[bookmark: _GoBack]Module 13: EHR Security

	Learning objective

	In this module, you will be able to
· Describe ONC Test suite, HIPAA, and expected features that should be present in an EHR
· Compliance checking of regulatory requirements
· Scanning of EHR apps for vulnerabilities for additional checking of compliance

Assignment 12 (see Hands-on Labs): Total points- 100

Contents
1. Introduction	1
2. ONC Security and Privacy Related Feature	2
3. HIPAA Criteria	12
4. Hands-on Labs: Checking of EHR compliance for OpenEMR	13
5. Hands-on Lab: HIPAA Compliance checking with static analysis/scanner tools:	17

[bookmark: _Toc533937589]1. Introduction
The 2015 Edition Test Method has been constructed in an outcome-focused format with additional companion guide documents to aid stakeholder development of Health IT Modules. The Test Method provides the structure for evaluating conformance of the Health IT Module to the certification criteria defined in 45 CFR Part 170 Subpart II of the 2015 Edition Health Information Technology (Health IT) Certification Criteria, 2015 Edition Base Electronic Health Record (EHR) Definition, and ONC Health IT Certification Program Modifications final rule as published in the Federal Register on October 16, 2015. The 2015 Edition Test Method includes Test Procedures, Test Tools and Test Data and is listed below by certification criterion number.
Health IT certified under the ONC Health IT Certification Program (Program) must conform to the full scope of the product’s required capabilities, including regulatory/conformance expectation clarifications and interpretations set forth in the applicable Certification Companion Guides. Materials prepared by ONC to support pre-certification testing, such as the 2015 Edition Test Method, should be read and understood on the basis that they have been prepared with the express purpose of evaluating a limited subset of the product’s required capabilities in a controlled environment. As such, this type of guidance is not determinative of the full scope of a product’s required capabilities.
The website of HealthIT provides the detailed set of test suites that need to be checked.

[image:]
In this lecture, we only focus on Privacy and Security related features.
[bookmark: _Toc533937590]2. ONC Security and Privacy Related Feature
Below is a summary table showing the subset of ONC test suites related to security and privacy of EHR. The entire list of test suite can be found at https://www.healthit.gov/topic/certification-ehrs/2015-edition-test-method
Here, regulation text column shown what a tester needs to verify (i.e, presence or absence of a feature), system under test (this will be an example EHR system such as OpenEMR) and test lab verification (tester observes specific results to confirm feature behavior satisfies the regulation).

	Certification Criterion
	Regulation text
	System Under Test
The health IT developer submits their self-declaration to the ONC-ATL.
	Test Lab Verification
The Tester verifies the self-declaration document contains all of the required data elements.

	§170.315(d)(1)
Authentication, access control, authorization

	(i) Verify against a unique identifier(s) (e.g., username or number) that a user seeking access to electronic health information is the one claimed;
	1. A user’s unique identifier (username or number) is verified as belonging to them, prior to receiving authentication credentials for access to electronic health information.
2. The uniqueness of the identifier (username or number) is verified through an attempt to create a new user account using the same unique user identifier already established.
3. A user’s unique identifier (username or number) associated with a disabled account is not able to access electronic health information.

	1. The tester verifies that the Health IT Module can create a user’s unique identifier and that the newly created user identifier and authentication credentials enable access to electronic health information.
2. The tester verifies that the Health IT Module prevents an existing user identifier from being used again, to demonstrate that user identifiers are unique.
3. The tester verifies that the Health IT Module does not permit a user with a disabled account to access electronic health information.

