions based on domain knowledge to detect a set 
of user-defined types (e.g., date, time, IP, and numbers). 
Then, it replaces the real value of each field with its name. 
For example, it replaces 2018-04-25 with Date). Third, 
it clusters similar log messages using a one-pass version 
of the friends-of-friends clustering algorithm and exploits 
several optimization techniques to improve performance. 
Fourth, it uses a hybrid version of UPGMA [38] to merge 
log messages in clusters and identify one event type per 
cluster. Finally, it iterates through Steps 3 and 4 until it 
reaches the Max Pattern Limit provided by the user or un-
til it encounters the event type containing only wildcards. 
The time complextiy of LogMine is O(n) where n is the 
number of raw log messages and its memory complexity is 
O(numberofclusters). 

POP (Parallel Log Parsing) [14] observes that most 
ALATs fail to complete in a reasonable time (less than 1 
hour) when log data grows to production levels (around 

200 million log messages). ALATs are limited by the com-
puting power and memory of a single computer. POP uses 
a parallel ALAT implemented on top of SPARK. POP 
is similar to IPLOM. It uses both heuristic rules and a 
clustering algorithm. POP abstracts log messages in a 
three-step process with one pass over log messages. First, 
it pre-processes log messages with pre-defined regular ex-
pressions, based on domain knowledge. The second step 
is similar to IPLOM, POP clusters the log messages based 
on the event size heuristic. In the third step, POP re-
cursively partitions the clusters based on token position 
heuristic. This heuristic assumes that if log messages in 
a same cluster have a same event type then the tokens in 
the same positions should be similar. Fourth, it leverages 
log messages in each cluster and generates an event type 
from each cluster. Finally, to avoid over-parsing (i.e., sub-
optimal parameter settings) and to mitigate the event size 
heuristics in Step 2, POP clusters similar groups based on 
their event types using hierarchical clustering. It merges 
the groups in the same cluster and generates event types 
by calculating the Longest Common Subsequence. The 
time complexity of POP is O(n) where n is the number of 
raw log messages. 

5.2.5. Supervised classification 
NLP-LTG (Natural Language Processing–Log Tem-

plate Generation) [40] considers event template extraction 
from log messages as a problem of labeling sequential data 
in natural language. It uses Conditional Random Fields 
(CRF) [41] to classify words as a static/dynamic part of 
the log messages. The training data consists of log mes-
sages. To construct the labeled data (the ground truth), it 
uses human knowledge in the form of regular expressions. 

NLM-FSE (Neural language Model-For Signature Ex-
traction) [42] trains a character-based neural network to 
classify static/dynamic part of log messages. It constructs 
the training model through four layers. (1) The embed-
ding layer transforms the categorical character input into 
a feature vector. (2) The Bidirectional-LSTM layer [43] 
allows each prediction to be conditioned on the complete 
past and future context of a sequence. (3) The dropout 
layer avoids over-fitting by concatenating the results of the 
bi-LSTM layer, and (4) the fully connected, feed-forward 
neural network layer predicts the event template using the 
Softmax activation function. 

6. ALATs Quality Model 

Deissenboeck et al. [44] state that, in an Assessment 
Quality Model (AQM), the assessment of the quality as-
pects (QAs) is either qualitative or quantitative and as-
pects not directly measurable are described qualitatively. 
Following our SLR’s methodology detailed in Section 4.4, 
we identified, grouped, and combined characteristics of 
the ALATs in the literature into seven desirable quality 
aspects. For example, we identified that Hamooni et al. 
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Table 1: Characteristics of ALATs Discovery Phase Algorithm (“NA” means that the algorithm does not require this characteristic, “NS” 
means that the ALAT does not specify a solution to eÿciently update event types, “MI” means missing information, text in italic highlights 
information deduced to the best of our understanding and not specifically specified in the reviewed papers.) 

ALAT 
MolFi y n 2o(n ) re-train, o˜ine (batch mode) 
AEL y n o(n) re-train, o˜ine (batch mode) 
IPLOM n n(parallel mode ready) o(n) re-train, o˜ine (batch mode) 
POP y y o(n) re-train, o˜ine (batch mode). O˙ers solution for new logs detection 
HLAer n n(parallel mode ready) 2o(n ) online 
LogMine optional y o(n) re-train, o˜ine (batch mode) 
LKE y n 2o(n ) incremental; generates new event type 
LogSig optional n o(n) re-train, o˜ine (batch mode) 
LogHound n n MI re-train, o˜ine (batch mode) 
LogCluster n n o(n) re-train, o˜ine (batch mode) 
LFA n n o(n) re-train, o˜ine (batch mode) 
SLCT n n o(n) re-train, o˜ine (batch mode) 
Drain y NA o(n) online 
Spell n NA o(n) online 
SHISO n NA o(n) online 
nlp-ltg y NA o(n) require re-labelling and re-training 
nlm-fse n NA o(n) incremental re-training 

[39] defined four desirable properties that ALATs should 
have: no-supervision, heterogeneity, eÿciency, and scala-
bility. While, Jiang et al. [29] defined four aspects re-
garding ALATs: interpretability, system knowledge, e˙ort, 
and coverage. He et al. [4] addressed challenges in tuning 
the ALATs parameters and the importance of considering 
the parameters tuning e˙ort. Furthermore, He et al. [14] 
indicated that, although an ALAT might have high accu-
racy, it also must be robust in handling large log datasets. 
Mizutani et al. [12] indicated the importance of abstract-
ing log message immediately for troubleshooting. Finally, 
Makanju et al. [35] conveyed the importance of having 
high coverage and discovering rare events. 

We now propose an AQM for evaluating the discov-
ery phase of ALATs. Our AQM defines seven desirable 
quality aspects identified and collated through our SLR: 
mode, coverage, delimiter dependence, eÿciency, scalabil-
ity, system knowledge dependence, and parameter tuning 
e˙ort. We provide a typical question, a definition, and 
classification criteria. 

Accuracy determines the capacity of an ALAT to iden-
tify correctly the static and dynamic fields of a log message 
and abstract it to correct event type during the discovery 
phase [3]. The accuracy of a same ALAT varies according 
to the log formats and origins. For example, He et al. and 
Zhu et al. evaluated various ALATs in terms of their accu-
racy (F-measure) across the same log datasets generated 
from 16 systems and showed that some ALATs have high 
accuracy on certain files but low on others [7, 8]. Prac-
titioners obtain insights from the accuracy values in the 

literature but must evaluate it on their own log datasets. 

