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Chapter 6
Exponential and logarithmic Functions (Page 417)

Objectives: By the end of this chapter students should be able to:
. Identify Exponential and logarithmic Functions

" Identify graphs of exponential and logarithmic functions

" Sketches graphs of Exponential and Logarithmic functions

" Identify the relationship between exponential and logarithmic functions
" Identify and state rules of exponential and logarithmic functions

" Find domain and range of exponential and logarithmic functions

. Simplify exponential and logarithmic functions using their rules

Motivation
1) Interest: Compound

Compounded Continuously
Formulas:

nt
A=P (1 + ﬁ) (Compound Interest)

A = Pe™ (Continuous Compounding)
A = Amount
P = Principal

r = Rate of interest (in %)
t = Time (usually in years)
n = Number of times amount is compounded

2) Radioactive Decay & Population Growth

Radioactive Decay: If m, is the initial mass of a radio active substance with half life h, then the

mass m(t) remaining at time t is modeled by the function
In2

m(t) = mgye™ ", where r = -
Population Growth: A population that experiences a population growth increases according to the
model: n(t) = nye™
where n(t) = Population at time t, ny= Initial size of population, r = relative rate of growth (expressed

as a proportion of the population), t = time.
Example: C-14 Dating. The burial cloth of an Egyptian mummy is examined to contain 59% of the C-

14 it contained originally. How long ago was the mummy buried? (The half-life of C-14 is 5730 years)

Example: World Population. The population of the world was 5.7 billion in 1995, and the observed
relative growth was 2% per yeatr.

a) By what year will the population have doubled?

b) By what year will the population have tripled?
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Compound Interest

Compound Interest is calculated by the formula:
nt
A =P (1 + %)

Example 4: If $4000 is borrowed at a rate of 5.75% interest per year, compounded quarterly, find the

amount due at the end of the given number of years. a) 4 years b) 6 years c) 8 years

nt
For r = 1, the compound interest formula becomes A(f) = P (1 + %) .

The Number e

. : 1\ . . : . .
Consider the expressmn(l + 1—1) . We would like to investigate the value that this expression gets

1 n
close to if N keeps getting larger. Thatisasn — oo, (1 + 1—1) - ?

1 n
" (1+3)
n
1 2
10 2.593742
100 2.7048138
10000 2.71814592
100000 2.718268273
1000000 2.7182804693
10000000 2.718281692544
108 2.7182818148676
10° 2.71828182709990
0 2.71828182845904...

From the above table we can make the following observation:

: : 1\" :
As n increases without bound (1 + Z) approaches the number e, or equivalently

n
Whennn — oo the value (1 + %) - e
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6.1 Exponential Functions
Exponential Functions of base a

Definition: An exponential function with base a is the function defined by f(x) = a*, where
a>0and a #1.
Example 1: a) f(x) = 2*
1\* —x
b) g(x) = (3) = 2

c) f(x) =e”

Graphs of f(x) = a*: therearetwocasesi)a > 1andil0 < a< 1

Na>1 / \ iho< a<1

// ‘\\

Properties of the exponential function f(x) = a*:
1)  The domain of f(x) = a*is the set of all real numbers = (—o0, )

2)  The function f(x) = a* is increasing for a > 1 and decreasingfor0 <a <1
3) Therangeof f(x) =a*is{y|y >0} =(0, )
4)  The function f(x) = a* hasy intercept (0, 1) but has no x - intercept

5)  The function f(x) = a* is a one - to — one function, hence it is invertible.
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Example 2: Sketch the graph of the following exponential functions:

a f(x)=2" d) £ = (3)
a. f(x)=0.8" e) f(x) =3*
b. f(x)=¥3" f) f(x) = 0.6*

Transformations:
Translations, Reflections, and Vertical and Horizontal Stretches and Shrinks

Translations:

1) Vertical Translation:y = f(x) + ¢, forc>0
The graph of y = f(x) + c is the graph of y = f(x) shifted vertically c units up
The graph of y = f(x) + c is the graph of y = f(x) shifted vertically c units down

2) Horizontal Translations: y = f(x +¢),forc>0

The graph of y = f(x — ¢) is the graph of y = f(x) shifted horizontally c units to the right
The graph of y = f(x — ¢) is the graph of y = f(x) shifted horizontally c units to the left.

Reflections
1) Across the x-axis:
The graph of y = —f(x) is the reflection of the graph of y = f(x) across the x-axis.