	
	(ii) Establish the type of access to electronic health information a user is permitted based on the unique identifier(s) provided in paragraph (d)(1)(i) of this section, and the actions the user is permitted to perform with the technology.
	1- Negative Test: A user attempts to login to the Health IT Module using incorrect credentials.
2- A user created in step 1 of (d)(1)(i) has specific access to electronic health information and specific capabilities, based on permissions assigned to their unique identifier.
3. A user’s permissions are modified to grant permissions not previously authorized.
4. A user is able to access electronic health information and specific capabilities, based on permissions that have been modified to grant permissions not previously authorized.
5. Negative Test: A user does not have access to unauthorized electronic health information and specific capabilities, based on permissions not assigned to their unique identifier.
	1. Negative Test: The tester verifies that the Health IT Module requires valid credentials in order for a user to access the system.
2. The tester verifies that the unique identifier created according to criteria (d)(1)(i) can only access data and perform actions permitted for that particular unique identifier.
3. The tester verifies that the Health IT Module allows newly authorized permissions to be established.
4. The tester verifies that the Health IT Module allows the newly established authorized action(s) to be performed.
5. Negative Test: The tester verifies that the unique identifier cannot access health information or perform actions for which it does not have permission.

	§170.315(d)(2)
Auditable events and tamper-resistance

	(i) Record actions. Technology must be able to:
A) Record actions related to electronic health information in accordance with the standard specified in §170.210(e)(1);
B) Record the audit log status (enabled or disabled) in accordance with the standard specified in §170.210(e)(2) unless it cannot be disabled by any user; and
C) Record the encryption status (enabled or disabled) of electronic health information locally stored on end-user devices by technology in accordance with the standard specified in §170.210(e)(3) unless the technology prevents electronic health information from being locally stored on end-user devices (see paragraph (d)(7) of this section).
	(i)(A) 1. The user demonstrates that the Health IT Module records, at a minimum, each of the following actions, including Auditable Events, in accordance with the standard specified in § 170.210(e)(1)(i), sections 7.2 through 7.4, 7.6, and 7.7 of ASTM E2147-01, when supported, related to electronic health information: Additions; Deletions; Changes, Queries; Print; Copy;
• Access to patient information,
• Emergency access to patient information
• Change to user privilege,
• Change to audit log status, and
• Change to encryption status.
2. For all permissible actions, the audit log function records the following data elements:
• Date and time of event, synchronized according to NTPv3 or NTPv4 in accordance with the standard specified in § 170.210(g);
• Patient identification;
• User identification;
• Type of action, including Auditable Events, as listed in 1, specifying
inquiry, any changes made (if any), and for deletions a pointer to deleted information (see the Certification Companion Guide for (d)(2) for more detail as necessary), and
• Identification of the Data that are Accessed.
3. The health IT developer provides documentation that demonstrates the actions listed above that are not supported within the Module and therefore not subject to testing.
(i)(B) If the audit log can be disabled, the user demonstrates that the Health IT Module records when the audit log status changes from enabled to disabled (or vice versa), and logs the status change in accordance with the standard specified in §170.210(e)(2), by recording:
• date and time, synchronized according to NTPv3 or NTPv4 in accordance with the standard specified in § 170.210(g);
• user identification; and
• which action(s) occurred.
(i)(C) If electronic health information can be locally stored on end user devices, the Health IT Module records when the encryption status of electronic health information locally stored on end-user devices, by the technology, changes from enabled to disabled (or vice versa) and logs the status change in accordance with the standard specified in § 170.210(e)(3), by recording:
• date and time, synchronized according to NTPv3 or NTPv4 in accordance with the standard specified in § 170.210(g);
• user identification; and
• which action(s) occurred.
	(i)(A) 1. The tester verifies that the Health IT Module records an audit log entry for each of the specified actions in accordance with the standard specified in § 170.210(e)(1), when supported.
2. The tester verifies that for all specified actions, an audit log entry related to each action taken has been correctly generated according to the standard specified in § 170.210(e)(1)(i), and that the date/time is recorded in accordance with the standard specified in § 170.210(g).
3. The tester verifies that the actions the health IT developer has indicated it does not support via documentation are not available in the Heath IT Module.
(i)(B) Unless the developer attests that the audit log cannot be disabled by any user, the tester verifies that the system appropriately logs changes to the audit log status in accordance with the standard specified in § 170.210(e)(2).
(i)(C) Unless the developer attests that the technology prevents electronic health information from being locally stored on end-user devices, the tester verifies that the system appropriately logs changes to the encryption status in accordance with the standard specified in § 170.210(e)(3).