6.1. Mode 
Typical Question: Can the ALAT dynamically abstract 
incoming log messages into event types without prior knowl-
edge obtained from an o˜ine discovery phase? 
Definition: Existing studies [9, 4, 13, 12] define two modes 
for ALATs: o˜ine and online. O˜ine ALATs require batch 
processing (collect logs for a certain time) before abstract-
ing log messages into event types, i.e., applying an o˜ine 
discovery phase. Then, they use the previously discov-
ered events types to match new incoming logs in batch or 
stream. Online ALATs abstract log messages into event 
types on the fly, dynamically updating discovered event 
types. Online ALATs do not need a batch mode discovery 
phase. 
Classification Criteria: We study the algorithm of each 
ALAT. If an ALAT does not require a batch discovery 
phase then we classify it as “online”. Otherwise, we classify 
it as “o˜ine”. 
Domain: O˜ine, online. 

6.2. Coverage 
Typical Question: Can the ALAT abstract all input log 
messages? 
Definition: Coverage indicates the ability of an ALAT 
to abstract each log message to an appropriate event type 
[29]. Log entries of event types for troubleshooting and 
anomaly detection are rare and there is a risk that the 
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ALAT removes them during the discovery phase if occur-
ring below a threshold. For example, Jiang et al. [29] 
found that many log entries are not abstracted to any event 
type by SLCT because they do not occur often enough for 
a frequent pattern to emerge. 
Classification Criteria: We study the algorithm of each 
ALAT, if its algorithm presents a solution to abstract all 
input log messages, then we classify it as “all messages” 
coverage, else as “frequent messages” coverage. 
Domain: All messages, frequent messages. 

6.3. Eÿciency 
Typical Question: Does the ALAT execute the discovery 
phase in a reasonable running time and reasonable resource 
utilization? 
Definition: SquaRE [45] defines performance eÿciency 
as the degree to which a system can complete its functions 
with a running time and resource utilization that meet 
requirements. Correspondingly, most of the reviewed ar-
ticles (e.g., [14, 36, 39]) evaluated the eÿciency of ALATs 
by measuring the running time for completing the discov-
ery phase on di˙erent log datasets (di˙erent formats and 
sizes). Only few articles, e.g., [39, 35, 30], measured the 
memory requirement of their proposed ALATs. 
Classification Criteria: We reviewed the experiments 
conducted on each ALAT in the selected articles and ex-
tracted the recorded eÿciency (running time/memory re-
quirements) of the ALAT wrt. a specific log dataset. We 
classified an ALAT as having low eÿciency if it fails to 
complete the discovery phase on a given log dataset in a 
reasonable time. We classified an ALAT as having high 
eÿciency if it completes the discovery phase on a dataset 
in a reasonable time. We considered the time that a dis-
covery phase takes as being reasonable if it runs in less 
than one hour as shown by He et al. in [14]. 
Domain: High eÿciency, low eÿciency 

6.4. Scalability 
Typical Question:Can the ALAT discovery phase handle 
an increasing large volume of log messages? 
Definition: Scalability is defined in ISTQB [46] as the 
capability of a software product to be upgraded to accom-
modate increasing loads. Similarly, Hamooni et al. [39] 
defined the scalability of ALATs as the ability to process 
increasing large batches of log messages without incur-
ring CPU and memory bottlenecks. Typically, researchers 
evaluate the performance of their ALATs on small sam-
ple log datasets. However, ALATs deployed in production 
must scale and complete their discovery phase on large 
log datasets (approximately 200 million log messages [47]) 
in a reasonable time. For example, IPLOM scaled lin-
early with the number of log messages on BGL2K and 
HDFS2k. However, its memory requirement and running 
time rapidly increased when abstracting larger log datasets 
(HDFS30m and BGL30m), and it even failed to complete 

on HDFS(100m) [13]. Consequently, He et al. [7, 14] con-
cluded that o˜ine ALATs must implement a paralleliza-
tion mechanism not to be limited by the computing power 
and memory of a single computer. 
Classification Criteria: We study the algorithm of each 
ALAT, and we classify an ALAT as “scalable” to produc-
tion log dataset if it accelerates the discovery process by 
implementing a parallelization mechanism, or if it is an on-
line ALAT (process log messages one after another). We 
classify an ALAT as potentially scalable if the authors ex-
plicitly specify that their algorithm can be easily imple-
mented in parallel mode. 
Domain: Scalable, potentially scalable, not scalable. 

6.5. System Knowledge Independence 
Typical Question: Does the ALAT require any prior 
manual hard-coded rules, regexps, heuristics based on ex-
perts’ domain knowledge? 
Definition: Jiang et al. specifies that this QA pertains 
to the amount of knowledge needed about a system for an 
ALAT to work [29]. Some ALATs require a domain expert 
to encode rules/regexps based on their experiences. For 
example, the first step of AEL extracts the dynamic fields 
in raw log messages based on rules hard-coded by a domain 
expert (e.g., textttword=value and is-are-was-were value). 
Similarly, the first step of LKE prunes the obvious dynamic 
fields in raw log messages (e.g., numbers, URIs, IP ad-
dresses) based on regexps hard-coded by a domain expert 
to describe those parameter values. Even though these 
rules/regexps are simple, they make ALATs infrastructure-
dependent, require further manual configuration, and could 
be diÿcult to maintain and evolve [28, 48]. In the liter-
ature, this QA is also referred to as no-supervision [39], 
domain knowledge [36, 28, 14], needed system knowledge 
[29], or infrastructure-dependency [48]. 
Classification Criteria: We study the algorithm of each 
ALAT, and we classify it as dependent of system knowl-
edge if it explicitly specifies that (1) it requires users to 
define hard-coded rules and/or (2) it requires users to set 
empirical regular expressions manually. 
Domain: Independent of system knowledge, dependant 
of system knowledge. 

6.6. Delimiter Independence 
Typical Question: Can the ALAT abstract various for-
mats of raw log datasets with di˙erent delimiters? 
Definition: Heterogeneous log datasets are generated from 
di˙erent systems and components and have a di˙erent for-
mats and, thus, di˙erent delimiters (e.g., “:”, “|”, “=”, “;”, 
etc.). Ning et al. [28] reported that using pre-defined, pop-
ular delimiters on heterogeneous log datasets might lead 
to incorrect abstractions. 

For example, IPLOM [35] assumes that spaces delimits 
words. It abstracts “creating password: user = (John)”, 
“creating password: user =(John)”, “creating password: 
user= (John)”, “creating password: user = (John)”, 
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etc. into “creating password: *” while the correct abstrac- Observation. ALATs can be online without compromising 
tion is “creating password: user *”. Conversely, HLAer accuracy and eÿciency. 
algorithm does not assume any predefined delimiters and 
separates all special symbols and words in a log message. 
Consequently, all the examples above have the same tok-
enization: “creating password : user = ( John )”. 
Classification Criteria: We study the algorithm of each 
ALAT and report an ALAT as pre-defined if its algorithm 
explicitly specifies that it uses a predefined/popular set 
of delimiters. We classify an ALAT as user-defined if it 
explicitly allows users to modify its set of delimiters. We 
classify an ALAT as independent if its algorithm does not 
rely on any predefined/popular delimiters. 
Domain: Pre-defined, user-defined, idndependent. 