2) Across the y-axis:
The graph of y = f(—x) is the reflection of the graph of y = f(x) across the y-axis.

Stretches and Shrinks

Vertical Stretching and shrinking

Tography = cf(x):
If ¢ > 1, stretch the graph of y = f(x) vertically by a factor of ¢
If 0 <c < 1,shrinkthe graph of y = f(x) vertically by a factor of c

Horizontal Stretching and shrinking

Tography = f(cx):
If ¢ > 1, shrink the graph of y = f(x) horizontally by a factor of 1/c
If 0 < ¢ < 1, stretch the graph of y = f(x) horizontally by a factor of 1/c

Example 3: Sketch the graph (Transformations of Exponential Functions)
a f(x)=-2*
b. f(x)=2*+2
c. flx)=2*"1
d. f(x)=-2"*1-2
OER West Texas A&M University Tutorial 42: Exponential Functions



http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut42_expfun.htm

UNG College Algebra

The Natural Exponential Function

Definition: The Natural Exponential Function is defined by f(x) = e*, with base e.

Continuously Compounded Interest
Example 1: Continuously Compounded Interest is calculated by the formula:

A(t) = Pe™
Where A(t) = Amount after t years, P = Principal, r = Interest rate per year, and t = Number of years

Example 2: A sum of $5000 is invested at an interest rate of 9% per year compounded continuously
a) Find the value of A(t) of the investment after t years
b) Draw a graph of A(t)

Laws of Exponents

Laws Examples
xl = «x 61=6
x0=1 70 =
-1 _ -1 _
x "t =1/x 4 " =1/4
xMyt = xmtn x2x3 = x2+3 = x5
xm/xn = xmn x6/x2 = x672 = 4
(xm)n — xmn (x2)3 — x2><3 — x6
(xy)" = x"y" (xy)® = x°y°
(x/y)" = x"/y" (x/y)? = x* [ y*
x ™= 1/x" x3 = 1/x3
And the Laws about Fractional Exponents:
Laws Examples
xl/n — ’{/} x1/3 = 3{/}
m n n g 2
xXn = \/x_m: (\/})m X3 = 3\/x2 = (i/})
Proof of the law: xXn = "me = (T{/})m follows from the fact that

%=m X (1/n) = (1/n) x m

OER West Texas A&M University Tutorial 2: Integer Exponents Tutorial 5: Rational Exponents



http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut2_exp.htm
http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut5_ratexp.htm
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6.2 Logarithmic Functions and Their Graphs (page 423)

Consider the exponential functiony = a*,a > 0anda # 1

y = a* is a one-to-one function, thus it has an inverse

= The inverse of y = a* is a function called the logarithmic function

Recall, the inverse of a function is obtained by interchanging the x and the y in the equation

defining the function. Thus, the inverse of y = a* is given by x = a”which is the same

as y = log,x. Thatiswe are saying x = a” & y = log,x
Graphically: The graph of y = log,x obtained by reflecting the graph of y = a* across the

’y:ax |_y:x

liney = x.

[sy]

— y = log,x

i
[

Logarithmic Function, Base a

Definition: (log function to any base a)
y = log,x isthe number y such that x = a¥, where x > 0 anda > 0 and # 1is

Examples
a) Case,a>1: y=log,x, y=1log;x,y=1og13x;y=1logx;y=Ilnx

b) Case,0 <a<1: y=1logy,x, y=10gi;3x,y=10gosx;y=10gq/7x
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Graphsof y =1log,x: Twocasesi)a>1andii) 0 <a<1

1, a>1 0O<a<1

Properties of the logarithm function f(x) = log,x
1) The domain of f(x) = log,xis {x|x>0}=(0, )

2) The function f(x) = log,x is increasing for a > 1 and decreasingfor0 < a < 1

3) The range of f(x) = log,x is the set of all real numbers, in interval form (—oo, )

4) The function f(x) = log,x has x intercept (1, 0) has noy - intercept

5) The function f(x) = log,x is a one - to — one function, hence it is invertible.