	
	(ii) Default Setting. Technology must be set by default to perform the capabilities specified in paragraph (d)(2)(i)(A) of this section and, where applicable, paragraphs (d)(2)(i)(B) and (d)(2)(i)(C) of this section.
	The health IT developer provides documentation outlining that by default, the Health IT Module performs the capabilities described in Criteria (i)(A), and where applicable, in Criteria (i)(B) and (i)(C).

	The tester verifies that the documentation provided indicates that:
• if the audit log can be disabled, the default setting for recording audit log status changes is enabled;
• if the encryption status can be disabled, the default setting for recording encryption status changes is enabled;
• if the audit log cannot be disabled, it is so indicated by the documentation; and
• if the encryption status cannot be disabled, it is so indicated by the documentation.

	
	(iii) When disabling the audit log is permitted. For each capability specified in paragraphs (d)(2)(i)(A) through (C) of this section that technology permits to be disabled, the ability to do so must be restricted to a limited set of users.
	Where the Health IT Module permits disabling, the user demonstrates that the capability to do so is restricted to a limited set of users for each auditing function:
• Record actions;
• Record the audit log status; and
• Record encryption status.
	The tester verifies that each of the capabilities which permit the ability to enable and disable the recording of auditable events, is limited to an identified set of users:
• Record actions;
• Record the audit log status; and
• Record encryption status.

	
	(iv) Audit log protection. Actions and statuses recorded in accordance with paragraph (d)(2)(i) of this section must not be capable of being changed, overwritten, or deleted by the technology

	The health IT developer provides documentation outlining how the audit log protects the following from being changed, overwritten, or deleted by the Health IT Module:
• Recording of actions related to electronic health information;
• Recording of audit log status; and
• Recording of encryption status.
	The tester verifies that the Health IT Module audit log protects the outlined items from being changed, overwritten, or deleted from the audit log.

	
	(v) Detection. Technology must be able to detect whether the audit log has been altered.

	The health IT developer provides documentation outlining how alterations to an audit log are detected.
	The tester verifies that alterations to an audit log is successfully detected.

	§170.315(d)(4)
Amendments

	Enable a user to select the record affected by a patient's request for amendment and perform the capabilities specified in paragraph (d)(4)(i) or (ii) of this section.
1. (i) Accepted amendment. For an accepted amendment, append the amendment to the affected record or include a link that indicates the amendment's location.
	(i) A user can select a patient record and either append an amendment to it or add a link indicating the amendment’s location when an amendment is approved.

	The tester verifies that an amendment can be appended to a specific record or that a link indicating an amendment’s location can be included in a specific record.

	
	(ii) Denied amendment. For a denied amendment, at a minimum, append the request and denial of the request in at least one of the following ways:
A. To the affected record.
B. Include a link that indicates this information's location.
	(ii) A user can select a patient record and append the request and denial of the request to the record or add a link indicating the amendment and its denial’s location.
	The tester verifies that an amendment request and its denial can be appended to a specific record or that a link indicating the location of the amendment and its denial can be included in a specific record.

	§170.315(d)(5)
Automatic access time-out
January 08, 2016
September 21, 2017

	(i) Require user authentication in order to resume or regain the access that was stopped.
	1. The user logs in and waits the defined amount of time for a period of inactivity.
2. After the defined period of inactivity, the user cannot access health information.
	The tester verifies that a user cannot gain further access to the health information after the period of inactivity expires.

	
	(ii) Require user authentication in order to resume or regain the access that was stopped.
	A user is forced to authenticate their credentials before regaining access.

	The tester verifies that a user must re-enter credentials in order to access health information within the Health IT Module after the access has been stopped.

	§170.315(d)(6)
Emergency access
January 08, 2016
September 21, 2017

	Permit an identified set of users to access electronic health information during an emergency.