6.7. Parameters Tuning E˙ort 
Typical Question: Does the ALAT require user-defined 
parameters? 
Definition: Most ALATs require users to fine-tune their 
parameters, usually following a trial-and-error process [3]. 
If the parameters are not tuned correctly, then the per-
formance of the ALATs are sub-optimal [3]. Parameter-
tuning e˙ort reflects the knowledge required to set and 
update the parameters of an ALAT [47]. 
Classification Criteria: We study the algorithm of each 
ALAT and present the parameter(s). 
Domain: The set of parameters. 

7. ALATs Comparison 

We revisit the ALATs presented in Section 5, according 
to the aspects of our quality model described in Section 6. 

Our results are based on a thorough review of ALAT 
development contexts and algorithmic characteristics, de-
tailed in Section 5 and Table 1, and on the results of empir-
ical experiments and experiences shared in the literature 
(see Section 4.4). 

Table 2 resume the results and present references to 
the papers that evaluated the ALATs in terms of the QAs. 
We provide practitioners with direct references and sum-
marize/group the findings so practitioners benefit from the 
researchers’ experience with ALATs. 

In the following, we discuss our findings and provide 
brief conclusions and promising research directions. De-
tailed summary of each ALATs algorithm and character-
istics is presented in section 5 and Table 1 

7.1. Mode 
Table 2 shows that Drain, SHISO, and Spell are online 

ALATs. Online ALATs adjust their event types gradually, 
they do not need access to all the log data, and they do not 
require an o˜ine discovery phase. Empirical experiments 
conducted by Du et al. [9] and He et al. [13], which 
compared the accuracy and eÿciency of online ALATs to 
o˜ine ALATs (e.g., LKE, LogSig, IPLOM) on several log 
files showed that online ALATs are competitive with o˜ine 
techniques in terms of accuracy and eÿciency. 

Promising Direction. There are few instances of online 
ALATs in the literature and researchers could investigate 
further online ALATs. While o˜ine ALATs are desir-
able to work with a previously-known set of abstracted 
event types, online ALATs are useful for Web services 
and systems online monitoring and processing, in which 
the volumes of logs increase and evolve rapidly, making 
batch event types discovery time-consuming [9, 13]. On-
line ALATs could be a valuable addition to modern log-
management systems (e.g., ElasticSearch or Splunk), which 
collect logs in streams. 

7.2. Coverage 
Jiang et al. [29] reported that ALATs based on frequent 

itemsets accurately extract frequently occurring events but 
might fail to identify rare events. Further, Zhu et al. [8] 
found that SLCT and LogCluster cannot recognise low 
repetition events while ALATs based on iterative partition-
ing, clone detection, or clustering techniques enjoyed high 
coverage. Nagappan et al. [34] indicated that LogHound, 
LogCluster, and SLCT are designed to abstract frequent 
log messages and may not abstract log messages that oc-
cur less than a user-given threshold. For example, Na-
gappan et al. [34] showed that with thresholds of 50%, 
25%, 10%, 5% and even 1%, SLCT could not abstract 
all log-messages. Zhu et al. [8] found that LFA is based 
on frequent-pattern clustering and has a high coverage be-
cause it identifies event types by generating clusters within 
each log message, unlike LogCluster, LogHond, and SLCT 
that find clusters within the whole log dataset [34]. 

Observation. ALATs based on frequent-itemset mining (e.g., 
LogCluster) tend to have low coverage. ALATs with low 
coverage might be inadequate for troubleshooting or anomaly 
detection because, during the analysis phase, they would 
produce false positives [29]. 

Promising Direction. ALATs based on frequent mining 
(i.e., LogCluster, LogHound, and SLCT) are simple, com-
mand-based tools that can be easily integrated with other 
systems and pipelines. They help users to build a model 
of their log files. A promising direction would be to com-
bine these ALATs with anomaly detection techniques to 
provide full-scale log-analysis capability. 

7.3. Eÿciency 
Researchers conducted case studies and empirical ex-

periments to evaluate and compare their ALATs with oth-
ers. We group and report their findings and shared expe-
riences on the eÿciency of each ALAT. In the following, 
we only report on ALAT’s eÿciency as reported in the re-
viewed papers and do not measure the ALAT’s eÿciency 
ourselves. Also, we do not study the worst-case scenario 
of each ALAT, which we leave for future work. 
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Table 2: Automated Log Abstraction Techniques Aspects (“System Independence” and “Tuning” correspond to “System knowledge indepen-
dence” and “Parameter tuning e˙ort”. “O˙.” and “On.” means “O˜ine” and “Online”. “PR” means Proprietary, “PX” means Proxifier, and 

∗“Zk” means Zookeeper. “MI” means missing information “ Training” means that it depends on the training data. The e˙ort is for labeling 
the data.) 
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Class Datasets 
MolFi 

AEL 

IPLOM 

POP 

HLAer 

LogMine 

Evolutionary Search 

Clone detection 

Iterative Partition 

Iterative Partition 

Hierarchical Cluster-
ing + PR 
Hierarchical Cluster-
ing + PR 

O˙. 

O˙. 

O˙. 

O˙. 

O˙. 

O˙. 

All 

All 

All 

All 

All 

All 

Low Android, BGL, HDFS, HPC, 
Zk, PX 

High Android, HDFS 

Low BGL(1GB) 
High: HPC, Thunderbird, Zk, 

Hadoop, Spark, Windows, 
Linux, Apache, PX, SysLog, 
Access, Error, System, Rewrite 

High BGL, HDFS, HPC, PX, Zk 

Low PR(10m) 

High PR(10m) 

7[3] 

7[29] 

potentially 
[28, 4, 13] 

3[14] 

potentially 
[39] 
3[39] 

3[3] 

7 
[48, 29] 

3 
[35, 31] 

7[14] 

3[28] 

3optional 
[39] 

7 
pre-
defined 
[3] 
NA 
(rules) 
[48, 34] 

7 
pre-
defined 
[29, 35] 
7 
pre-
defined 
[14] 
3[39] 

3[39] 

NA [3] 

merge threshold 
[29] 

FS, PS, UB, 
LB, CG [31] 

GS, splitAbs, 
splitRel, 
maxDist [14] 

MinPts, � [28] 

maxPatternLimit 
(optional) [39] 

LKE 

LogSig 

LogHound 

LogCluster 

LFA 

SLCT 

Drain 

Spell 

SHISO 

NLP-LTG 

NLM-FSE 

Hierarchical Cluster-
ing 

Clustering 

Frequent itemsets 
mining 

Frequent pattern clus-
tering 

Frequent pattern clus-
tering 
Frequent pattern clus-
tering 

DAG 

LCS 

Parse tree 

Conditional Random 
Fields 

bi-LSTM (character-
based) 

O˙. 

O˙. 

O˙. 

O˙. 

O˙. 

O˙. 

On. 

On. 

On. 

O˙. 