6) The function f(x) = log.x is the inverse of the exponential function y = a*and vice versa

Example 1: Find graph the following logarithmic functions
a) y=1logsx,y =logi3x;y=1logx,y=Inx
b) ¥ =1ogy,3x,y =logosx;y =1log,/;x
OER West Texas A&M University Tutorial 43: Logarithmic Functions

Example 2: Find the domain and graph the following logarithmic functions
a) y=—logszx C)y=-logp,(x+1)+2
b) y =logz(x —2)
Example 2: Example 6.1.4. Page 425: Find the domain of the following functions
a) f(x)=2log(3—x)—1
_ 1
b) 9@ =1n (=)
Homework page 429: #1 — 74 (odd numbers)


http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut43_logfun.htm
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Natural and Common Logarithms

Definition: 1) Logarithms with base e are called natural logarithms,
Notation: In x used instead of log . x
2) Logarithms with base 10 are called common logarithms
Notation: log x used instead of logox
The calculator log is base 10, and the calculator In is base e.
Example 3: Find using a calculator:
a) log13
b) log10
c) In9
d) Ine

e) log5
f) In5

Conversion between Exponential and Logarithmic Equations

Exponent Form Logarithmic Form
b’ = x = y = logyx
e’ =x = y=Inx
107 =x = y = log x

Example 4: Example 6.1.3 Page 424: Reading
Examples 4: Convert to the exponential form
a) log1000 = 3

b) log; 81 = 4
c)logs=»b
c)lne=1
d)In¥Ve =1/3
HIn9 =t
Example 5: Convert each of the following to a logarithmic or exponential equation:
a) 16 =2* e) 1073 = 0.001
b) log,32=>5 f) x=log,M
c) logz;9=2 g In4=y
d) 72 =49 h) 2713 =3



UNG College Algebra
Properties of Logarithms (page 437)

OER West Texas A&M University Tutorial 44: Logarithmic Properties

1) log,(xy) = log,x + log,y (Product Rule)
2) log,(x/y) =logy,x — log,y (Quotient Rule)
3) log,x’ =P xlog,x (Power Rule)
4) logpx = :Z:ZZ, forc>0andc # 1 (Change of Base)
If we change the base b to ¢ = 10 or c = e, then the change of base formula becomes:
log,x = :Z% OR logyx = ::—z

5) Other properties: Let b > 0 and b # 1, then:
a) logp1=0,andso In1 =20

by logy,b =1,andso Ine =1

¢) logy,b* =x,andso Ine* = x

d) b'°9»* = x andso e!™* = x
Example 1: Example 6.2.1 page 438: Reading

Example 1: Find each of the following using properties of log.

a) log10000 d) log; 49
b) log, (%) e) log 100
c) logs5? f)logs; 3

Example 2: Find the values of the following using log properties
a) logqp5 c) log V42
b) 10g1/3 81

Example 3: Simplify the following

V20
a) (2%) ¢) log,(128/16)
b) log,(logy 81) d) eln V81
Example 4: Evaluate without a calculator whenever possible otherwise use calculator
a) log3/100 c) log,25
b) logsV/27 d) In(Ve?)
Example 5: Evaluate:
a) log,5

b) loggs2 99

10


http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut44_logprop.htm
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Example 6: Write as a single log:
a) log,(x —2) +3log,x —log,(3+x) c)2logyx +logsy— %z

b) log,x + 2log,y — 3log, x

Example 7: Expand using log properties:

a) log(3vx) d) log, (x%y3z?)
/x+1 3 (g2
b) lOgs m e) lOga< ’ac_:)>

1/2
C) log( al 2 >
y? Vz
Homework page 445: #1 — 42 (odd numbers)

Solving Exponential and Equations Log Equations:

OER West Texas A&M University: Tutorial 45: Exponential Equations;
Tutorial 46: Logarithmic Equations

Form Strategy

1. b*=DbY Bases are the same, drop bases to obtainx =y

2. b*=y Take log or In of both sides to change to the log form

3. logyx =log,y Bases are the same, drop the 10gs to obtain x = y

4. logpx =y Convert to exponential form to solve bY = x
Examplel: Solve each of the following

a) 43% = 32x-2 g) 4x+3 = 3—x

b) exXt3 = exz—4-x h) 7eXt3 =5

c) 25 =64 i)3*—3*=4

d) 9**.35% =27 j) 2e** + 5e2* +3 =0

g) 3 5x =L f)3x=7

81

Example 2: State the domain and solve the following

a) log,x=6 e)logsx +logs(x+1) =log,2
b) log;x +logz;(2x —3) =3 f)log(x+2)—3log2=1
c) logsx +logz(x+1)=1log;2 g) log, 81 = -2

d) log,(x+1) +log,(3x—5) =log,(5x—3) +2

Homework page 456: #1 — 33 (odd numbers)
Homework page 466: #1 — 24 (odd numbers)

11


http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut45_expeq.htm
http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut46_logeq.htm