	1. The Health IT Module enables emergency access for a user and demonstrates emergency access is limited to an identified set of users.
2. An authorized user accesses electronic health information during an emergency.
3. Negative test: An unauthorized user is not able to access electronic health information during an emergency.
4. Negative test: An authorized user is unable to access electronic health information when it is not an emergency.
	1. The tester verifies that emergency access authorizations are limited to a set of identified users and assigned to an identified user.
2. The tester verifies that the user with emergency access authorizations can access health information during an emergency.
3. Negative test: The tester verifies that the user without emergency access authorization cannot access the information when it is an emergency.
4. Negative test: The tester verifies that the user with emergency access authorizations cannot access the information when it is not an emergency.

	§170.315(d)(7)
End-user device encryption
January 08, 2016
September 21, 2017

	(i) Technology that is designed to locally store electronic health information on end-user devices must encrypt the electronic health information stored on such devices after use of the technology on those devices stops.
A. Electronic health information that is stored must be encrypted in accordance with the standard specified in §170.210(a)(2).
B. Default setting. Technology must be set by default to perform this capability and, unless this configuration cannot be disabled by any user, the ability to change the configuration must be restricted to a limited set of identified users.
	1. The health IT developer provides documentation outlining how electronic health information stored on end-user devices, after normal use of the Health IT Module technology on those devices stops, is encrypted with algorithm(s) in accordance with the standard specified in § 170.210(a)(2), FIPS 140-2 Annex A: Approved Security Functions (Draft, October 8, 2014) for Federal Information Processing Standards (FIPS) Publication 140-2.
2. The user demonstrates that the default configuration for the Health IT Module is the capability in step 1.
3. The user demonstrates that the Health IT Module configuration cannot be changed, or that the ability to change the configuration is restricted to a limited set of identified users.
4. Negative Testing: The unauthorized user attempts to change the configuration identified in step 1.
	1. The tester verifies that information stored on end user devices after normal use of the Health IT Module technology on those devices stops, is encrypted with algorithm(s) in accordance with the standard specified in § 170.210(a)(2), FIPS 140-2 Annex A: Approved Security Functions (Draft, October 8, 2014) for Federal Information Processing Standards (FIPS) Publication 140-2 by:
a. reviewing submitted documentation that electronic health information stored on end-user devices, after normal use of the Health IT Module on those devices stops, is encrypted with algorithm(s) in accordance with the standard specified in § 170.210(a)(2); and
b. verifying via demonstration that the setting on-disk information is encrypted by viewing the on-disk data in raw form to illustrate that it is non-readable.
2. The tester verifies that the default configuration for the Health IT Module is the capability in step 1.
3. The tester verifies that the configuration of the Health IT Module cannot be changed, or that the ability to change the configuration is restricted to a limited set of identified users.
4. Negative Testing: The tester verifies that an unauthorized user cannot change the configuration identified in step 1.

	
	(ii) Technology is designed to prevent electronic health information from being locally stored on end-user devices after use of the technology on those devices stops.
	The user demonstrates that no electronic health information is locally stored on the end-user device after use of the Health IT Module stops.

	The Tester verifies that the Health IT Module prevents electronic health information from being stored locally on the end-user device after the use of the device stops.

	§170.315(d)(8)
Integrity
January 08, 2016
September 21, 2017

	(i) Create a message digest in accordance with the standard specified in §170.210(c)(2).
	The Health IT Module creates a message digest using a hashing algorithm with a security strength equal to or greater than SHA-2, as specified by NIST in accordance with the standard specified in §170.210(c).

	The tester verifies that the message digest that is created uses hash values that are in accordance the standard specified in §170.210(c) by:
a. using Visual Inspection of the message digest; and
b. reviewing the provided documentation to verify it indicates that SHA-2 was
used to create the message digest.

	
	(ii) Verify in accordance with the standard specified in §170.210(c)(2) upon receipt of electronically exchanged health information that such information has not been altered.
	Following the exchange of information using the vendor- identified transport technology which employed the message digest created in (d)(8)(i), in accordance with the standard specified in §170.210(c), the Health IT Module creates a message digest on the receiving system of the electronic health information that has been received, to ensure that the content has not been altered.

	The tester compares the electronically exchanged message digest and the message digest created on the receiving system to verify that the electronically received health information has not been altered. The Module should show the received message, not an indicator. It should also show the received hash and a computed hash showing them as identical.