O˙. 

All 

All 

Freq. 

Freq. 

All 

Freq. 

All 

All 

All 

All 

All 

Low BGL, HDFS, HPC, Zk, PX 

High Thunderbird, Zk, Hadoop, 
Spark, Windows, Linux, 
Apache, PX 

Low HDFS, BGL, HPC 
High SysLog, Windows, Access, Er-

ror, System, Rewrite 

Low HPC(11.4MB) 
High Nagios, Unix deamon, Mail 

server 

Low Authorization, Network device, 
application, Web Porxy(16GB) 

MI 

High BGL, HDFS, HPC, Zk, PX, Sys-
Log, Windows, Access, Error, 
System, Rewrite 

High BGL, HPC, Thunderbird, 
HDFS, Zk, Hadoop, Spark, 
Windows, Linux, Apache, PX 

High BGL, HPC, Thunderbird, 
HDFS, Zk, Hadoop, Spark, 
Windows, Linux, Apache, PX 

High HPC, Thunderbird, Zk, 
Hadoop, Spark, Windows, 
Linux, Apache, PX 

Low BGL, HDFS 
Training 3 

Training 3 

15 

7[14, 49, 3] 

7[14, 49, 
13] 

7[31, 35] 

7[15] 

7[34] 

3[14, 29] 

3[13, 4] 

3[13] 

7[13] 

7 

7 

7 
[48, 32] 

3optional 
[36] 

3[30] 

3[15] 

3[34] 

3[30] 

7[13, 4] 

3[9] 

3[12] 

NA 
(manually 
labeled) 
NA 
(Character 
based) 

7 
pre-
defined 
[48, 32] 
MI 

7 
user-
defined 
[30] 

7 
user-
defined 
[15] 

MI 

7 
user-
defined 
[30] 
7 
pre-
defined 
[13] 
7 
user-
defined 
[9] 
3[12] 

High∗ 

High∗ 

ν, %, ζ (op-
tional) [32] 

k [36, 14] 

s [31] 

s [30] 

NA [34] 

s [31, 14] 

NA [13, 4] 

τ (optional) [9] 

c, ts, tm, tr [12, 
9] 



MolFi: Messaoudi et al. [3] compared the running time 
of MolFi to Drain and IPLOM on a benchmark composed 
of BGL (2K le 5), BGL (100K le), HDFS (2K le), HDFS 
(60K le), HPC (2K le), Proxifier (2K le), and Zookeeper 
(2K le). They reported that (1) MolFi surpassed Drain 
on BGL (100K le) and (2) it was the slowest on all the 
other log datasets. Zhu et al. [8] evaluated the running 
time of MolFi on Android, BGL, and HDFS. They showed 
that (1) MolFi failed to abstract BGL (500MB) and An-
droid (100MB) in a reasonable time (i.e., 6+ hours); (2) 
it could abstract HDFS (1GB) because HDFS log dataset 
has a low number of events. They attributed the low ef-
ficiency of MolFi to its iterative algorithm NSGA-II, in 
O(n2), because a larger population size requires more fit-
ness computations [3] and execution time increases rapidly 
as size grows. 

LKE: Du et al. [9] found that LKE is significantly slower 
than IPLoM and Spell on BGL and HPC and that it failed 
to complete on BGL (5m le) and HPC (1.5K le). He et 
al. [14, 7, 4] found that LKE failed to complete on sev-
eral log datasets, such as BGL (40K le), HDFS (100K le), 
HPC (75K le), Proxifier (9600 le), and Zookeeper (32K le). 
They attributed the low eÿciency of LKE to its quadratic 
time complexity. 

HLAer and LogMine:Hamooni et al. [39] compared HLAer 
and LogMine on three proprietary and three public log 
datasets. They showed that (1) HLAer memory consump-
tion is approximately five times higher than LogMine due 
to its OPTICS algorithm quadratic memory consumption 
(2) LogMine running time is 500 times faster than HLAer, 
(3) HLAer failed to complete on an industrial-proprietary 
log dataset (10GB), and (4) LogMine pattern-recognition 
running time stays constant for di˙erent log datasets of the 
same size because its algorithm scans the data once, irre-
spective of how many event types exist in the dataset. In 
contrast, HLAer pattern-recognition algorithm UPGMA 
has a quadratic time complexity. 

AEL: Zhu et al. [8] measured the running time of AEL 
on Android (1GB), BGL (1GB), and HDFS (1GB). The 
results show that AEL is very eÿcient (i.e., approximately 
tens of minutes) on Android and HDFS log datasets. Yet, 
its running time increased rapidly on BGL. They attributed 
the low eÿciency of AEL on BGL to the fact that AEL 
compares each log-message in a cluster with all the event 
types in the same cluster. Therefore, AEL running time in-
creases on log datasets that yield large clusters, e.g., BGL. 

LogHound: LogHound entails high computational cost 
during candidate generation on datasets containing log-
messages of high length (e.g., HPC, BGL). For instance, 
Makanju et al. [35] evaluated the running time and the 
memory consumption of LogHound on seven log datasets 

5“le” stands for log entries in opposition to sizes in bytes. 

Access, Error, HPC, Rewrite, SysLog, System, and Win-
dows. Although LogHound performed well on six datasets, 
it crashed and could not complete on HPC (11.4MB). They 
attributed the low eÿciency of LogHound on HPC to the 
large number of itemsets generated for each log message. 

LogSig: He et al. [14, 7, 4, 13] found that LogSig com-
pleted the discovery phase on Proxifier (9,600 le), Windows 
(2K le), Zookeeper (64K le), Thunderbird (2K le), Hadoop 
(2K le), Spark (2K le), Linux (2K le), and Apache (2K le) 
but was slower than SLCT and/or IPLOM. LogSig failed 
to complete in a reasonable time on HDFS (10m le) (i.e., 
days), HPC (375K le) (i.e., 16+ hours), and BGL(4m le) 
(i.e., days). They attributed the low eÿciency of LogSig, 
particularly on dataset containing lengthy log messages, 
to its slow clustering iterations in which LogSig converts 
each log-message to a set of term pairs. 

IPLOM: Makanju et al. [35] compared the eÿciency of 
IPLOM to SLCT and LogHound on seven log datasets 
HPC, SysLog, Windows, Access, Error, System, and Rewrite. 
The results show that IPLOM is eÿcient in terms of run-
ning time and memory utilization on all datasets. He et 
al. [14, 4] evaluated the running time of IPLOM on HPC 
(375K le), BGL (4m le), HDFS (10m le), Zookeeper (64K 
le), Proxifier (9600 le), Thunderbird (2K le), Hadoop (2K 
le), Spark (2K le), Windows (2k le), Linux (2K le), and 
Apache (2K le) and they reported that IPLOM is eÿcient 
on all datasets (e.g., HDFS (10m le) in 5 min). Du et 
al. [9] compared IPLOM to Spell on HPC and BGL log 
datasets and reported that IPLOM was the fastest on HPC 
and slightly slower than Spell on BGL. They attributed 
the eÿciency of IPLOM to the fact that it is not a˙ected 
by long patterns and low support threshold because of its 
partitioning algorithm. 