	§170.315(d)(9)
Trusted connection

	1. Establish a trusted connection using one of the following methods:
(i) Message-level. Encrypt and integrity protect message contents in accordance with the standards specified in §170.210(a)(2) and (c)(2).

	1. The health IT developer identifies the encryption algorithm and hashing algorithm to be used to send/receive secure messages.
2. The Health IT Module or user sends at least one message that is encrypted and integrity protected using the algorithms identified in step 1.
3. The Health IT Module encrypts and integrity protects message contents in accordance with the standards specified in § 170.210(a)(2), any encryption algorithm identified by the National Institute of Standards and Technology (NIST) as an approved security function in Annex A of the Federal Information Processing Standards (FIPS) Publication 140-2, October 8, 2014, AND § 170.210 (c)(2), and a hashing algorithm with a security strength equal to or greater than SHA-2 as specified by NIST in FIPS Publication 180-4 (August 2015). Following the exchange of the message, the Health IT Module creates a message digest on the receiving system of the electronic health information that has been received to ensure that the content has not been altered.
	1. The tester verifies that the message(s) sent are in conformance with the named encryption and hashing algorithm standards specified in § 170.210(a)(2) and (c)(2) using Documentation.
2. Alternately, the tester verifies via visual inspection that the message(s) sent are in conformance with the named encryption and hashing algorithm standards specified in § 170.210(a)(2) and (c)(2).
3. The tester compares the electronically exchanged message digest and the message digest created on the receiving system to verify that the electronically received health information has not been altered using visual inspection.

	
	(ii) Transport-level. Use a trusted connection in accordance with the standards specified in §170.210(a)(2) and (c)(2).

	1. The health IT developer identifies the connection’s encryption algorithm and hashing algorithm to be used for the trusted connection.
2. The Health IT Module establishes at least one trusted connection in accordance with the standards specified in § 170.210(a)(2), “any encryption algorithm identified by the National Institute of Standards and Technology (NIST) as an approved security function in Annex A of the Federal Information Processing Standards (FIPS) Publication 140-2, October 8, 2014,” and § 170.210(c)(2), “a hashing algorithm with a security strength equal to or greater than SHA-2 as specified by NIST in FIPS Publication 180-4 (August 2015).”
	1. The tester verifies that the Health IT Module uses a trusted connection in accordance with the standards specified in § 170.210(a)(2) and (c)(2) using Documentation.
2. Where used, the tester requires to see the encryption handshake to ensure that the digital certificates are being invoked during the connection.

	§170.315(d)(10)
Auditing actions on health information

	1. (i) By default, be set to record actions related to electronic health information in accordance with the standard specified in §170.210(e)(1).

	1. Documentation is provided by the health IT developer demonstrating that by default, the Health IT Module records actions related to electronic health information in accordance with the standard specified in § 170.210(e)(1).
2. The user demonstrates that the Health IT Module records, at a minimum, each of the following actions in accordance with the standard specified in § 170.210(e)(1)(i), sections 7.2 through 7.4, 7.6, and 7.7 of ASTM E2147-01 , when supported, related to electronic health information:
a. b. c. d. e. f. g. h.
Additions;
Deletions;
Changes;
Queries;
Print;
Copy;
Changes to user privileges; and
Access to patient information, including emergency access events.
3. For all
records at a minimum the following data elements:
• Date and time of event, synchronized according to NTPv3 or
permissible actions, specified in step 2, the audit log function
NTPv4 in accordance with the standard specified in § 170.210(g);
• Patient identification;
• User identification;
• Type of action (additions, deletions, changes, queries, print, copy),
specifying inquiry, any changes made (with pointer to original data state), and a delete specification (with a pointer to deleted information); and
• Identification of the patient data that are accessed.
	1. The tester reviews the documentation to verify that the default setting for audit log is enabled,
2. The tester verifies that the Health IT Module records an audit log entry for each of the specified actions in accordance with the standard specified in § 170.210(e)(1), when supported.
3. The tester verifies using visual inspection that for all specified actions, an audit log entry related to each action taken has been correctly generated according to the standard specified in § 170.210(e)(1)(i), and verifies through visual inspection of time clock synchronization with a time server that the date/time is recorded in accordance with the standard specified in § 170.210(g).
4. The tester verifies that the health IT developer has submitted documentation indicating each action that is not supported by the Heath IT Module.

	
	1. (ii) If technology permits auditing to be disabled, the ability to do so must be restricted to a limited set of users.

	1. Where the technology permits disabling, the user demonstrates that the capability to do so is restricted to a limited set of users for each auditing function:
• Record actions;
• Record the audit log status; and
• Record encryption status.
2. Negative test: The unauthorized user is not able to disable the
Health IT Module’s auditing.
	1. The tester verifies that each of the capabilities, which permit the ability to enable and disable the recording of auditable events, is limited to an identified set of users:
• Record actions;
• Record the audit log status; and
• Record encryption status.
2. Negative test: The tester verifies that the user that does not
have access to disable auditing cannot disable auditing.

	
	1. (iii) Actions recorded related to electronic health information must not be capable of being changed, overwritten, or deleted by the technology.

	The health IT developer supplies documentation describing the actions recorded that relate to electronic health information not being changed, overwritten, or deleted.
	The tester verifies that the documentation outlines how the audit log cannot be changed, overwritten, or deleted.

	
	(iv) Technology must be able to detect whether the audit log has been altered.
	The health IT developer supplies documentation describing how alterations to the audit log are detected.
	The tester verifies that the documentation outlines how an alteration of an audit log is successfully detected.

	§170.315(d)(11)
Accounting of disclosures

	Record disclosures made for treatment, payment, and health care operations in accordance with the standard specified in §170.210(d).

	1. The Health IT Module records disclosures for each of the following disclosure types:
• Treatment;
• Payment; and
• Health care operations.
2. The user shares a patient’s health information and the following data elements are recorded in accordance with the standard specified in §170.210(d):
• Date;
• Time;
• Patient identification;
• User identification; and
• Description of the disclosures.
	1. The tester verifies that each disclosure type has been recorded correctly and includes the data elements in accordance with the standards specified at §170.210(d).

[bookmark: _Toc533937591]3. HIPAA Criteria

Health Insurance Portability and Accountability Act (HIPAA) was established in 1996 (later revised in 2013)) to establish specific privacy and security requirements for safeguarding health information. The information is created or received by various covered entities such as health care providers, health plan providers or insurance companies, employers, and health care clearing houses. Healthcare professionals and covered entities (e.g., insurance companies, business associates such as laboratories) collect, store and transmit data while providing healthcare related services to patients. Over the lifetime of a person, healthcare data is being collected in the form of electronic records.

HIPAA act identifies a set of personally identifiable information as Protected Health Information (PHI). Some examples of PHI include (i) names, (ii) postal address including street address, city, county, precinct, zip code, (iii) all dates that may reflect birth date, admission date, discharge date, date of death, (iv) telephone numbers, (v) fax numbers, (vi) electronic mail address, (vii) social security numbers, (viii) medical record numbers, (ix) health plan beneficiary number, (x) certification/license numbers, (xi) vehicle identifiers or license plate numbers, (xii) device identifiers and serial numbers, (xiii) name of relative, (xiv) biometrics such as fingers and voice prints, and (xv) full face photographic images or any comparable images.

In 2017, Emory Healthcare’s appointment system was hacked compromising almost 80,000 patients PHI information such as names, birth dates, internal medical record and appointment information. The appointment related information was stored into local databases unencrypted, which opens the door for hackers to obtain plain text information. According to a report [28], this incident is the largest breach in 2017 across USA. The HIPAA Meaningful Usage act requires that any data security breaches affecting 500 or more patients be reported to public through US Health and Human Service Office for Civil Rights' Breach Portal and the affected healthcare provider must take appropriate steps within a certain time limit, otherwise, faces further penalties. Thus, PHI leakage not only brings reputation problem on health care providers, but also affects the affected patients.
A list of HIPAA checklist for compliance is listed here https://www.ihs.gov/hipaa/documents/IHS_HIPAA_Security_Checklist.pdf

[bookmark: _Toc533937592]4. Hands-on Lab: Checking of EHR compliance for OpenEMR
Total points: 70

In this part of the exercise, we assumed you already have installed and run OpenEMR web application, an Electronic Health Record (HER) System run as web application on Apache HTTP server and using MySQL to store data.