SLCT: Makanju et al. [35] evaluated the running time and 
the memory consumption of SLCT on seven datasets HPC, 
SysLog, Windows, Access, Error, System, and Rewrite. 
Although LogHound crashed on HPC, SLCT was not af-
fected by the long log-message lengths in HPC because it 
only generates 1-itemsets. He et al. [14, 7] evaluated the 
running time of SLCT on HPC, BGL, HDFS, Zookeeper, 
and Proxifier and showed that SLCT is faster than POP 
and IPLOM on all datasets and that its running time scales 
linearly with the number of log messages. Mizutani et al. 
[12] compared SLCT, IPLOM, and SHISO on a public se-
curity log dataset (60K le)) and showed that SLCT out-
performed IPLOM and was slightly slower than SHISO. 

LogCluster: Although LogCluster is an improved im-
plementation of SLCT, Vaarandi et al. [15] found that 
SLCT completed faster than LogCluster on seven di˙er-
ent log datasets: UNIX daemon (740MB)), Web proxy 
(16GB), Authorization messages (3GB), Nagios (391MB), 
Mail server (246MB), Network device (4GB), and applica-
tion messages (9GB) due to its simpler candidate genera-
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tion procedure. LogCluster failed to complete in a reason- number of log-messages, etc.); and, (3) few articles mea-
able time (i.e., 2+ hours) on Web proxy messages of 16GB. sured/reported the memory consumption of the ALATs 

during their empirical experiments. 
POP: He et al. [14] evaluated the running time of POP 
on HPC, BGL, HDFS, Zookeeper, and Proxifier: (1) POP 
is eÿcient on all datasets; (2) POP is slower than SLCT 
and IPLOM because Pop parallelization mechanism en-
tails more running time for setting up the nodes and for 
communications among nodes; (3) POP enjoys an almost 
constant running time as the log size grows; and, (4) POP 
becomes even faster than IPLoM on HDFS (10m le). 

SHISO: Mizutani [12] evaluated SHISO on Public Secu-
rity Log (670K le) and found that SHISO was faster than 
SLCT and IPLOM. Yet, He et al. [4, 13] found that SHISO 
was the slowest between IPLOM, Spell, and Drain on HPC 
(375K le), Zookeeper (64K le), Proxifier (9600 le), Hadoop 
(2K le), Windows (2K le), Spark (2K le), Linux (2K le), 
and Apache (2K le) and failed to complete in reasonable 
time on BGL (4m le) (i.e., days) and HDFS (10m le) (i.e., 
18+ hours). They attributed the low eÿciency of SHISO 
to its tree construction algorithm that may create an un-
balanced tree. 

Spell: Du et al. [9] compared Spell and IPLOM on BGL5m 
and HPC400K. They found that Spell completed in 9 sec-
onds on HPC, slightly slower than IPLOM, and outper-
formed IPLOM on BGL. He et al. [4] evaluated Spell on 
BGL (4m le), HPC (375K le), HDFS (10m le), Zookeeper 
(64K le) and Proxifier (9600 le). The results showed that 
Spell is faster than SHISO on all datasets and tends to 
become as fast as Drain and IPLOM on large log datasets 
(i.e., BGL and HDFS). The authors attributed the in-
crease of Spell eÿciency as the log dataset size grows to 
the fact that most log messages directly find an event type 
match in the prefix tree. The computation cost of calcu-
lating the LCS between two log-messages is considerably 
reduced. 

Drain: He et al. [13] compared its proposed ALAT, 
Drain, to IPLOM, SHISO, and Spell on 11 log datasets 
HPC(375K le), BGL (4m le), HDFS (10m le), Zookeeper 
(64 le), Proxifier (9600 le), Thunderbird (2K le), Hadoop 
(2K le), Spark (2K le), Windows (2K le), Linux (2K le), 
and Apache (2K le). The results showed that Drain re-
quired the least running time on all datasets (e.g., BGL 
(4m le) in 2 min and HDFS (11m le) in 7 min) and had sim-
ilar running time compared with the o˜ine ALAT IPLoM. 
Messaoudi et al. [3] reported that Drain is eÿcient on 
BGL, HDFS, HPC, and Zookeeper, but Drain crashed on 
a proprietary dataset (300K le). 

Observation. We observe that: (1) some ALATs are highly 
eÿcient on certain types of log datasets, but fail to com-
plete on others; (2) the ALATs eÿciency depends on the 
characteristics of the log datasets [47] (e.g., numbers of 
event types, length of log-messages, length of patterns, 

Promising Direction. (1) Researchers could investigate no-
vel ways to enhance eÿciency, such as the use of dis-
tributed architecture, e.g., installing ALATs on several 
nodes rather than on a unique computer [13]; (2) Re-
searchers could establish a “common” log dataset on which 
all ALATs should be evaluated, which would ease their 
comparison; (3) resource utilization is an important as-
pect of evaluating the eÿciency of a system and stud-
ies should evaluate and report the memory consumption 
of their proposed ALATs; and (4) practitioners can ob-
tain insights from the reported eÿciency of each ALAT 
but should evaluate the ALATs eÿciency on their own log 
datasets. With respect to (2), we recommend researchers 
to test their ALATs on datasets with many event types 
and long log message lengths, BGL and HPC, to validate 
their eÿciency. 

7.4. Scalability 
The running time of sequential, o˜ine ALATs with 

time complexity O(n) scales linearly with log size. How-
ever, He et al. [14] showed that such ALATs can have 
a steep gradient and, thus, an long running time on pro-
duction logs. They evaluated three such ALATs, LogSig, 
SLCT, and IPLOM, on two large, synthetic log datasets: 
BGL (200m le) and HDFS (200m le). They showed that 
(1) LogSig could not complete HDFS10m and BGL10m 
in a reasonable time; (2) SLCT completed HDFS200m in 
about 30 min and BGL200m in about 18 min; and, (3) 
IPLOM failed to complete on HDFS150m and incurred 
16+GB memory consumption for BGL30m and HDFS30m. 
However, SLCT running time increased rapidly due to 
a single thread of control and IPLOM memory require-
ment and running time increases because IPLOM is lim-
ited by the memory of a single computer and loads all 
log-messages into memory. Makanju et al. [35] reported 
that LogHound crashed on HPC (11.4MB) as the virtual 
memory had raised to 4GB and the resident memory con-
sumption became 1.6GB. Also, Zhu et al. [8] reported 
that AEL running time increased rapidly on a large BGL 
dataset. 

LogMine and POP implement parallel computing architec-
tures and stay eÿcient when handling large-scale data. In 
particular, POP is built on top of Apache Spark, and Log-
Mine scans log-messages only once using a MapReduce-
based mechanism. He et al. [14] found that; (1) POP 
abstracts large-scale log dataset HDFS200m in about 7 
min and BGL200m in about 20 min; (2) POP is faster 
than SLCT on HDFS (200m le); (3) POP is slower than 
SLCT on BGL but POP enjoys the slowest increase in 
its running time which becomes similar to SLCT as log 
size increases to 200m log entries. Hamooni et al. [39] 
compared the running times of sequential and MapReduce 
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implementations of LogMine and found that the MapRe-
duce implementation runs up to five times faster than the 
sequential implementation and can abstract millions of log 
messages in a few minutes. 

As detailed in Section 5, authors [35, 28] specified that 
IPLOM and HLAer algorithms are designed to be easily 
parallelized to handle large-scale data which make them 
potentially scalable. 

Online ALATs, Drain, SHISO, and Spell are not limited 
by the memory of a single computer and abstract log-
messages one at a time. He et al. [13] found that Drain 
and Spell are suitable for large-scale log datasets (e.g., 
Spell completed HDFS (10m le) in approximately 11 min). 
However, SHISO was not scalable and took 3 hours to com-
plete BGL (4m le) and approximately 2 hours to complete 
on HDFS (10m le). This mainly because SHISO uses deep 
parse trees while Drain uses a fixed DAG with a cache 
mechanism and Spell uses prefix trees. 

Observation. (1) Most of the sequential, o˜ine ALATs are 
eÿcient on sample log datasets and their running times 
increase linearly wrt. the number of log messages [12, 7, 
9]. (2) Eÿcient sequential, o˜ine ALATs may not handle 
large log datasets because they are limited by the memory 
and the computing power of a single computer. (3) O˜ine 
ALATs that implement parallel computing architectures 
(i.e., LogMine and POP) stay eÿcient when handling large 
log datasets. (4) Online ALATs might not complete in a 
reasonable time if their data structure construction algo-
rithm builds a deep and unbalanced data structure of log 
messages (e.g., SHISO). 

Promising Direction. In production, ALATs must scale to 
abstract large log files in reasonable times. Researchers 
could propose algorithms that implement parallelization 
algorithms and–or that decouple individual tasks. Another 
direction is to add data/task parallelization algorithms to 
existing ALATs, such as IPLOM and HLAer. 

7.5. Independence of System Knowledge 
AEL algorithm relies on domain experts hard-coded rules 
(e.g., “is-are-was value”) to identify dynamic fields in raw 
log messages (e.g., IP addresses, numbers, memory) and 
replaces them with a generic token ($V) then divides log 
messages into di˙erent bins according to their numbers of 
words and generic token ($V) [29]. 

LKE reduces the influence of the dynamic fields in raw 
log messages on its clustering algorithm by pruning typi-
cal dynamic fields according to empirical regexps provided 
by a domain expert [32]. 

MolFi enhances the accuracy of its algorithm by replacing 
typical dynamic fields with a special token #spec# using 
regexps hard-coded by a domain expert. In later stages of 

the search, MolFi ignores the special tokens #spec# [3]. 

POP and Drain algorithms implement a “pre-processing 
by domain knowledge” step to enhance their accuracy. 
Thus, they require experts to write regexps based on their 
domain knowledge. The algorithm uses these regexps to 
prune the dynamic fields in raw log messages. POP also 
allows users to optionally provide regexps to specify the 
characteristics of relevant log events [14]. 

LogSig [36] algorithm does not require domain experts 
to hard-code rules or regexps manually. However, Tang 
et al. [36] presented two optional approaches to improve 
the accuracy of LogSig algorithm by relying on domain 
experts’ regexps or constraints. 

LogMine [39] implements a type detection step to en-
hance the performance of LogMine, which requires experts 
to write a set of regexps to pre-define types such as date, 
time, IP, and number. Then LogMine replaces the real 
value of each field with the name of the field. For example, 
LogMine replaces 2019/10/25 with date and 192.168.10.15 
with IP. This step is not mandatory. 

HLAer, IPLOM, LFA, LogCluster, LogHound, SLCT, SHISO, 
and Spell do not rely on rules or regexps for their algorithm 
to work. 

Observation. (1) There is a trade-o˙ between indepen-
dence of system knowledge and performance. (2) Modern 
systems are more and more complex, which makes ade-
quate and up-to-date detailed domain knowledge diÿcult 
to obtain [28]. (3) ALATs that rely on domain experts’ 
manual e˙ort may not be flexible, heterogeneous, and evo-
lutive. 

Promising Direction. Researchers should investigate ALATs 
that do not rely on domain knowledge, such as ALATs 
that dynamically updates their rules. If not possible, they 
should propose ALATs that allow experts to use their do-
main knowledge but without requiring it. 

7.6. Delimiters Independence 
To determine the log-messages lengths (i.e., number of 

words) during the first partitioning of log messages, Drain, 
IPLOM, and POP assume that tokens/words are delimited 
by white spaces. However, as detailed in Section 6.6, this 
assumption is incorrect and may produce inaccurate par-
titions. 

To tokenize log messages, LKE uses the pre-defined de-
limiter white space and MolFi white space, parentheses, 
and punctuation characters. Ning et al. [28] indicated 
that pre-defined delimiters limit the analysis of log datsets 
with di˙erent delimiters. 
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To identify frequent words in the log dataset, LogClus-
ter, LogHound, and SLCT use customizable delimiters us-
ing the –separator option for LogCluster and -d option 
for LogHound and SLCT (white space by default). Spell 
uses a customizable set of delimiters but Mi et al. [47] 
found that user-defined delimiters may not be applicable 
across systems and users should redefine them for each log 
dataset format. 

HLAer, LogMine, SHISO do not rely on pre-defined or 
user-defined delimiters to identify tokens/words in the log 
entry. They consider each word, number, and symbol in 
the log entry as a token and separate them by a white 

LogMine has one parameter Max Pattern Limit to deter-
mine the desired level in the hierarchy of patterns. Users 
can set this parameter, else LogMine iterates until it reaches 
the most generic pattern (i.e., the event type containing 
only wildcards [39]. 

AEL does not explicitly specify that it requires users to 
set a parameter. However, Jiang et al. [29] used a thresh-
old of 5 to prevent merging of similar yet di˙erent event 
types. This value was adequate for their case study but 
users must adjust this threshold based on the content of 
their log datasets. 

space. For example 017-09-26 12:40:15, INFO impl.Fs- LogCuster, LogHound, and SLCT require users to set 
DatasetImpl - Time taken to scan block pool BP-80514-a support threshold s. They identify itemsets/words that 
3380 on /home/data3/current 30ms is tokenized into 017 
- 09 - 26 12 : 40 : 15 , INFO impl . FsDataset-
Impl - Time taken to scan block pool BP - 805143-
380 on / home / data3 / current 30 ms. Therefore, 
these ALATs can tokenize heterogeneous log datasets with-
out any delimiter definition from the user. 