Once installation is complete, then login as an admin user (with the password you chose). Create a new patient profile (or a user), enter sample data as you wish such as name, phone, gender, etc.
[image:]

[image:]

Once done, can you examine the tables from mysql command line terminal (available at XAMPP) that is storing the new user information (e.g., username, taxid, password)? [A sample screenshot shown below]
 [image:]

Were all the PHI information encrypted during user add operation? If not, what vulnerabilities may arise and can be exploited?
Carefully, see the above screenshot after adding a sample patient date. You will not find any encrypted PHI data in the table. Since the PHI data is not encrypted, it is readable in plain text if someone got unauthorized access to it via an SQL injection or cross-site-scripting attack or by intercepting it during a man in the middle attack if the data is being transferred over an unencrypted connection.
[image:]

Below is the list of HIPAA technical requirement that any web application storing patient’s data electronically must met. Through examples of activities such as (non-exhaustive list) (i) adding a new doctor, patient data (ii) logging in (iii) logging out, (iv) uploading lab report, (v) adding allergy information, (vi) discharging patient (vii) scheduling, (viii) billing a patient - which requirement(s) from HIPAA do you think were met or not met (only mention rule reference#, activity, and your brief explanation)?

You need to complete the exercise all by yourself before looking a sample answer below.
See below example answers for three criteria, you need complete the remaining 9 criteria (see table below). [70 points]

a(1): Access Controls: was met. Because it requires a user and password to login to the system and you can force strong passwords, password expiration, as well as password salting. It also has the ability to use Certificate of Authority public key authorizations, as well as use Active Directory for managing user credentials. Additionally, it uses roles for permission based access once a user is logged in. All these settings are under Global Settings > Security.

a (2)i: Unique name and/or number: was met. Because each user has a username and you cannot reuse usernames. I tested this by creating multiple users.

a (2)iv: Encryption: not met. There doesn’t seem to be a built-in default encryption mechanism for the EPHI data. However, there is the option to enable client SSL to encrypt connections to the application in Global Settings > Security.

HIPAA Technical Security Requirement Table

	Security Rule Reference
	Technical Requirement from HIPAA Regulations
	Status

	164.312(a)(1)
	Access Controls: Implement technical policies and procedures for electronic information systems that maintain EPHI to allow access only to those persons or software programs that have been granted access rights as specified in Sec. 164.308(a)(4).
	

	164.312(a)(2)(i)
	Assign a unique name and/or number for identifying and tracking user identity.
	REQUIRED

	164.312(a)(2)(ii)
	Establish (and implement as needed) procedures for obtaining for obtaining necessary EPHI during and emergency.
	REQUIRED

	164.312(a)(2)(iii)
	Implement procedures that terminate an electronic session after a predetermined time of inactivity.
	ADDRESSABLE

	164.312(a)(2)(iv)
	Implement a mechanism to encrypt and decrypt EPHI.
	ADDRESSABLE

	164.312(b)
	Implement Audit Controls, hardware, software, and/or procedural mechanisms that record and examine activity in information systems that contain or use EPHI.
	REQUIRED

	164.312(c)(1)
	Integrity: Implement policies and procedures to protect EPHI from improper alteration or destruction.
	

	164.312(c)(2)
	Implement electronic mechanisms to corroborate that EPHI has not been altered or destroyed in an unauthorized manner.
	ADDRESSABLE

	164.312(d)
	Implement Person or Entity Authentication procedures to verify that a person or entity seeking access EPHI is the one claimed.
	REQUIRED

	164.312(e)(1)
	Transmission Security: Implement technical security measures to guard against unauthorized access to EPHI that is being transmitted over an electronic communications network.
	