Observation. Supporting multiple log formats is challeng-
ing but required for the industrial adoption of ALATs. In 
the absence of a standard and common log format, ALATs 
must support new formats and thus be independent of de-
limiters or allow user-defined delimiters. 

Promising Direction. Most ALATs depend on token de-
limiters and predefined rules. A standard and common 
log format would promote sharing of data and synergy 
among ALATs. Such log format could draw inspiration 
from the attempts to develop a standard language for exe-
cution traces (a structured form of logs) [50, 51], in which 
meta-modeling techniques allow scalable and expressive 
trace formats. 

7.7. Parameters Tuning E˙ort 
We now present the user-given parameters required by 

each ALAT and the experience shared by researchers when 
tuning them. 

Drain initializes automatically and updates dynamically 
its parameters for each log file. [13]. 

LFA and MolFi do not require the user to set any pa-
rameter and use internal heuristics to set the threshold(s) 
of their algorithms automatically. For example, LFA sets 
its word-frequency threshold to the lowest word frequency 
in the cluster with the most number of words. 

Spell has one parameter message type threshold τ to com-
pare a new log message sequence with existing LCSseq in 
LCSMap (as detailed in Section 2). Users can optionally 
set this parameter; otherwise, Spell sets τ to a default 
value of half the length of the new sequence [9]. 

occur more frequently than s in the log datasets and gener-
ate cluster candidates from these frequent itemsets. They 
only output clusters with a support value equal to or greater 
thans. Vaarandi et al. [30] found that setting s to an 
appropriate value is a challenging task because the iden-
tification of runtime parameters depends on it. Empirical 
experiments [15, 33, 48, 35] showed that a high support 
threshold value generates generic event types and anoma-
lous messages could go undetected while a low threshold 
yields too specific event types. 

IPLOM requires users the set five parameters. (1) File 
Support threshold (FS) controls the number of clusters 
produced. Clusters that have a lower support value than 
this threshold are discarded and increasing this value de-
creases the number of found event types. (2) Partition 
Support threshold (PS) controls backtracking during the 
partitioning step. Setting this threshold to 0 means that 
no backtracking will be done. (3) Upper Bound (UB) and 
Lower Bound (LB) controls the 1-to-M and M -to-1 re-
lationships during the partitioning by bijection to decide 
if the M side represents constants or dynamic fields. (4) 
Cluster Goodness threshold (CG) controls the partition-
ing level computed for each new cluster. IPLOM will not 
partition a cluster if its cluster-goodness is higher than CG 
[31]. Makanju et al. [35] found that IPLoM remains stable 
when changing its parameters values and is mainly sensi-
tive to FS. 

IPLOM FS is equivalent to LogHound and SLCT support 
threshold. Unlike SLCT and LogHound, IPLOM does not 
use its support threshold to identify frequent itemsets and 
to generate clusters/partitions but removes the partitions 
that fall below FS at the end of each partitioning. This 
step is optional and setting FS to 0 indicates that no par-
tition pruning is done. 

POP requires four parameters Group Support (GS), splitAbs, 
splitRel, and maxDistance. (1) GS is equivalent to IPLOM 
cluster goodness and controls the partitioning level. Com-
plete clusters/partitions that have a cluster-goodness value 
higher than GS avoid further partitioning. (2) splitAbs 
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and splitRel are used to identify constant and dynamic 
fields in log messages. A split token position with an abso-
lute threshold and relative threshold higher than splitAbs 
and splitRel is considered to be a dynamic field. (3) maxDis-
tance is used to merge two clusters if their Manhattan dis-
tance is smaller than its value. 

LogSig requires users to set one parameter, the number 
of clusters k (i.e., number of event types to be generated). 
The choice of an appropriate value for k depends on the 
user’s domain knowledge to the log dataset [15]. 

LKE requires three parameters. (1) Edit distance weight 
ν. LKE measures the similarity between log messages by 
the weighted edit distance and ν controls the weight func-
tion that computes words weights at di˙erent positions 
in a log message. (2) Private content threshold %. LKE 
counts the number of di˙erent values at each token posi-
tion within the same cluster of log messages. If the num-
ber is less than %, then LKE considers this token position 
a constant field and further split the cluster at this token 
position. (3) Cluster threshold ζ. LKE automatically sets 
this threshold via k-means clustering. Du et al. [9] found 
that setting this threshold manually to a value calculated 
for a smaller log dataset significantly improved the run-
time of LKE. 

SHISO requires four user-given parameters: (1) the max-
imum number of children per node c; (2) the similarity 
threshold ts to find the most suitable log group for each 
new log message; (3) the format merge threshold tm; and, 
(4) the format lookup threshold tr both used during the 
adjustment phase. He et al. [13] indicated that tuning 
SHISO parameters require a lot of e˙ort because they must 
be tuned for each log file. 

HLAer requires two parameters: (1) the minimum num-
ber of event types in the final clusters, MinPts, and (2) the 
maximum distance between any two event types in a clus-
ter, �. Authors in [39, 28] found that HLAer parameters 
must be set for each log dataset by an expert via empirical 
experiments. 

Observation. Parameters tuning is challenging and requires 
e˙ort, especially when the parameters are not intuitive [3]. 
Pre-defined parameters might become ine˙ective and limit 
the robustness of ALATs against new logging statements 
[13]. Using the same parameters for di˙erent log datasets 
might lead to inaccuracy [13]. Drain mitigates these chal-
lenges by setting automatically and dynamically its pa-
rameters. 

Tuning parameters for large log datasets is even more 
challenging because a trial-and-error approach is impos-
sible. Practitioners may then tune parameters on small 
log datasets and apply them to large log datasets. He et 
al. [14] applied five o˜ine ALATs (IPLOM, LKE, LogSig, 

POP, and SLCT) on several log datasets and found that 
only IPLOM and POP performed consistently on large log 
datasets after parameter tuning on small log datasets. 

Promising Directions. Researchers should invest into tech-
niques to tune dynamically the algorithms parameters. 

7.8. Quality Aspects of Supervised ALATs 
ALATs discussed in this section were all unsupervised. 

We identified two supervised ALATs: NLP-LTG and NLM-
FSE. These ALATs face additional challenges that we briefly 
discuss now. Supervised ALATs based on NLP have shown 
to be accurate but have limitations, such as their ability 
to generalize, the need for expert knowledge to label data, 
and their dependence on training data. Due to the con-
fidential nature of industry log files, research su˙ers from 
a lack of access to large, industrial log files to train and 
evaluate their ALATs [42, 40]. 

Observation. The main limitation of these ALATs is the 
need for large, industrial log files to train and test models. 

Promising Direction. Researchers should build and share 
log files to the benefit of the research community. 

8. Threats To Validity 

We now discuss the threats to the validity of our results 
and recommendations. 

Construct Validity. Construct validity threats concern the 
accuracy of the observations with respect to the theory. 
We considered a quality model that covers key aspects of 
log abstraction tools. We extracted these aspects from the 
literature through a systematic review of 89 papers. Thus, 
we argue that there is no threat to the construct validity 
of our results and recommendations besides the threat to 
any systematic-literature review: we may have missed a 
few relevant papers. We accepted this threat and followed 
best practices to perform an SLR, e.g., [5], as well as our 
experience with previous SLRs, e.g., [52]. 

Internal Validity. Internal validity threats concern the fac-
tors that might influence our results. The selection of 
the research papers is one possible threat. We may have 
missed relevant papers. We mitigated this threat by using 
the Engineering Village, which is one of the main sources of 
research papers in this field of study. In addition, we per-
formed a snowballing process to reduce the risk of missed 
papers. Two of the authors also reviewed the selected pa-
pers thoroughly to ensure that they fit this study. Another 
threat concerns the tools that we selected. We may have 
missed some tools or misunderstood some of their aspects 
described in the corresponding papers. We mitigated this 
threat by following a systematic survey process. We also 
made sure that at least two authors reviewed the tools and 
their features. Another threat to internal validity is that 
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our analysis of the characteristics of the ALATs is based on 
the information provided in the selected research papers. 
We did not check the source code of the tools to assess the 
correctness of their implementation which would require 
access to all of their source code and extensive resources 
out of the scope of this paper. 

Conclusion Validity. Conclusion validity threats correspond 
to the correctness of the obtained results. We classified 
the selected tools based on a detailed review of the liter-
ature that describes them and our own experience using 
them. When a tool used an algorithm that was published 
in other studies, we made every e˙ort to review these stud-
ies to ensure that we properly interpret the tool aspects. 
Table 2 shows the papers that describe how a given qual-
ity aspects is implemented in a tool. We strive to provide 
as many details as possible to allow the assessment and 
reproducibility of our results. 

Reliability Validity. Reliability validity concerns possibil-
ity of replicating this study. We studied 17 ALATs but 
we cannot claim that these are representative of all tools. 
Based on the literature review that we conducted, we argue 
that these tools are representative of existing log abstrac-
tion techniques. Moreover, we put on-line material to ease 
assessing and reproducing our study. 

External Validity. External validity is related to the gen-
eralizability of the results. We performed our study on 
17 ALATs that cover a wide range of log abstraction tech-
niques. We do not claim that our results can be generalized 
to all ALATs, in particular industrial, proprietary ALATs 
to which we did not have access. They are, however, rep-
resentative of ALATs in the scientific literature. Besides, 
the seven quality aspects of our quality model can be used 
to classify any ALAT. 

9. Conclusions and Future Work 

Logs contain a wealth of data that can help software 
engineers to understand a system’s run-time properties. 
However, modern systems have become so large and com-
plex that they produce too huge amounts of log data to an-
alyze. Also, logs often come in di˙erent formats, hindering 
the analyses of their content and making their uses even 
more complex [4, 3]. To tackle these problems, software en-
gineers have at their disposable Automated Log Abstrac-
tion Techniques (ALATs) that they can use to reduce the 
amount of data to process trough their log-abstraction al-
gorithms. 

However, there is a gap between the industry and acad-
emia. First, software engineers are not aware of all existing 
ALATs developed in academia and the characteristics of 
their algorithms. Second, software engineers do not have 
the time and resources to study and understand the char-
acteristics of each ALAT algorithm. To reduce this gap, 

we conducted a thorough study in which we grouped, sum-
marized, and compared 17 ALATs based on seven quality 
aspects identified from the literature: mode, coverage, eÿ-
ciency, scalability, independence of system knowledge, het-
erogeneity, and parameter tuning e˙ort required. 

In this paper, we reported on our systematic review 
of the literature on ALATs. From 2,864 papers, we thor-
oughly reviewed 89 papers to identify unique ALATs and 
quality aspects relevant to software engineers. Then, we 
proposed a quality model with seven industry relevant 
quality aspects for evaluating ALATs. We also identi-
fied, compared, and evaluated 17 ALATs using our quality 
model. We observed that there is not one ALAT that 
can address all requirements and practitioners must make 
compromises. The results in Section 7 bridge the gap be-
tween industry and academia: practitioners do not have to 
spend valuable time investigating state-of-the-art ALATs. 
Instead, they can focus on experimenting with a subset of 
candidate ALATs and decide which fits best with their par-
ticular use cases. To the best of our knowledge, this is the 
first and only extensive study of ALATs and recommender 
for ALATs based on a quality model. 

Researchers can use our model and recommendations 
to learn about the state-of-the-art ALATs, understand re-
search gaps, enhance existing ALATs, and–or develop new 
ones. Software engineers can use our model and recom-
mendations to understand the advantages and limitations 
of existing ALATs and to identify the ones that best fit 
their need. 

Future Work. During our study of all available ALATs, 
we made several observations that could be the basis for 
future works. 

Salfner et al. [53] proposed a new log format to make 
log datasets more expressive and comprehensive. They 
recommended adding Event IDs in the log format to ease 
automatic log analysis and accurate abstraction. Adding 
information to logging statements could help in the anal-
ysis of complex modern systems. This information should 
be outputted automatically for consistency. Some log-
ging frameworks (log4j, log4j2, and SL4J/logback) provide 
(semi-)automatically this information each log entry. How-
ever, this feature is not yet available in all systems and, 
sometimes, may dramatically and unnecessarily increase 
the size of log datasets. 

Moreover, the values of some dynamic variables may 
be useful for log analyses. For example, they can serve as 
identifiers for a particular execution, such as block-id in 
an HDFS log and instance-id in an OpenStack log [16]. 
When matching new log entries, ALATs could allow soft-
ware engineers to keep or ignore dynamic variables. 

Researchers evaluate their proposed ALAT on di˙erent 
log datasets, which make them harder to compare. The 
community should establish a “common” dataset on which 
all ALATs should be compared. Moreover, most ALATs 
depend on log datasets availability to train. Future work 
include collecting and curating such a dataset. 
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We also plan on measuring the eÿciency of each ALATs 
on various log datasets and reporting the worst-case sce-
nario for each ALAT. 

Furthermore, we intend to study how di˙erent practi-
tioners use ALATs in practice through surveys and exper-
iments with practitioners from industry. Also, we want 
to extend this work to catalogue log-analysis techniques, 
another component of log mining and to investigate the 
requirements for ALATs by di˙erent characteristics of log 
input datasets and di˙erent log-mining goals. We thus 
want to assist software engineers with log management. 

Finally, there is a need to reconcile the areas of logging 
and tracing. Logs are user-defined, whereas traces usually 
contain executable code snippets, with function calls, etc. 
Many techniques for trace abstraction and modeling ex-
ist, e.g., [50, 54, 55]. Researchers should study how these 
techniques could apply to log datasets. 
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