	164.312(e)(2)(i)
	Implement security measures to ensure that electronically transmitted EPHI is not improperly modified without detection until disposed of.
	ADDRESSABLE

	164.312(e)(2)(ii)
	Implement a mechanism to encrypt EPHI whenever deemed appropriate.
	ADDRESSABLE

[bookmark: _Toc533937593]5. Hands-on Lab: HIPAA Compliance checking with static analysis/scanner tools:
Total points: 30

Static analysis is a method that directly examines the code of a program without executing the program. It can detect common vulnerabilities before releasing the program. Since manual static analysis takes a long time to be performed, static analysis tools are used to speed up the process of evaluating programs. Static analysis tools examine the text of a program statically, without attempting to execute it. RIPS is a tool for automated identification of vulnerabilities in PHP applications. In open-source version of RIPS, PHP code is tokenized and transformed into a program model to be scanned. RIP then detects vulnerable functions that a malicious user can affect during the program flow. RIPS detects a number of vulnerability types including cross-site scripting, SQL injection, local file inclusion, etc.

In this part, we will setup a web scanner named RIPS, download from http://rips-scanner.sourceforge.net/

Then, copy the unzipped folder of RIPS into the htdocs in XAMPP, and access to RIPS from a browser tab by typing the URL as appropriate.

See a screenshot below the tool requires you to point to the home folder of the source code base that you wish to scan (e.g., C:\XAMPP\htdocs\openemr).

Since OpenEMR has 5000+ files, total scanning will take hours, instead you can just scan the top folder (instead of all the subfolders) OR a specific subfolder, by unchecking subdirs box.

Start scan for a chosen folder of your interests and provide a screenshot of the report showing a summary of security vulnerabilities discovered. Save the result page (as html or suitable format), submit with the lab report. Then, discuss the list of vulnerabilities what they do and how they can be mitigated. Use OWASP Top 10 resource website (https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project)or other similar in your answers. [10+20= 30 points]

See below an example of report and vulnerabilities and fixing.

 [image:]

The above screenshot shows the results after scanning one file (index.php).
There was one instance of a Cross-Site Scripting vulnerability reported and no SQL injection vulnerabilities reported:
· XSS code snippet: 5: echo $controller->act($_GET);

As a developer or tester, you also need to know how these vulnerabilities can be fixed. Some examples are provided below for SQL injection and XSS vulnerabilities.

XSS: https://stackoverflow.com/questions/1336776/xss-filtering-function-in-php

This first link talks about using php filters that strip out html and php tags from an input string and can also be used to validate the data to ensure that it’s formatted the way the database expects. Individual PHP filters sanitize input from HTML or PHP injection based on the type of data being input like email addresses, urls, numbers, and special characters. There are different filters for varying data types. The benefits of php filters are that they can both validate and sanitize input.

SQL Injection: http://php.net/manual/en/security.database.sql-injection.php

This link talks about using methods like MySQLi prepared statements to sanitize inputs against SQL injection. Prepared statements have the benefit that you don’t necessarily have to know what type of data is being input. They can be adapted to any type of input and just convert it to a string or number. Prepared statements have one downside compared to filters in that they do not validate the input for formatting, so they must be paired with a client side validation solution like Javascript.

Variable sanitization: https://code.tutsplus.com/tutorials/sanitize-and-validate-data-with-php-filters--net-2595

This article again talks about using php filters to sanitize input. More specifically using the filter_var() method in combination with the appropriate type of filter to ensure proper sanitization and formatting. For example, you can use FILTER_SANITIZE_STRING to remove all html tags or other invalid code from a string or FILTER_VALIDATE _IP to ensure that a variable is a valid IP address.

The basic idea with all three links is that you must sanitize, and ideally, validate all input before it is processed on the server. This is done to ensure that there is no code contained within the input that either the web server or the database would parse as executable, and so that the input is formatted in the way the database expects it to be.
image2.jpg

image3.jpg

image4.png

image5.jpg

image6.jpg

image1.tmp

